


“AI is the most transformative technology of our era.

Agrawal, Gans, and Goldfarb not only understand its

essence but also deliver deep insights into its economic

implications and intrinsic trade-offs. If you want to clear the

fog of AI hype and see clearly the core of AI’s challenges

and opportunities for society, your first step should be to

read this book.”

— ERIK BRYNJOLFSSON, MIT professor; author, The

Second Machine Age and Machine, Platform, Crowd

“ Prediction Machines is a must-read for business leaders,

policy makers, economists, strategists, and anyone who

wants to understand the implications of AI for designing

business strategies, decisions, and how AI will have an

impact on our society.”

— RUSLAN SALAKHUTDINOV, Carnegie Mellon professor;

Director of AI Research, Apple

“I encounter so many people who feel excited but

overwhelmed by AI. This book will ground those feeling lost

by giving them a practical framework.”

— SHIVON ZILIS, OpenAI Director and Partner, Bloomberg

Beta

“ The current AI revolution will likely result in abundance,

but the process of getting there requires deliberation on

tough topics that include increasing unemployment and

income disparity. This book presents frameworks that allow

decision makers to deeply understand the forces at play.”

— VINOD KHOSLA, Khosla Ventures; founding CEO, Sun

Microsystems



“ What does AI mean for your business? Read this book to

find out.”

— HAL VARIAN, Chief Economist, Google

“AI may transform your life. And Prediction Machines will

transform your understanding of AI. This is the best book

yet on what may be the best technology that has come

along.”

— LAWRENCE H. SUMMERS, Charles W. Eliot Professor,

former president, Harvard University; former

secretary, US Treasury; and former chief economist,

World Bank

“Prediction Machines is a path-breaking book that focuses

on what strategists and managers really need to know

about the AI revolution. Taking a grounded, realistic

perspective on the technology, the book uses principles of

economics and strategy to understand how firms, industries,

and management will be transformed by AI.”

— SUSAN ATHEY, Economics of Technology Professor,

Stanford University; former consulting researcher,

Microsoft Research New England

“ Prediction Machines achieves a feat as welcome as it is

unique: a crisp, readable survey of where artificial

intelligence is taking us separates hype from reality, while

delivering a steady stream of fresh insights. It speaks in a

language that top executives and policy makers will

understand. Every leader needs to read this book.”

— DOMINIC BARTON, Global Managing Partner, McKinsey

& Company

“This book makes artificial intelligence easier to understand

by recasting it as a new, cheap commodity—predictions. It’s

a brilliant move. I found the book incredibly useful.”



— KEVIN KELLY, founding executive editor, Wired; author,

What Technology Wants and The Inevitable
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To our families, colleagues, students, and startups who

inspired us to think clearly and deeply about artificial

intelligence.
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1

Introduction

Machine Intelligence

If the following scenario doesn’t already sound familiar, then

it will soon. A kid is doing homework alone in another room.

You hear a question, “What’s the capital of Delaware?” The

parent starts thinking: Baltimore … too obvious …

Wilmington … not a capital. But before the thought is

complete, a machine called Alexa says the correct answer:

“The capital of Delaware is Dover.” Alexa is Amazon’s

artificial intelligence, or AI, that interprets natural language

and provides answers to questions at lightning speed. Alexa

has replaced the parent as the all-knowing source of

information in the eyes of a child.

AI is everywhere. It’s in our phones, cars, shopping

experiences, romantic matchmaking, hospitals, banks, and

all over the media. No wonder corporate directors, CEOs,

vice presidents, managers, team leaders, entrepreneurs,

investors, coaches, and policy makers are anxiously racing

to learn about AI: they all realize it is about to

fundamentally change their businesses.

The three of us have observed the advances in AI from a

distinctive vantage point. We are economists who built our

careers studying the last great technology revolution: the



internet. During years of research, we learned how to cut

through the hype to focus on what technology means for

decision makers.

We also built the Creative Destruction Lab (CDL), a seed-

stage program that increases the probability of success for

science-based startups. Initially, the CDL was open to all

kinds of startups, but by 2015, many of the most exciting

ventures were AI-enabled companies. As of September

2017, the CDL had, for the third year in a row, the greatest

concentration of AI startups of any program on earth.

As a result, many leaders in the field regularly traveled to

Toronto to participate in the CDL. For example, one of the

primary inventors of the AI engine that powers Amazon’s

Alexa, William Tunstall-Pedoe, flew to Toronto every eight

weeks from Cambridge, England, to join us throughout the

duration of the program. So did San Francisco–based Barney

Pell, who previously led an eighty-five-person team at NASA

that flew the first AI in deep space.

The CDL’s dominance in this domain resulted partly from

our location in Toronto, where many of the core inventions—

in a field called “machine learning”—that drove the recent

interest in AI were seeded and nurtured. Experts who were

previously based in the computer science department at the

University of Toronto today head several of the world’s

leading industrial AI teams, including those at Facebook,

Apple, and Elon Musk’s Open AI.

Being so close to so many applications of AI forced us to

focus on how this technology affects business strategy. As

we’ll explain, AI is a prediction technology, predictions are

inputs to decision making, and economics provides a perfect

framework for understanding the trade-offs underlying any

decision. So, by dint of luck and some design, we found

ourselves at the right place at the right time to form a

bridge between the technologist and the business

practitioner. The result is this book.



Our first key insight is that the new wave of artificial

intelligence does not actually bring us intelligence but

instead a critical component of intelligence—prediction.

What Alexa was doing when the child asked a question was

taking the sounds it heard and predicting the words the

child spoke and then predicting what information the words

were looking for. Alexa doesn’t “know” the capital of

Delaware. But Alexa is able to predict that, when people ask

such a question, they are looking for a specific response:

“Dover.”

Each startup in our lab is predicated on exploiting the

benefits of better prediction. Deep Genomics improves the

practice of medicine by predicting what will happen in a cell

when DNA is altered. Chisel improves the practice of law by

predicting which parts of a document to redact. Validere

improves the efficiency of oil custody transfer by predicting

the water content of incoming crude. These applications are

a microcosm of what most businesses will be doing in the

near future.

If you’re lost in the fog trying to figure out what AI means

for you, then we can help you understand the implications

of AI and navigate through the advances in this technology,

even if you’ve never programmed a convolutional neural

network or studied Bayesian statistics.

If you are a business leader, we provide you with an

understanding of AI’s impact on management and decisions.

If you are a student or recent graduate, we give you a

framework for thinking about the evolution of jobs and the

careers of the future. If you are a financial analyst or

venture capitalist, we offer a structure around which you

can develop your investment theses. If you are a policy

maker, we give you guidelines for understanding how AI is

likely to change society and how policy might shape those

changes for the better.



Economics provides a well-established foundation for

understanding uncertainty and what it means for decision

making. As better prediction reduces uncertainty, we use

economics to tell you what AI means for the decisions you

make in the course of your business. This, in turn, provides

insight into which AI tools are likely to deliver the highest

return on investment for the work flows inside your

business. This then leads to a framework for designing

business strategies, such as how you might rethink the

scale and scope of your business to exploit the new

economic realities predicated on cheap prediction. Finally,

we lay out the major trade-offs associated with AI on jobs,

on the concentration of corporate power, on privacy, and on

geopolitics.

What predictions are important for your business? How will

further advances in AI change the predictions you rely on?

How will your industry redesign jobs in response to

advances in prediction technology just as industries

reconfigured jobs with the rise of the personal computer and

then of the internet? AI is new and still poorly understood,

but the economics toolkit for evaluating the implications of

a drop in the cost of prediction is rock solid; although the

examples we use will surely become dated, the framework

in this book will not. The insights will continue to apply as

the technology improves and predictions become more

accurate and complex.

Prediction Machines is not a recipe for success in the AI

economy. Instead, we emphasize trade-offs. More data

means less privacy. More speed means less accuracy. More

autonomy means less control. We don’t prescribe the best

strategy for your business. That’s your job. The best

strategy for your company or career or country will depend

on how you weigh each side of every trade-off. This book

gives you a structure for identifying the key trade-offs and

how to evaluate the pros and cons in order to reach the best



decision for you. Of course, even with our framework in

hand, you will find that things are changing rapidly. You will

need to make decisions without full information, but doing

so will often be better than inaction.

KEY POINTS

The current wave of advances in artificial intelligence

doesn’t actually bring us intelligence but instead a

critical component of intelligence: prediction.

Prediction is a central input into decision-making.

Economics has a well-developed framework for

understanding decision-making. The new and poorly

understood implications of advances in prediction

technology can be combined with the old and well-

understood logic of decision theory from economics to

deliver a series of insights to help navigate your

organization’s approach to AI.

There is often no single right answer to the question of

which is the best AI strategy or the best set of AI tools,

because AIs involve trade-offs: more speed, less

accuracy; more autonomy, less control; more data, less

privacy. We provide you with a method for identifying

the trade-offs associated with each AI-related decision

so that you can evaluate both sides of every trade in

light of your organization’s mission and objectives and

then make the decision that is best for you.
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Cheap Changes Everything

Everyone has had or will soon have an AI moment. We are

accustomed to a media saturated with stories of new

technologies that will change our lives. While some of us are

technophiles and celebrate the possibilities of the future,

and others are technophobes who mourn the passing of the

good ole days, almost all of us are so used to the constant

drumbeat of technology news that we numbly recite that

the only thing immune to change is change itself. Until we

have our AI moment. Then we realize that this technology is

different.

Some computer scientists experienced their AI moment in

2012 when a student team from the University of Toronto

delivered such an impressive win in the visual object

recognition competition ImageNet that the following year all

top finalists used the then-novel “deep learning” approach

to compete. Object recognition is more than just a game; it

enables machines to “see.”

Some technology CEOs experienced their AI moment when

they read the headline in January 2014 that Google had just

paid more than $600 million to acquire UK-based DeepMind,

even though the startup had generated negligible revenue

relative to the purchase price but had demonstrated that its

AI had learned—on its own, without being programmed—to



play certain Atari video games with superhuman

performance.

Some regular citizens experienced their AI moment later

that year when renowned physicist Stephen Hawking

emphatically explained, “[E]verything that civilisation has to

offer is a product of human intelligence … [S]uccess in

creating AI would be the biggest event in human history.”1

Others experienced their AI moment the first time they

took their hands off the wheel of a speeding Tesla,

navigating traffic using Autopilot AI.

The Chinese government experienced its AI moment when

it witnessed DeepMind’s AI, AlphaGo, beating Lee Se-dol, a

South Korean master of the board game Go, and then later

that year beating the world’s top-ranked player, Ke Jie of

China. The New York Times described this game as China’s

“Sputnik moment.”2 Just as massive American investment in

science followed the Soviet Union’s launch of Sputnik, China

responded to this event with a national strategy to

dominate the AI world by 2030 and a financial commitment

to make that claim plausible.

Our own AI moment came in 2012 when a trickle and then

a surge in the number of early-stage AI companies

employing state-of-the-art machine-learning techniques

applied to the CDL. The applications spanned industries—

drug discovery, customer service, manufacturing, quality

assurance, retail, medical devices. The technology was both

powerful and general purpose, creating significant value

across a wide range of applications. We set to work

understanding what it meant in economics terms. We knew

that AI would be subject to the same economics as any

other technology.

The technology itself is, simply put, amazing. Early on,

famed venture capitalist Steve Jurvetson quipped: “Just

about any product that you experience in the next five years

that seems like magic will almost certainly be built by these



algorithms.”3 Jurvetson’s characterization of AI as “magical”

resonated with the popular narrative of AI in films like 2001:

A Space Odyssey, Star Wars, Blade Runner, and more

recently Her, Transcendence, and Ex Machina. We

understand and sympathize with Jurvetson’s

characterization of AI applications as magical. As

economists, our job is to take seemingly magical ideas and

make them simple, clear, and practical.

Cutting through the Hype

Economists view the world differently than most people. We

see everything through a framework governed by forces

such as supply and demand, production and consumption,

prices and costs. Although economists often disagree with

each other, we do so in the context of a common

framework. We argue about assumptions and

interpretations but not about fundamental concepts, like the

roles of scarcity and competition in setting prices. This

approach to viewing the world gives us a unique vantage

point. On the negative side, our viewpoint is dry and doesn’t

make us popular at dinner parties. On the positive side, it

provides a useful clarity for informing business decisions.

Let’s start with the basics—prices. When the price of

something falls, we use more of it. That’s simple economics

and is happening right now with AI. AI is everywhere—

packed into your phone’s apps, optimizing your electricity

grids, and replacing your stock portfolio managers. Soon it

may be driving you around or flying packages to your

house.

If economists are good at one thing, it is cutting through

hype. Where others see transformational new innovation,

we see a simple fall in price. But it is more than that. To

understand how AI will affect your organization, you need to



know precisely what price has changed and how that price

change will cascade throughout the broader economy. Only

then can you build a plan of action. Economic history has

taught us that the impact of major innovations is often felt

in the most unexpected places.

Consider the story of the commercial internet in 1995.

While most of us were watching Seinfeld, Microsoft released

Windows 95, its first multitasking operating system. That

same year, the US government removed the final

restrictions to carrying commercial traffic on the internet,

and Netscape—the browser’s inventor—celebrated the first

major initial public offering (IPO) of the commercial internet.

This marked an inflection point when the internet

transitioned from a technological curiosity to a commercial

tidal wave that would wash over the economy.

Netscape’s IPO valued the company at more than $3

billion, even though it had not generated any significant

profit. Venture capital investors valued startups in the

millions even if they were, and this was a new term, “pre-

revenue.” Freshly minted MBA graduates turned down

lucrative traditional jobs to prospect on the web. As the

effects of the internet began to spread across industries and

up and down the value chain, technology advocates stopped

referring to the internet as a new technology and began

referring to it as the “New Economy.” The term caught on.

The internet transcended the technology and permeated

human activity at a fundamental level. Politicians, corporate

executives, investors, entrepreneurs, and major news

organizations started using the term. Everyone began

referring to the New Economy.

Everyone, that is, except economists. We did not see a

new economy or a new economics. To economists, this

looked like the regular old economy. To be sure, some

important changes had occurred. Goods and services could

be distributed digitally. Communication was easy. And you



could find information with the click of a search button. But

you could do all of these things before. What had changed

was that you could now do them cheaply. The rise of the

internet was a drop in the cost of distribution,

communication, and search. Reframing a technological

advance as a shift from expensive to cheap or from scarce

to abundant is invaluable for thinking about how it will affect

your business. For instance, if you recall the first time you

used Google, you may remember being mesmerized by the

seemingly magical ability to access information. From the

economist perspective, Google made search cheap. When

search became cheap, companies that made money selling

search through other means (e.g., the Yellow Pages, travel

agents, classifieds) found themselves in a competitive crisis.

At the same time, companies that relied on people finding

them (for example, self-publishing authors, sellers of

obscure collectibles, homegrown moviemakers) prospered.

This change in the relative costs of certain activities

radically influenced some companies’ business models and

even transformed some industries. However, economic laws

did not change. We could still understand everything in

terms of supply and demand and could set strategy, inform

policy, and anticipate the future using off-the-shelf

economic principles.

Cheap Means Everywhere

When the price of something fundamental drops drastically,

the whole world can change. Consider light. Chances are

you are reading this book under some kind of artificial light.

Moreover, you probably never thought about whether using

artificial light for reading was worth it. Light is so cheap that

you use it with abandon. But, as the economist William

Nordhaus meticulously explored, in the early 1800s it would



have cost you four hundred times what you are paying now

for the same amount of light.4 At that price, you would

notice the cost and would think twice before using artificial

light to read this book. The subsequent drop in the price of

light lit up the world. Not only did it turn night into day, but

it allowed us to live and work in big buildings that natural

light could not penetrate. Virtually nothing we have today

would be possible had the cost of artificial light not

collapsed to almost nothing.

Technological change makes things cheap that were once

expensive. The cost of light fell so much that it changed our

behavior from thinking about whether we should use it to

not thinking for even a second before flipping on a light

switch. Such significant price drops create opportunities to

do things we’ve never done; it can make the impossible

possible. So, economists are unsurprisingly obsessed with

the implications of massive price drops in foundational

inputs like light.

Some of the impacts from producing cheaper light were

easy to imagine, and others less so. What might be affected

when a new technology makes something cheap is not

always precisely obvious, whether the technology is artificial

light, steam power, the automobile, or computing.

Tim Bresnahan, a Stanford economist and one of our

mentors, pointed out that computers do arithmetic and

nothing more. The advent and commercialization of

computers made arithmetic cheap.5 When arithmetic

became cheap, not only did we use more of it for traditional

applications of arithmetic, but we also used the newly cheap

arithmetic for applications that were not traditionally

associated with arithmetic, like music.

Heralded as the first computer programmer, Ada Lovelace

was the first to see this potential. Working under very

expensive light in the early 1800s, she wrote the earliest

recorded program to compute a series of numbers (called



Bernoulli numbers) on a still-theoretical computer that

Charles Babbage designed. Babbage was also an economist,

and as we will see in this book, that was not the only time

economics and computer science intersected. Lovelace

understood that arithmetic could, to use modern startup

lingo, “scale” and enable so much more. She realized that

applications of computers were not limited to mathematical

operations: “Supposing, for instance, that the fundamental

relations of pitched sounds in the science of harmony and of

musical composition were susceptible of such expression

and adaptations, the engine might compose elaborate and

scientific pieces of music of any degree of complexity.”6 No

computer had been invented yet, but Lovelace saw that an

arithmetic machine could store and replay music—a form

that defined art and humanity.

That is precisely what happened. When, a century and a

half later, the cost of arithmetic fell low enough, there were

thousands of applications for arithmetic that most had never

dreamed of. Arithmetic was such an important input into so

many things that, when it became cheap, just as light had

before, it changed the world. Reducing something to pure

cost terms has a way of cutting through hype, although it

does not help make the latest and greatest technology

seem exciting. You’d never have seen Steve Jobs announce

“a new adding machine,” even though that is all he ever

did. By reducing the cost of something important, Jobs’s

new adding machines were transformative.

That brings us to AI. AI will be economically significant

precisely because it will make something important much

cheaper. Right now, you may be thinking about intellect,

reasoning, or thought itself. You might be imagining robots

all over or non-corporeal beings, such as the friendly

computers in Star Trek, letting you avoid the need to think.

Lovelace had the same thought, but quickly dismissed it. At

least insofar as a computer was concerned, she wrote, it



“had no pretensions to originate anything. It can do

whatever we know how to order it to perform. It can follow

analysis; but it has no power of anticipating any analytical

relations or truths.”7

Despite all the hype and the baggage that comes with the

notion of AI, what Alan Turing later called “Lady Lovelace’s

Objection” still stands. Computers still cannot think, so

thought isn’t about to become cheap. However, what will be

cheap is something so prevalent that, like arithmetic, you

are probably not even aware of how ubiquitous it is and how

much a drop in its price could affect our lives and economy.

What will new AI technologies make so cheap? Prediction.

Therefore, as economics tells us, not only are we going to

start using a lot more prediction, but we are going to see it

emerge in surprising new places.

Cheap Creates Value

Prediction is the process of filling in missing information.

Prediction takes information you have, often called “data,”

and uses it to generate information you don’t have. Much

discussion about AI emphasizes the variety of prediction

techniques using increasingly obscure names and labels:

classification, clustering, regression, decision trees,

Bayesian estimation, neural networks, topological data

analysis, deep learning, reinforcement learning, deep

reinforcement learning, capsule networks, and so on. The

techniques are important for technologists interested in

implementing AI for a particular prediction problem.

In this book, we spare you the details of the mathematics

behind the methods. We emphasize that each of these

methods is about prediction: using information you have to

generate information you don’t have. We focus on helping

you identify situations in which prediction will be valuable,



and then on how to benefit as much as possible from that

prediction.

Cheaper prediction will mean more predictions. This is

simple economics: when the cost of something falls, we do

more of it. For example, as the computer industry began to

take off in the 1960s and the cost of arithmetic began to fall

rapidly, we used more arithmetic in applications where it

was already an input, such as at the US Census Bureau, the

US Department of Defense, and NASA (recently depicted in

the film Hidden Figures). We later began to use the newly

cheap arithmetic on problems that weren’t traditionally

arithmetic problems, such as photography. Whereas we

once solved photography with chemistry, when arithmetic

became cheap enough, we transitioned to an arithmetic-

based solution: digital cameras. A digital image is just a

string of zeros and ones that can be reassembled into a

viewable image using arithmetic.

The same goes for prediction. Prediction is being used for

traditional tasks, like inventory management and demand

forecasting. More significantly, because it is becoming

cheaper it is being used for problems that were not

traditionally prediction problems. Kathryn Howe, of

Integrate.ai, calls the ability to see a problem and reframe it

as a prediction problem “AI Insight,” and, today, engineers

all over the world are acquiring it. For example, we are

transforming transportation into a prediction problem.

Autonomous vehicles have existed in controlled

environments for over two decades. They were limited,

however, to places with detailed floor plans such as

factories and warehouses. The floor plans meant engineers

could design their robots to maneuver with basic “if-then”

logical intelligence: if a person walks in front of the vehicle,

then stop. If the shelf is empty, then move to the next one.

However, no one could use those vehicles on a regular city



street. Too many things could happen—too many “ifs” to

possibly code.

Autonomous vehicles could not function outside a highly

predictable, controlled environment—until engineers

reframed navigation as a prediction problem. Instead of

telling the machine what to do in each circumstance,

engineers recognized they could instead focus on a single

prediction problem: “What would a human do?” Now,

companies are investing billions of dollars in training

machines to drive autonomously in uncontrolled

environments, even on city streets and highways.

Imagine an AI sitting in the car with a human driver. The

human drives for millions of miles, receiving data about the

environment through their eyes and ears, processing that

data with their human brain, and then acting in response to

the incoming data: drive straight or turn, brake or

accelerate. Engineers give the AI its own eyes and ears by

outfitting the car with sensors (e.g., cameras, radar, lasers).

So, the AI observes the incoming data as the human drives

and simultaneously observes the human’s actions. When

particular environmental data comes in, does the human

turn right, brake, or accelerate? The more the AI observes

the human, the better it becomes at predicting the specific

action the driver will take, given the incoming

environmental data. The AI learns to drive by predicting

what a human driver would do given specific road

conditions.

Critically, when an input such as prediction becomes

cheap, this can enhance the value of other things.

Economists call these “complements.” Just as a drop in the

cost of coffee increases the value of sugar and cream, for

autonomous vehicles, a drop in the cost of prediction

increases the value of sensors to capture data on the

vehicle’s surroundings. For example, in 2017, Intel paid

more than $15 billion for the Israeli startup Mobileye,



primarily for its data-collection technology that allows

vehicles to effectively see objects (stop signs, people, etc.)

and markings (lanes, roads).

When prediction is cheap, there will be more prediction

and more complements to prediction. These two simple

economic forces drive the new opportunities that prediction

machines create. At low levels, a prediction machine can

relieve humans of predictive tasks and so save on costs. As

the machine cranks up, prediction can change and improve

decision-making quality. But at some point, a prediction

machine may become so accurate and reliable that it

changes how an organization does things. Some AIs will

affect the economics of a business so dramatically that they

will no longer be used to simply enhance productivity in

executing against the strategy; they will change the

strategy itself.

From Cheap to Strategy

The single most common question corporate executives ask

us is: “How will AI affect our business strategy?” We use a

thought experiment to answer that question. Most people

are familiar with shopping at Amazon. As with most online

retailers, you visit its website, shop for items, place them in

your cart, pay for them, and then Amazon ships them to

you. Right now, Amazon’s business model is shopping-then-

shipping.

During the shopping process, Amazon’s AI offers

suggestions of items that it predicts you will want to buy.

The AI does a reasonable job. However, it is far from perfect.

In our case, the AI accurately predicts what we want to buy

about 5 percent of the time. We actually purchase about

one of every twenty items it recommends. Considering the

millions of items on offer, that’s not bad!



Imagine that the Amazon AI collects more information

about us and uses that data to improve its predictions, an

improvement akin to turning up the volume knob on a

speaker dial. But rather than volume, it’s turning up the AI’s

prediction accuracy.

At some point, as it turns the knob, the AI’s prediction

accuracy crosses a threshold, changing Amazon’s business

model. The prediction becomes sufficiently accurate that it

becomes more profitable for Amazon to ship you the goods

that it predicts you will want rather than wait for you to

order them.

With that, you won’t need to go to other retailers, and the

fact that the item is there may well nudge you to buy more.

Amazon gains a higher share of wallet. Clearly, this is great

for Amazon, but it is also great for you. Amazon ships before

you shop, which, if all goes well, saves you the task of

shopping entirely. Cranking up the prediction dial changes

Amazon’s business model from shopping-then-shipping to

shipping-then-shopping.

Of course, shoppers would not want to deal with the hassle

of returning all the items they don’t want. So, Amazon would

invest in infrastructure for the product returns, perhaps a

fleet of delivery-style trucks that do pickups once a week,

conveniently collecting items that customers don’t want.8

If this is a better business model, then why hasn’t Amazon

done it already? Because if implemented today, the cost of

collecting and handling returned items would outweigh the

increase in revenue from a greater share of wallet. For

example, today we would return 95 percent of the items it

ships to us. That is annoying for us and costly for Amazon.

The prediction isn’t good enough for Amazon to adopt the

new model.

We can imagine a scenario where Amazon adopts the new

strategy even before the prediction accuracy is good

enough to make it profitable because the company



anticipates that at some point it will be profitable. By

launching sooner, Amazon’s AI will get more data sooner

and improve faster. Amazon realizes that the sooner it

starts, the harder it will be for competitors to catch up.

Better predictions will attract more shoppers, more

shoppers will generate more data to train the AI, more data

will lead to better predictions, and so on, creating a virtuous

cycle. Adopting too early could be costly, but adopting too

late could be fatal.9

Our point is not that Amazon will or should do this,

although skeptical readers may be surprised to learn that

Amazon obtained a US patent for “anticipatory shipping” in

2013.10 Instead, the salient insight is that turning the

prediction dial has a significant impact on strategy. In this

example, it shifts Amazon’s business model from shopping-

then-shipping to shipping-then-shopping, generates the

incentive to vertically integrate into operating a service for

product returns (including a fleet of trucks), and accelerates

the timing of investment. All this is due simply to turning up

the dial on the prediction machine.

What does this mean for strategy? First, you must invest in

gathering intelligence on how fast and how far the dial on

the prediction machines will turn for your sector and

applications. Second, you must invest in developing a thesis

about the strategic options created from turning the dial.

To get started on this “science fictioning” exercise, close

your eyes, imagine putting your fingers on the dial of your

prediction machine, and, in the immortal words of Spinal

Tap, turn it to eleven.

The Plan for the Book

You need to build foundations before the strategic

implications of prediction machines for your organization



become apparent. That is precisely how we structured this

book, building a pyramid from the ground up.

We lay the foundation in part one and explain how

machine learning makes prediction better. We move to why

these new advances are different from the statistics you

learned in school or that your analysts might already

conduct. We then consider a key complement to prediction,

data, especially the types of data required to make good

predictions, and how to know whether you have it. Finally,

we delve into when prediction machines perform better than

humans and when people and machines might work

together for even better predictive accuracy.

In part two, we describe the role of prediction as an input

into decision making and explain the importance of another

component that the AI community has so far neglected:

judgment. Prediction facilitates decisions by reducing

uncertainty, while judgment assigns value. In economists’

parlance, judgment is the skill used to determine a payoff,

utility, reward, or profit. The most significant implication of

prediction machines is that they increase the value of

judgment.

Practical matters are the focus of part three. AI tools make

prediction machines useful and are implementations of

prediction machines designed to perform a specific task. We

outline three steps that will help you figure out when

building (or buying) an AI tool will generate the highest

return on investment. Sometimes such tools slot neatly into

an existing work flow; at other times, they motivate

redesigning the work flow. Along the way, we introduce an

important aid for specifying the key features of an AI tool:

the AI canvas.

We turn to strategy in part four. As we describe in our

Amazon thought experiment, some AIs will have such a

profound effect on the economics of a task that they will

transform a business or industry. That’s when AI becomes



the cornerstone of an organization’s strategy. AIs that have

an impact on strategy shift the attention on AI from product

managers and operations engineers to the C-suite.

Sometimes, it’s hard to tell in advance when a tool will have

such a powerful effect. For example, few people predicted,

when they tried it for the first time, that the Google search

tool would transform the media industry and become the

basis of one of the most valuable companies on earth.

In addition to upside opportunities, AI poses systemic risks

that may hit your business unless you take preemptory

actions. Popular discussion seems to focus on the risks AI

poses to humanity, but people pay much less attention to

the dangers AI poses to organizations. For instance, some

prediction machines trained on human-generated data have

already “learned” treacherous biases and stereotypes.

We end the book in part five by applying our economists’

tool kit to questions that affect society more broadly,

examining five of the most common AI debates:

1. Will there still be jobs? Yes.

2. Will this generate more inequality? Perhaps.

3. Will a few large companies control everything? It

depends.

4. Will countries engage in race-to-the-bottom policy

making and forfeit our privacy and security to give their

domestic companies a competitive advantage? Some

will.

5. Will the world end? You still have plenty of time to

derive value from this book.

KEY POINTS



Economics offers clear insights regarding the business

implications of cheaper prediction. Prediction machines

will be used for traditional prediction tasks (inventory

and demand forecasting) and new problems (like

navigation and translation). The drop in the cost of

prediction will impact the value of other things,

increasing the value of complements (data, judgment,

and action) and diminishing the value of substitutes

(human prediction).

Organizations can exploit prediction machines by

adopting AI tools to assist with executing their current

strategy. When those tools become powerful, they may

motivate changing the strategy itself. For instance, if

Amazon can predict what shoppers want, then they

may move from a shop-then-ship model to a ship-then-

shop model—bringing goods to homes before they are

ordered. Such a shift will transform the organization.

As a result of the new strategies that organizations

pursue to take advantage of AI, we will be faced with a

new set of trade-offs related to how AI will impact

society. Our choices will depend on our needs and

preferences, and will almost surely be different across

different countries and cultures. We structured this book

in five sections to reflect each layer of impact from AI,

building from the foundations of prediction all the way

up to the trade-offs for society: (1) Prediction, (2)

Decision making, (3) Tools, (4) Strategy, and (5) Society.



PART ONE

Prediction



3

Prediction Machine Magic

What do Harry Potter, Snow White, and Macbeth have in

common? These characters are all motivated by a prophecy,

a prediction. Even in The Matrix, a film seemingly about

intelligent machines, the human characters’ belief in

predictions drives the plot. From religion to fairy tales,

knowledge of the future is consequential. Predictions affect

behavior. They influence decisions.

The ancient Greeks revered their many oracles for an

apparent ability to predict, sometimes in riddles that fooled

the questioners. For example, King Croesus of Lydia was

considering a risky assault on the Persian Empire. The king

did not trust any particular oracle, so he decided to test

each before asking for advice about attacking Persia. He

sent messengers to each oracle. On the hundredth day, the

messengers were to ask the various oracles what Croesus

was doing at that moment. The oracle at Delphi predicted

most accurately, so the king asked for and trusted its

prophecy.1

As in Croesus’s case, predictions can be about the present.

We predict whether a current credit card transaction is

legitimate or fraudulent, whether a tumor in a medical

image is malignant or benign, whether the person looking

into the iPhone camera is the owner or not. Despite its Latin



root verb (praedicere, meaning to make known beforehand),

our cultural understanding of prediction emphasizes the

ability to see otherwise hidden information, whether in the

past, present, or future. The crystal ball is perhaps the most

familiar symbol of magical prediction. While we may

associate crystal balls with fortune-tellers predicting

someone’s future wealth or love life, in The Wizard of Oz,

the crystal ball allowed Dorothy to see Auntie Em in the

present. This brings us to our definition of prediction:

PREDICTION is the process of filling in missing information.

Prediction takes information you have, often called “data,”

and uses it to generate information you don’t have.

The Magic of Prediction

Several years ago, Avi (one of the authors) noticed a large,

unusual transaction in a Las Vegas casino on his credit card.

He hadn’t been in Las Vegas. He had only been there once a

long time before; the losing bet of gambling doesn’t appeal

to his economist way of seeing the world. After an extensive

conversation, his card provider reversed the transaction and

replaced the card.

Recently, a similar problem occurred. Someone had used

Avi’s credit card for a purchase. This time Avi didn’t see it on

his statement and didn’t have to deal with the painstaking

process of explaining it to a polite but firm customer service

representative. Instead, he received a proactive call that his

card had been compromised and that a new card was

already in the mail.

The credit card provider had accurately inferred, based on

Avi’s spending habits and a myriad of other available data,

that the transaction was fraudulent. The credit card



company was so confident that they did not even block his

card for a few days while they carried out an investigation.

Instead, like magic, the company sent a replacement

without his having to do anything. Of course, the credit card

provider did not have a crystal ball. It had data and a good

predictive model: a prediction machine. Better prediction

allowed it to reduce fraud while, as Ajay Bhalla,

Mastercard’s president of enterprise risk and security, put it,

“solving a major consumer pain point of being falsely

declined.”2

Business applications are well aligned with our definition of

prediction as the process of filling in missing information.

Credit card networks find it is useful to know whether a

recent credit card transaction is fraudulent. The card

network uses information about past fraudulent (and

nonfraudulent) transactions to predict whether a particular

recent transaction is fraudulent. If so, then the credit card

provider can prevent future transactions on that card and, if

the prediction is made quickly enough, then, perhaps even

the current one.

This notion—taking information of one kind and turning it

into information of another kind—is at the heart of one of

AI’s recent main achievements: language translation, a goal

that has been around for all of human civilization, even

enshrined in the millennia-old story of the Tower of Babel.

Historically, the approach to automatic language translation

was to hire a linguist—an expert on the rules of language—

to exposit rules and translate them into a way they could be

programmed.3 This is how, for instance, you might take a

Spanish phrase and, beyond simply substituting word for

word, understand that you need to swap the order of nouns

and adjectives to make it a readable English sentence.

The recent advances in AI, however, have enabled us to

recast translation as a prediction problem. We can see the

seemingly magical nature of the use of prediction for



translation in the sudden change in the quality of Google’s

translation service. Ernest Hemingway’s The Snows of

Kilimanjaro begins beautifully:

Kilimanjaro is a snow-covered mountain 19,710 feet high,

and is

said to be the highest mountain in Africa.

One day in November 2016, in translating a Japanese

version of Hemingway’s classic short story into English via

Google, Professor Jun Rekimoto, a computer scientist at the

University of Tokyo, read:

Kilimanjaro is 19,710 feet of the mountain covered with

snow, and it is said that the highest mountain in Africa.

The next day, the Google translation read:

Kilimanjaro is a mountain of 19,710 feet covered with

snow and is said to be the highest mountain in Africa.

The difference was stark. Overnight, the translation had

gone from clearly automated and clunky to a coherent

sentence, from someone struggling with a dictionary to

seemingly fluent in both languages.

Admittedly, it wasn’t quite at the Hemingway level, but the

improvement was extraordinary. Babel appeared to have

returned. And this change was no accident or quirk. Google

had revamped the engine underlying its translation product

to take advantage of the recent advances in AI that are our

focus here. Specifically, Google’s translation service now

relied on deep learning to supercharge prediction.

Language translation from English to Japanese is about

predicting the Japanese words and phrases that match the

English. The missing information to be predicted is the set of

Japanese words and the order in which they belong. Take

data from a foreign language and predict the correct set of

words in the right order in a language you know, and then



you can understand another language. Do it really well, and

you might not realize translation is taking place at all.

Companies have wasted no time in putting this magical

technology to commercial use. For example, over 500

million people in China already use a deep learning–

powered service developed by iFlytek to translate,

transcribe, and communicate using natural language.

Landlords use it to communicate with tenants in other

languages, hospital patients use it to communicate with

robots for directions, doctors use it to dictate a patient’s

medical details, and drivers use it to communicate with their

vehicles.4 The more the AI is used, the more data it collects,

the more it learns, and the better it becomes. With so many

users, the AI is improving rapidly.

How Much Better Is Prediction Than It

Used to Be?

The changes in Google Translate illustrate how machine

learning (of which deep learning is a subfield) has

dramatically reduced the costs of quality-adjusted

prediction. For the same cost in terms of computational

capacity, Google can now provide higher-quality

translations. The cost of producing the same quality of

prediction has dropped significantly.

Innovations in prediction technology are having an impact

on areas traditionally associated with forecasting, such as

fraud detection. Credit card fraud detection has improved so

much that credit card companies detect and address fraud

before we notice anything amiss. Still, this improvement

seems incremental. In the late 1990s, the leading methods

caught about 80 percent of fraudulent transactions.5 These

rates improved to 90–95 percent in 2000 and to 98–99.9



percent today.6 That last jump is a result of machine

learning; the change from 98 percent to 99.9 percent has

been transformational.

The change from 98 percent to 99.9 percent might seem

incremental, but small changes are meaningful if mistakes

are costly. An improvement from 85 percent to 90 percent

accuracy means that mistakes fall by one-third. An

improvement from 98 percent to 99.9 percent means

mistakes fall by a factor of twenty. An improvement of

twenty no longer seems incremental.

The drop in the cost of prediction is transforming many

human activities. Just as the first applications of computing

applied to familiar arithmetic problems like census

tabulations and ballistics tables, many of the first

applications of inexpensive prediction from machine

learning applied to classic prediction problems. In addition

to fraud detection, these included creditworthiness, health

insurance, and inventory management. Creditworthiness

involved predicting the likelihood that someone would pay

back a loan. Health insurance involved predicting how much

an individual would spend on medical care. Inventory

management involved predicting how many items would be

in a warehouse on a given day.

More recently, entirely new classes of prediction problems

emerged. Many were nearly impossible before the recent

advances in machine intelligence technology, including

object identification, language translation, and drug

discovery. For example, the ImageNet Challenge is a high-

profile annual contest to predict the name of an object in an

image. Predicting the object in an image can be a difficult

task, even for humans. The ImageNet data contains a

thousand categories of objects, including many breeds of

dog and other similar images. It can be difficult to tell the

difference between a Tibetan mastiff and a Bernese



mountain dog, or between a safe and a combination lock.

Humans make mistakes around 5 percent of the time.7

Between the first year of the competition in 2010 to the

final contest in 2017, prediction got much better. Figure 3-1

shows the accuracy of the contest winners by year. The

vertical axis measures the error rate, so lower is better. In

2010, the best machine predictions made mistakes in 28

percent of images. In 2012, the contestants used deep

learning for the first time and the error rate plunged to 16

percent. As Princeton professor and computer scientist Olga

Russakovsky notes, “2012 was really the year when there

was a massive breakthrough in accuracy, but it was also a

proof of concept for deep learning models, which had been

around for decades.”8 Rapid improvements in the

algorithms continued, and a team beat the human

benchmark in the competition for the first time in 2015. By

2017, the vast majority of the thirty-eight teams did better

than the human benchmark, and the best team had fewer

than half as many mistakes. Machines could identify these

types of images better than people.9

FIGURE 3-1

Image classification error over time



The Consequences of Cheap Prediction

The current generation of AI is a long way from the

intelligent machines of science fiction. Prediction does not

get us HAL from 2001: A Space Odyssey, Skynet from The

Terminator, or C3PO from Star Wars. If modern AI is just

prediction, then why is there so much fuss? The reason is

because prediction is such a foundational input. You might

not realize it, but predictions are everywhere. Our

businesses and our personal lives are riddled with

predictions. Often our predictions are hidden as inputs into

decision making. Better prediction means better

information, which means better decision making.

Prediction is “intelligence” in the espionage sense of

“obtaining of useful information.”10 Machine prediction is

artificially generated useful information. Intelligence

matters. Better predictions lead to better outcomes, as we

illustrated with the fraud-detection example. As the cost of

prediction continues to fall, we are discovering its

usefulness for a remarkably broad range of additional

activities and, in the process, enabling all sorts of things,

like machine language translation, that were previously

unimaginable.

KEY POINTS

Prediction is the process of filling in missing information.

Prediction takes information you have, often called

“data,” and uses it to generate information you don’t

have. In addition to generating information about the

future, prediction can generate information about the



present and the past. This happens when prediction

classifies credit card transactions as fraudulent, a tumor

in an image as malignant, or whether a person holding

an iPhone is the owner.

The impact of small improvements in prediction

accuracy can be deceptive. For example, an

improvement from 85 percent to 90 percent accuracy

seems more than twice as large as from 98 percent to

99.9 percent (an increase of 5 percentage points

compared to 2). However, the former improvement

means that mistakes fall by one-third, whereas the

latter means mistakes fall by a factor of twenty. In some

settings, mistakes falling by a factor of twenty is

transformational.

The seemingly mundane process of filling in missing

information can make prediction machines seem

magical. This has already happened as machines see

(object recognition), navigate (driverless cars), and

translate.
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Why It’s Called Intelligence

In 1956, a group of scholars met at Dartmouth College in

New Hampshire to map out a research path to artificial

intelligence. They wanted to see if computers could be

programmed to engage in cognitive thought, things like

playing games, proving mathematical theorems, and the

like. They also thought carefully about what language and

knowledge are so that computers could describe things.

Their efforts involved attempts to give computers choices

and have them choose the best one. The researchers were

optimistic about the possibilities of AI. When asking for

funds from the Rockefeller Foundation, they wrote:

An attempt will be made to find how to make machines

use language, form abstractions and concepts, solve

kinds of problems now reserved for humans, and improve

themselves. We think that a significant advance can be

made in one or more of these problems if a carefully

selected group of scientists work on it together for a

summer.1

This agenda turned out to be more visionary than

practical. Among other challenges, the computers of the

1950s were not fast enough to do what the scholars

envisioned.



After that original research statement, AI showed some

early progress in translation, but it proved slow. Work on AI

in very specific environments (for instance, one that bred an

artificial therapist) failed to generalize. The early 1980s

brought hope that engineers could carefully program expert

systems to replicate skilled domains like medical diagnosis,

but these were costly to develop, cumbersome, and could

not address the myriad of exceptions and possibilities,

leading to what became known as an “AI winter.”

Winter, however, appears to be over. More data, better

models, and enhanced computers have enabled recent

developments in machine learning to improve prediction.

Improvements in the collection and storage of big data have

provided feedstock for new machine learning algorithms.

Compared to their older statistical counterparts, and

facilitated by the invention of more suitable processors, the

new machine learning models are significantly more flexible

and generate better predictions—so much better that some

people have returned to describing this branch of computer

science as “artificial intelligence.”

Predicting Churn

Better data, models, and computers are at the core of

progress in prediction. To understand their value, let’s

consider a long-standing problem of prediction: forecasting

what marketers call “customer churn.” For many

businesses, customers are expensive to acquire and,

therefore, losing customers through churn, is costly. Once

acquired, businesses can capitalize on those acquisition

costs by reducing churn. In service industries like insurance,

financial services, and telecommunications, managing churn

is perhaps the most important marketing activity. The first



step in reducing churn is to identify at-risk customers.

Companies can use prediction technologies to do that.

Historically, the core method for predicting churn was a

statistical technique called “regression.” Research focused

on improving regression techniques. Researchers proposed

and tested hundreds of different regression methods in

academic journals and in practice.

What does regression do? It finds a prediction based on

the average of what has occurred in the past. For instance,

if all you have to go on to determine whether it is going to

rain tomorrow is what happened each day last week, your

best guess might be an average. If it rained on two of the

last seven days, you might predict that the probability of

rain tomorrow is around two in seven, or 29 percent. Much

of what we know about prediction has been making our

calculations of the average better by building models that

can take in more data about the context.

We have done this is by using something called “the

conditional average.” For instance, if you live in northern

California, you may have past knowledge that the likelihood

of rain depends on the season—low in the summer and high

in the winter. If you observe that during the winter, the

probability of rain on any given day is 25 percent, while

during the summer, it is 5 percent, you would not assess

that the probability of rain tomorrow is the average—15

percent. Why? Because you know whether tomorrow is

winter or summer, so you would condition your assessment

accordingly.

Adjusting for seasons is just one way we condition

averages (although a popular one in the retail trade). We

can condition averages on time of day, pollution, cloud

cover, ocean temperature, or any other available

information.

It is even possible to condition on multiple things at once:

Will it rain tomorrow if it rained today, it is winter, it is



raining two hundred miles to the west, it is sunny a hundred

miles to the south, the ground is wet, the Arctic Ocean

temperature is low, and the wind is blowing from the

southwest at fifteen miles per hour? However, this quickly

gets rather unwieldy. Calculating the average for these

seven types of information alone creates 128 different

combinations. Adding more types of information creates

exponentially more combinations.

Before machine learning, multivariate regression provided

an efficient way to condition on multiple things, without the

need to calculate dozens, hundreds, or thousands of

conditional averages. Regression takes the data and tries to

find the result that minimizes prediction mistakes,

maximizing what is called “goodness of fit.”

Thankfully, this term is more precise mathematically than

verbally. Regression minimizes prediction mistakes on

average and punishes large errors more than small ones. It

is a powerful method, especially with relatively small data

sets and a good sense of what will be useful in prediction.

For churn in cable television, it might be how frequently

people watch TV; if they aren’t using their cable

subscription, then they are likely to stop subscribing.

In addition, regression models aspire to generate unbiased

results, so with enough predictions, those predictions will be

exactly correct on average. Although we prefer unbiased

over biased predictions (that systematically overestimate or

underestimate a value, for example), predictions that are

unbiased are still not perfect. We can illustrate this point

with an old statistics joke:

A physicist, an engineer, and a statistician are on a

hunting trip. They are walking through the woods when

they spot a deer in the clearing.

The physicist calculates the distance to the target, the

velocity and drop of the bullet, adjusts, and fires, missing



the deer by five feet to the left.

The engineer looks frustrated. “You forgot to account

for the wind. Give it here.” After licking a finger to

determine the wind speed and direction, the engineer

snatches the rifle and fires, missing the deer by five feet

to the right.

Suddenly, without firing a shot, the statistician cheers,

“Woo hoo! We got it!”

Being precisely perfect on average can mean being

actually wrong each time. Regression can keep missing

several feet to the left or several feet to the right. Even if it

averages out to the correct answer, regression can mean

never actually hitting the target.

Unlike regression, machine learning predictions might be

wrong on average, but when the predictions miss, they

often don’t miss by much. Statisticians describe this as

allowing some bias in exchange for reducing variance.

An important difference between machine learning and

regression analysis is the way in which new techniques are

developed. Inventing a new machine learning method

involves proving that it works better in practice. In contrast,

inventing a new regression method requires first proving it

works in theory. The focus on working in practice gave

machine learning innovators more room to experiment,

even if their methods generated estimates that were

incorrect on average, or biased. This freedom to experiment

drove rapid improvements that take advantage of the rich

data and fast computers that appeared over the last

decade.

Throughout the late 1990s and early 2000s, experiments

with machine learning to predict customer churn had limited

success. Machine learning methods were improving, but

regression still generally performed better. The data wasn’t



rich enough, and the computers weren’t good enough to

take advantage of what machine learning could do.

For example, Duke University’s Teradata Center held a

data science tournament in 2004 to predict churn. Such

tournaments were unusual then. Anyone could submit, and

winning submissions received cash prizes. The winning

submissions used regression models. Some machine

learning methods performed adequately, but the neural net

methods that would later drive the AI revolution did not

perform well. By 2016, that had all changed. The best churn

models used machine learning, and (neural net) deep

learning models generally outperformed all others.

What changed? First, the data and computers were finally

good enough to enable machine learning to dominate. In the

1990s, it was difficult to build large enough data sets. For

example, a classic study of churn prediction used 650

customers and fewer than 30 variables.

By 2004, computer processing and storage had improved.

In the Duke tournament, the training data set contained

information on hundreds of variables for tens of thousands

of customers. With these additional variables and

customers, machine learning methods started to perform as

well, if not better, than regression.

Now researchers base churn prediction on thousands of

variables and millions of customers. Improvements in

computing power mean it is possible to include enormous

amounts of data, including text and images as well as

numbers. For example, in a mobile phone churn model,

researchers utilized data on hour-by-hour call records in

addition to standard variables such as bill size and payment

punctuality.

The machine learning methods also got better at

leveraging the data available. In the Duke competition, a

key component of success was choosing which of the

hundreds of available variables to include and choosing



which statistical model to use. The best methods at the

time, whether machine learning or classic regression, used a

combination of intuition and statistical tests to select the

variables and model. Now, machine learning methods, and

especially deep learning methods, allow flexibility in the

model and this means variables can combine with each

other in unexpected ways. People with large phone bills who

rack up minutes early in the billing month might be less

likely to churn than people with large bills who rack up their

minutes later in the month. Or people with large weekend

long-distance bills who also pay late and tend to text a lot

may be particularly likely to churn. Such combinations are

difficult to anticipate, but they can help prediction a great

deal. Because they are hard to foresee, modelers do not

include them when predicting with standard regression

techniques. Machine learning gives the choices of which

combinations and interactions might matter to the machine

and not the programmer.

Improvements in machine learning methods, generally,

and deep learning, in particular, mean that it is possible to

efficiently turn available data into accurate predictions of

churn. And machine learning methods now clearly dominate

regression and various other techniques.

Beyond Churn

Machine learning is improving prediction in a variety of

other settings beyond churn, from financial markets to the

weather.

The financial crisis of 2008 was a spectacular failure of

regression-based prediction methods. Partly driving the

financial crisis were predictions of the likely default of

collateralized debt obligations, or CDOs. In 2007, ratings

agencies like Standard & Poor’s forecasted that AAA-rated



CDOs had a less than one in eight hundred chance of failing

to deliver a return in five years. Five years later, more than

one in four CDOs failed to deliver a return. The initial

prediction was staggeringly wrong despite very rich data on

past defaults.

The failure was not due to insufficient data, but instead

how analysts used that data to form a prediction. Ratings

agencies based their prediction on multiple regression–like

models that assumed house prices in different markets were

not correlated with one another. That turned out to be false,

not just in 2007 but also previously. Include the possibility

that a shock might hit many housing markets

simultaneously, and the probability goes way up that you

lose out on CDOs, even if they are distributed across many

US cities.

Analysts built their regression models on hypotheses of

what they believed mattered and how—beliefs unnecessary

for machine learning. Machine learning models are

particularly good at determining which of many possible

variables will work best and recognizing that some things

don’t matter and others, perhaps surprisingly, do. Now, an

analyst’s intuition and hypotheses are less important. In this

way, machine learning enables predictions based on

unanticipated correlations, including that housing prices in

Las Vegas, Phoenix, and Miami might move together.

If It’s Just Prediction, Then Why Is It

Called “Intelligence”?

Recent advances in machine learning have transformed how

we use statistics to predict. It is tempting to consider the

most recent developments in AI and machine learning as

just “traditional statistics on steroids.” In one sense that is

true, since the ultimate goal is to generate a prediction to



fill in missing information. Moreover, the process of machine

learning involves searching for a solution that tends to

minimize errors.

So what makes machine learning a transformative

computing technology that might deserve the label

“artificial intelligence”? In some cases, the predictions are

so good that we can use prediction instead of rule-based

logic.

Effective prediction changes the way computers are

programmed. Neither traditional statistical methods nor

algorithms of if-then statements operate well in complex

environments. Want to identify a cat in a group of pictures?

Specify that cats come in many colors and textures. They

may be standing, sitting, lying, jumping, or looking grumpy.

They may be inside or outside. It quickly becomes

complicated. Thus, even doing a passable job requires much

careful tending. And that is just for cats. What if we want a

way to describe all the objects in a picture? We need a

separate specification for each one.

A key technology underpinning recent advances, labeled

“deep learning,” relies on an approach called “back

propagation.” It avoids all this in a way similar to how

natural brains do, by learning through example (whether

artificial neurons mimic real ones is an interesting

distraction from the usefulness of the technology). If you

want a child to know the word for “cat,” then every time you

see a cat, say the word. It is basically the same for machine

learning. You feed it a number of photos of cats with the

label “cat” and a number of photos without cats that do not

have the label “cat.” The machine learns to recognize the

patterns of pixels associated with the label “cat.”

If you have a series of pictures with cats and dogs, the link

between cats and four-legged objects will strengthen, but so

will the same link with dogs. Without having to specify more,

once you have fed several million pictures with different



variations (including some without dogs) and labels into

your machine, it develops many more associations and

learns to distinguish between cats and dogs.

Many problems have transformed from algorithmic

problems (“what are the features of a cat?”) to prediction

problems (“does this image with a missing label have the

same features as the cats I have seen before?”). Machine

learning uses probabilistic models to solve problems.

So why do many technologists refer to machine learning as

“artificial intelligence”? Because the output of machine

learning—prediction—is a key component of intelligence,

the prediction accuracy improves by learning, and the high

prediction accuracy often enables machines to perform

tasks that, until now, were associated with human

intelligence, such as object identification.

In his book On Intelligence, Jeff Hawkins was among the

first to argue that prediction is the basis for human

intelligence. The essence of his theory is that human

intelligence, which is at the core of creativity and

productivity gains, is due to the way our brains use

memories to make predictions: “We are making continuous

low-level predictions in parallel across all our senses. But

that’s not all. I am arguing a much stronger proposition.

Prediction is not just one of the things your brain does. It is

the primary function of the neocortex, and the foundation of

intelligence. The cortex is an organ of prediction.”2

Hawkins argues that our brains are constantly making

predictions regarding what we are about to experience—

what we will see, feel, and hear. As we develop and mature,

our brains’ predictions are increasingly accurate; the

predictions often come true. However, when predictions do

not accurately predict the future, we notice the anomaly,

and this information is fed back into our brain, which

updates its algorithm, thus learning and further enhancing

the model.



Hawkins’s work is controversial. His ideas are debated in

the psychology literature, and many computer scientists

flatly reject his emphasis on the cortex as a model for

prediction machines. The notion that an AI that could pass

the Turing test (a machine being able to deceive a human

into believing that the machine is actually a human) in its

strongest sense remains far from reality. Current AI

algorithms cannot reason, and moreover it is difficult to

interrogate them to understand the source of their

predictions.

Irrespective of whether the underlying model is

appropriate, his emphasis on prediction as the basis for

intelligence is useful for understanding the impact of recent

changes in AI. Here we emphasize the consequences of

dramatic improvements in prediction technology. Many of

the scholars’ aspirations at the 1956 Dartmouth conference

are now within reach. In various ways, prediction machines

can “use language, form abstractions and concepts, solve

the kinds of problems now [as of 1955] reserved for

humans, and improve themselves.”3

We do not speculate on whether this progress heralds the

arrival of general artificial intelligence, “the Singularity,” or

Skynet. However, as you will see, this narrower focus on

prediction still suggests extraordinary changes over the next

few years. Just as cheap arithmetic enabled by computers

proved powerful in ushering in dramatic changes to

business and personal lives, similar transformations will

occur due to cheap prediction.

Overall, whether or not it is intelligence, this progression

from deterministic to probabilistic programming of

computers is an important step-function transition, albeit

consistent with progress in the social and physical sciences.

Philosopher Ian Hacking, in his book The Taming of Chance,

said that, before the nineteenth century, probability was the

domain of gamblers.4 By the nineteenth century, the rise of



government census data applied the newly emerging

mathematics of probability to the social sciences. The

twentieth century saw a fundamental reordering of our

understanding of the physical world, moving from a

Newtonian deterministic perspective to the uncertainties of

quantum mechanics. Perhaps the most important advance

of twenty-first-century computer science matches these

previous advances in social and physical sciences: the

recognition that algorithms work best when structured

probabilistically, based on data.

KEY POINTS

Machine learning science had different goals from

statistics. Whereas statistics emphasized being correct

on average, machine learning did not require that.

Instead, the goal was operational effectiveness.

Predictions could have biases so long as they were

better (something that was possible with powerful

computers). This gave scientists a freedom to

experiment and drove rapid improvements that take

advantage of the rich data and fast computers that

appeared over the last decade.

Traditional statistical methods require the articulation of

hypotheses or at least of human intuition for model

specification. Machine learning has less need to specify

in advance what goes into the model and can

accommodate the equivalent of much more complex

models with many more interactions between variables.

Recent advances in machine learning are often referred

to as advances in artificial intelligence because: (1)

systems predicated on this technique learn and improve

over time; (2) these systems produce significantly



more-accurate predictions than other approaches under

certain conditions, and some experts argue that

prediction is central to intelligence; and (3) the

enhanced prediction accuracy of these systems enable

them to perform tasks, such as translation and

navigation, that were previously considered the

exclusive domain of human intelligence. We remain

agnostic on the link between prediction and

intelligence. None of our conclusions rely on taking a

position on whether advances in prediction represent

advances in intelligence. We focus on the consequences

of a drop in the cost of prediction, not a drop in the cost

of intelligence.
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Data Is the New Oil

Hal Varian, the chief economist at Google, channeling Coca-

Cola’s Robert Goizueta, said in 2013, “[A] billion hours ago,

modern homo sapiens emerged. A billion minutes ago,

Christianity began. A billion seconds ago, the IBM PC was

released. A billion Google searches ago … was this

morning.”1 Google isn’t the only company with

extraordinary amounts of data. From large companies like

Facebook and Microsoft to local governments and startups,

data collection is cheaper and easier than ever before. This

data has value. Billions of searches mean billions of lines of

data with which Google can improve its services. Some have

called data “the new oil.”

Prediction machines rely on data. More and better data

leads to better predictions. In economic terms, data is a key

complement to prediction. It becomes more valuable as

prediction becomes cheaper.

With AI, data plays three roles. First is input data, which is

fed to the algorithm and used to produce a prediction.

Second is training data, which is used to generate the

algorithm in the first place. Training data is used to train the

AI to become good enough to predict in the wild. Finally,

there is feedback data, which is used to improve the

algorithm’s performance with experience. In some



situations, considerable overlap exists, such that the same

data plays all three roles.

But data can be costly to acquire. Thus, the investment

involves a trade-off between the benefit of more data and

the cost of acquiring it. To make the right data investment

decisions, you must understand how prediction machines

use data.

Prediction Requires Data

Before the recent enthusiasm over AI, there was excitement

about big data. The variety, quantity, and quality of data

have increased substantially over the last twenty years.

Images and text are now in digital form, so machines can

analyze them. Sensors are ubiquitous. The enthusiasm is

predicated on the ability of this data to help people reduce

uncertainty and know more about what is happening.

Consider the improved sensors that monitor peoples’ heart

rates. Various companies and nonprofits with medical-

sounding names like AliveCor and Cardiio are building

products that use heart rate data. For example, the startup

Cardiogram provides an iPhone app that uses heart rate

data from an Apple Watch to generate an extraordinary

amount of information: a second-by-second measure of

heart rates for everyone who uses the app. Users can see

when and if their heart rates spike over the course of a day

and whether their heart rates have sped up or slowed down

over a year or even a decade.

But the potential power of such products comes from

combining this rich data with a prediction machine. Both

academic and industry researchers have shown that

smartphones can predict irregular heart rhythms (medically,

atrial fibrillation).2 So, with their prediction machines, the

products that Cardiogram, AliveCor, Cardiio, and others are



building use heart rate data to help diagnose heart disease.

The general approach is to use heart rate data to predict the

unknown information of whether a particular user has an

abnormal heart rhythm.

This input data is necessary to operate the prediction

machine. Because prediction machines cannot run without

input data, we often label it simply “data,” in contrast to

training and feedback data.

The uninitiated consumer cannot see the link between

heart rate data and an abnormal heart rhythm from raw

data. In contrast, Cardiogram can detect an irregular heart

rhythm with 97 percent accuracy using its deep neural

network.3 Such abnormalities cause about a quarter of

strokes. With better prediction, doctors can deliver better

treatment. Certain drugs can prevent strokes.

For this to work, individual consumers have to provide

their heart rate data. Without personal data, a machine

cannot predict the risk for that particular person. The

combination of a prediction machine with an individual’s

personal data enables a prediction for that person’s

likelihood of an irregular heart rhythm.

How Machines Learn from Data

The current generation of AI technology is called “machine

learning” for a reason. The machines learn from data. In the

case of heart rate monitors, in order to predict an irregular

heart rhythm (and an increased likelihood of a stroke) from

heart rate data, the prediction machine has to learn how the

data is associated with actual incidences of irregular heart

rhythms. To do so, the prediction machine needs to combine

the input data coming from the Apple Watch—which

statisticians call “independent variables”—with information

on irregular heart rhythms (“the dependent variable”).



For the prediction machine to learn, the information on

irregular heart rhythms has to come from the same people

as the Apple Watch heart rate data. So, the prediction

machine needs data from many people with an irregular

heart rhythm, along with their heart rate data. Importantly,

it also needs data from many people who do not have

irregular heart rhythms, along with their heart rate data.

The prediction machine then compares the heart rate

patterns for those with and without irregular rhythms. This

comparison enables the prediction. If a new patient’s heart

rate pattern is more similar to the “training” sample of

people with an irregular rhythm than to the sample of those

with a regular rhythm, then the machine will predict that

this patient has an irregular heart rhythm.

Like many medical applications, Cardiogram collects its

data by working with academic researchers who monitored

six thousand users to assist in the study. Of the six thousand

users, approximately two hundred had already been

diagnosed with an irregular heart rhythm. So, all Cardiogram

did was collect data on heart rate patterns from the Apple

Watch and compare.

Such products continue to improve their prediction

accuracy even after they launch. The prediction machine

needs feedback data on whether its predictions are correct.

So, it needs data on the incidence of irregular heart rhythms

among the product’s users. The machine combines this data

with the input data on cardio-monitoring to generate

feedback that continually improves prediction accuracy.

However, acquiring training data can be challenging. To

predict the same group of items (in this case, heart

patients), you need information on the outcome of interest

(irregular heart rhythms) as well as information on

something that will be useful for predicting that outcome in

a new context (cardio-monitoring).



This is particularly challenging when the prediction is

about some future event. The prediction machine can only

be fed information that is known at the time you want to

predict. For example, suppose you are thinking of buying

season tickets for your favorite sports team next year. In

Toronto, for most people that would be the Toronto Maple

Leafs ice hockey team. You like going to the games when

the team wins but dislike supporting a losing team. You

decide it is only worth buying the tickets if the team will win

at least half the games it plays next year. To make this

decision, you need to predict the number of wins.

In ice hockey, the team that scores the most goals wins.

So, you intuit that teams scoring lots of goals tend to win

and teams scoring few goals tend to lose. You decide to feed

your prediction machine with data from past seasons on

goals scored by each team, goals scored against each team,

and the number of wins for each team. You feed this data to

the prediction machine and find that this is indeed an

excellent predictor of the number of wins. Then you get

ready to use this information to predict the number of wins

next year.

You can’t. You’re stuck. You don’t have information on the

number of goals the team will score next year. So, you

cannot use that data to predict the number of wins. You do

have data on goals scored last year, but that won’t work

because you trained the prediction machine to learn from

the current year’s data.

To make this prediction, you need data that you will have

on hand at the time you make the prediction. You could

retrain your prediction machine using goals scored the

previous year to predict the current year’s wins. You could

use other information like wins during the previous year or

the age of the players on the team and their past

performance on the ice.



Many commercial AI applications have this structure: use a

combination of input data and outcome measures to create

the prediction machine, and then use input data from a new

situation to predict the outcome of that situation. If you can

obtain data on outcomes, then your prediction machine can

learn continually through feedback.

Decisions about Data

Data is often costly to acquire, but prediction machines

cannot operate without it. They require data to create,

operate, and improve.

You therefore must make decisions around the scale and

scope of data acquisition. How many different types of data

do you need? How many different objects are required for

training? How frequently do you need to collect data? More

types, more objects, and more frequency mean higher cost

but also potentially higher benefit. In thinking through this

decision, you must carefully determine what you want to

predict. The particular prediction problem will tell you what

you need.

Cardiogram wanted to predict strokes. It used irregular

heart rhythms as a (medically validated) proxy.4 Once it had

set this prediction objective, it needed only heart rate data

for each person who used its app. It might also use

information on sleep, physical activity, family, medical

history, and age. After asking some questions to collect age

and other information, it needed just one device to measure

one thing well: heart rate.

Cardiogram also needed data for training—the six

thousand people in its training data, a fraction of whom

have an irregular heart rhythm. Despite the vast array of

sensors and variety of details about users potentially

available, Cardiogram only had to collect a small amount of



information on most of its users. And it only required access

to abnormal heart rhythm information for the people it was

using to train its AI. In this way, the number of variables was

relatively small.

In order to make a good prediction, the machine must

have enough individuals (or units of analysis) in the training

data. The number of individuals required depends on two

factors: first, how reliable the “signal” is relative to the

“noise,” and second, how accurate the prediction must be to

be useful. In other words, the number of required people

depends on whether we expect heart rates to be a strong or

a weak predictor of irregular heart rhythms and how costly a

mistake will be. If heart rate is a strong predictor and

mistakes are not a big deal, then we only need a few

people. If heart rate is a weak predictor or if each mistake

puts lives at risk, then we need thousands or even millions.

Cardiogram, in its preliminary study, used six thousand

people, including just two hundred with an irregular heart

rhythm. Over time, one way to collect further data is

through feedback on whether the app’s users have or

develop irregular heart rhythms.

Where did the six thousand come from? Data scientists

have excellent tools for assessing the amount of data

required given the expected reliability of the prediction and

the need for accuracy. These tools are called “power

calculations” and tell you how many units you need to

analyze to generate a useful prediction.5 The salient

management point is that you must make a trade-off: more

accurate predictions require more units to study, and

acquiring these additional units can be costly.

Cardiogram requires a high frequency of data collection.

Its technology uses the Apple Watch to collect data on a

second-by-second basis. It needs this high frequency

because heart rates vary during the day, and correct

measurement requires repeated assessment of whether the



measured rate is the true value for the person being

studied. To work, Cardiogram’s algorithm uses the steady

stream of measurement that a wearable device provides,

rather than a measurement taken only when the patient is

in the doctor’s office.

Collecting this data was a costly investment. Patients had

to wear a device at all times, so it intruded on their regular

routines (particularly for those without an Apple Watch).

Because it involved health data, there were privacy

concerns, so Cardiogram developed its system in a way that

improved privacy but at the expense of increased

development costs and reduced ability of the machine to

improve predictions from feedback. It collected the data it

used in the predictions through the app; the data remained

on the watch.

Next, we discuss the difference between statistical and

economic thinking in how much data to collect. (We

consider issues associated with privacy when we discuss

strategy in part four.)

Economies of Scale

More data improves prediction. But how much data do you

need? The benefit of additional information (whether in

terms of number of units, types of variables, or frequency)

may increase or decrease with the existing amount of data.

In economist speak, data may have increasing or decreasing

returns to scale.

From a purely statistical point of view, data has decreasing

returns to scale. You get more useful information from the

third observation than the hundredth, and you learn much

more from the hundredth observation than the millionth. As

you add observations to your training data, it becomes less

and less useful to improving your prediction.



Each observation is an additional piece of data that helps

inform your prediction. In the case of Cardiogram, an

observation is the time between each recorded heartbeat.

When we say “data has decreasing returns,” we mean that

the first hundred heartbeats give you a good sense of

whether the person has an irregular heart rhythm. Each

additional heartbeat is less important than the ones before

for improving the prediction.

Consider the time at which you need to leave when you

are going to the airport. If you have never been to the

airport, the first time you go provides a lot of useful

information. The second and third times also give you a

sense of how long it typically takes. However, by the

hundredth time, you are unlikely to learn much about how

long it takes to get there. In this way, data has decreasing

returns to scale: as you get more data, each additional piece

is less valuable.

This might not be true from an economic point of view,

which is not about how data improves prediction. It is about

how data improves the value you get from the prediction.

Sometimes prediction and outcome go together, so the

decreasing returns to observations in statistics imply

decreasing returns in terms of the outcomes you care about.

Sometimes, however, they are different.

For example, consumers can choose to use your product or

your competitor’s. They may only use your product if it is

almost always as good as or better than your competitor’s.

In many cases, all competitors will be equally good for

situations with readily available data. For example, most

search engines provide similar results to common searches.

Whether you use Google or Bing, the results from a search

for “Justin Bieber” are similar. The value of a search engine

is driven by its ability to give better results for unusual

searches. Try typing “disruption” into Google and Bing. At

the time of this writing, Google showed both the dictionary



definition and results related to Clay Christensen’s ideas on

disruptive innovation. Bing’s first nine results provided

dictionary definitions. A key reason Google’s results were

better is that figuring out what the searcher needs in an

unusual search requires data on such searches. Most people

use Google for both rare and common searches. Being even

a little better in search can lead to a big difference in market

share and revenue.

So, while the data technically has decreasing returns to

scale—the billionth search is less useful for improving the

search engine than the first—from a business viewpoint,

data might be most valuable if you have more and better

data than your competitor. Some have argued that more

data about unique factors brings disproportionate rewards in

the market.6 Increasing data brings disproportionate

rewards in the market. Thus, from an economic point of

view, in such cases data may have increasing returns to

scale.

KEY POINTS

Prediction machines utilize three types of data: (1)

training data for training the AI, (2) input data for

predicting, and (3) feedback data for improving the

prediction accuracy.

Data collection is costly; it’s an investment. The cost of

data collection depends on how much data you need

and how intrusive the collection process is. It is critical

to balance the cost of data acquisition with the benefit

of enhanced prediction accuracy. Determining the best

approach requires estimating the ROI of each type of

data: how much will it cost to acquire, and how valuable

will the associated increase in prediction accuracy be?



Statistical and economic reasons shape whether having

more data generates more value. From a statistical

perspective, data has diminishing returns. Each

additional unit of data improves your prediction less

than the prior data; the tenth observation improves

prediction by more than the one thousandth. In terms of

economics, the relationship is ambiguous. Adding more

data to a large existing stock of data may be greater

than adding it to a small stock—for example, if the

additional data allows the performance of the prediction

machine to cross a threshold from unusable to usable,

or from below a regulatory performance threshold to

above, or from worse than a competitor to better. Thus,

organizations need to understand the relationship

between adding more data, enhancing prediction

accuracy, and increasing value creation.
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The New Division of Labor

Every time you change an electronic document, those

changes can be recorded. For most of us, this is little more

than a useful way to track revisions, but for Ron Glozman, it

was an opportunity to use AI on data to predict changes. In

2015, Glozman launched a startup called Chisel, whose first

product took legal documents and predicted which

information was confidential. This product is valuable to law

firms because, when they are required to disclose

documents, they have to black out, or redact, confidential

information. Historically, redaction was done by hand, with

humans reading documents and blacking out confidential

information. Glozman’s approach promised to save time and

effort.

Machine redaction worked, but imperfectly. On occasion,

the machine erroneously redacted information that should

be disclosed. Or it failed to pick up something confidential.

To achieve legal standards, humans had to help. In its

testing phase, Chisel’s machine suggested what to redact,

and the human rejected or accepted the suggestion. In

effect, working together meant saving a lot of time, while

achieving an error rate lower than the humans had achieved

on their own. This human-machine division of labor worked

because it overcame human weaknesses in speed and

attention, and machine weaknesses in interpreting text.



Humans and machines both have failings. Without knowing

what they are, we cannot assess how machines and humans

should work together to generate predictions. Why?

Because of an idea that dates back to Adam Smith’s

eighteenth-century economic thinking on the division of

labor that involves allocating roles based on relative

strengths. Here, the division of labor is between humans

and machines in generating predictions. Understanding the

division of labor involves determining which aspects of

prediction are best performed by humans or machines. This

enables us to identify their distinctive roles.

Where Humans Are Poor at Prediction

An old psychology experiment gives subjects a random

series of Xs and Os and asks them to predict what the next

one will be. For instance, they may see:

OXXOXOXOXOXXOOXXOXOXXXOXX

For a sequence like this, most people realize that there are

slightly more Xs than Os—if you count, you’ll see it’s 60

percent Xs, 40 percent Os—so they guess X most of the

time, but throw in some Os to reflect that balance. However,

if you want to maximize your chances of a correct

prediction, you would always choose X. Then you would be

right 60 percent of the time. If you randomize 60/40, as

most participants do, your prediction ends up being correct

52 percent of the time, only slightly better than if you had

not bothered to assess relative frequencies of Xs and Os and

instead just guessed one or the other (50/50).1

What such experiments tell us is that humans are poor

statisticians, even in situations when they are not too bad at

assessing probabilities. No prediction machine would make



an error like this. But perhaps humans don’t take such tasks

seriously, since they may feel as if they are playing a game.

Would they make similar errors if the consequences are

decidedly not game-like?

The answer—demonstrated over many experiments by

psychologists Daniel Kahneman and Amos Tversky—is

decidedly yes.2 When they told people to consider two

hospitals—one with forty-five births per day and another

with fifteen births per day—and asked which hospital would

have more days when 60 percent or more of the babies born

are boys, very few gave the correct answer—the smaller

hospital. The smaller hospital is correct because the larger

the number of events (in this case, births), the likelier each

daily outcome will be close to the average (in this case, 50

percent). To see how this works, imagine you are flipping

coins. You are more likely to get heads every time if you flip

five coins than if you flip fifty coins. Thus, the smaller

hospital—precisely because it has fewer births—is more

likely to have more extreme outcomes away from the

average.

Several books have been written about such heuristics and

biases.3 Many people find it challenging to make predictions

based on sound statistical principles, which is precisely why

they bring in experts. Unfortunately, those experts can

exhibit the same biases and difficulties with statistics when

making decisions. These biases plague fields as diverse as

medicine, law, sports, and business. Tversky, along with

researchers at Harvard Medical School, presented

physicians with two treatments for lung cancer: radiation or

surgery. The five-year survival rate recommends surgery.

Two groups of participants received different ways of

presenting information about the short-term survival rate of

surgery, which is riskier than radiation. When told that “the

one-month survival rate is 90 percent,” 84 percent of

physicians chose surgery, but that rate fell to 50 percent



when told that “there is a 10 percent mortality in the first

month.” Both these phrases said the same thing, but how

the researchers framed the information resulted in major

changes in the decision. A machine would not have this

outcome.

Kahneman identifies many other situations where experts

did not predict well when facing complex information.

Experienced radiologists contradicted themselves one in

five times when evaluating X-rays. Auditors, pathologists,

psychologists, and managers exhibited similar

inconsistencies. Kahneman concludes that if there is a way

of predicting using a formula instead of a human, the

formula should be considered seriously.

Poor expert prediction was the centerpiece of Michael

Lewis’s Moneyball.4 The Oakland Athletics baseball team

faced a problem when, after three of their best players left,

the team did not have the financial resources to recruit

replacements. The A’s general manager, Billy Beane (played

by Brad Pitt in the film), used a statistical system developed

by Bill James to predict player performance. With this

“sabermetrics” system, Beane and his analysts overruled

the recommendations of the A’s scouts and picked their own

team. Despite a modest budget, the A’s outperformed their

rivals all the way to the World Series in 2002. At the heart of

the new approach was a move away from indicators they

had previously thought important (such as stolen bases and

batting average) to others (such as on-base performance

and slugging percentage). It was also a move away from the

scout’s sometimes bizarre heuristics. As one scout in the

movie remarks, “He’s got an ugly girlfriend. Ugly girlfriend

means no confidence.” In light of decision-making

algorithms like that, it’s no surprise that data-driven

predictions were often able to outcompete human ones in

baseball.



The newly emphasized metrics accounted for a player’s

contribution to the performance of the team as a whole. The

new prediction machine enabled the Oakland A’s to identify

players who were lesser known quantities compared to

those evaluated traditionally and thus better value in terms

of lower price relative to their impact on team performance.

Absent prediction, these were prospects that other teams

had undervalued. The A’s capitalized on those biases.5

Perhaps the clearest indication of difficulties with human

prediction, even by experienced and powerful experts,

comes from a study of US judges’ bail-granting decisions.6

In the United States, there are 10 million such decisions

each year, and whether someone receives bail or not is very

consequential for family, job, and other personal issues, not

to mention the cost of prison for the government. Judges

must base their decisions on whether the defendant will flee

or commit other crimes if released on bail, not whether an

eventual conviction is likely. The decision criteria are clear

and well defined.

The study used machine learning to develop an algorithm

that predicted the probability that a given defendant would

reoffend or flee while on bail. The training data was

extensive: three-quarters of a million people who were

granted bail in New York City between 2008 and 2013. The

information included prior rap sheets, the crimes people

were accused of, and demographic information.

The machine made better predictions than the human

judges. For instance, for the 1 percent of defendants that

the machine classified as riskiest, it predicted that 62

percent would commit crimes while out on bail.

Nevertheless, the human judges (who did not have access

to the machine predictions) opted to release almost half of

them. The machine predictions were reasonably accurate,

with 63 percent of the machine-identified high-risk offenders

actually committing a crime while on bail and over half not



appearing at the next court date. Five percent of those the

machine identified as high risk committed rape or murder

while on bail.

By following the recommendations of the machine, the

judges could have released the same number of defendants

and reduced the crime rate of those let out on bail by three-

quarters. Or they could have kept the crime rate the same

and jailed half as many additional defendants.7

What is going on here? Why do judges assess so differently

than prediction machines? One possibility is that judges use

information unavailable to the algorithm, such as the

defendant’s appearance and demeanor in court. That

information might be useful—or it might be deceiving. Given

the high crime rate of those released, it’s not unreasonable

to conclude that it is more likely the latter; the judges’

predictions are fairly horrible. The study provides plenty of

additional evidence to support this unfortunate conclusion.

Prediction proves so difficult for humans in this situation

because of the complexity of the factors that might explain

crime rates. Prediction machines are much better than

humans at factoring in complex interactions among different

indicators. So, while you might believe that a past criminal

record may mean that a defendant is a bigger flight risk, the

machine may have discovered that is only the case if the

defendant has been unemployed for a certain period of

time. In other words, the interaction effect may be the most

important, and as the number of dimensions for such

interactions grows, humans’ ability to form accurate

predictions diminishes.

These biases don’t just show up in medicine, baseball, and

law; they are a constant feature of professional work.

Economists have found that managers and workers often

engage in prediction—and prediction with confidence—

unaware they are doing a poor job. In a study of hiring

across fifteen low-skilled service firms, Mitchell Hoffman,



Lisa Kahn, and Danielle Li found that when the firms used an

objective and verifiable test along with normal interviews,

there was a 15 percent bump in the job tenure of hires

relative to when they made hiring decisions based on

interviews alone.8 For these jobs, managers were instructed

to maximize tenure.

The test itself was extensive, including cognitive abilities

and fit-for-job indicators. Also, when the discretion of hiring

managers was restricted—preventing managers from

overruling test scores when those scores were unfavorable

—an even higher job tenure and a reduced quit rate

occurred. So, even when instructed to maximize tenure,

when experienced at hiring, and when given fairly accurate

machine predictions, the managers still made poor

predictions.

Where Machines Are Poor at Prediction

Former Secretary of Defense Donald Rumsfeld once said:

There are known knowns; there are things we know we

know. We also know there are known unknowns; that is to

say we know there are some things we do not know. But

there are also unknown unknowns—the ones we don’t

know we don’t know. And if one looks throughout the

history of our country and other free countries, it is the

latter category that tend to be the difficult ones.9

This provides a useful structure for understanding the

conditions under which prediction machines falter. First,

known knowns are when we have rich data, so we know we

can make good predictions. Second, known unknowns are

when there is too little data, so we know that prediction will

be difficult. Third, unknown unknowns are those events that

are not captured by past experience or what is present in



the data but are nonetheless possible, so prediction is

difficult, although we may not realize it. Finally, a category

Rumsfeld did not recognize, unknown knowns, is when an

association that appears to be strong in the past is the

result of some unknown or unobserved factor that changes

over time and makes predictions we thought we could make

unreliable. Prediction machines fail precisely where it is hard

to predict based on the well-understood limits in statistics.

Known knowns

With rich data, machine prediction can work well. The

machine knows the situation, in the sense that it supplies a

good prediction. And we know the prediction is good. This is

the sweet spot for the current generation of machine

intelligence. Fraud detection, medical diagnosis, baseball

players, and bail decisions all fall under this category.

Known Unknowns

Even the best prediction models of today (and in the near

future) require large amounts of data, meaning we know our

predictions will be relatively poor in situations where we do

not have much data. We know that we don’t know: known

unknowns.

We might not have much data because some events are

rare, so predicting them is challenging. US presidential

elections happen only every four years, and the candidates

and political environment change. Predicting a presidential

election outcome a few years out is nearly impossible. The

2016 election showed that even predicting the outcome a

few days out, or on the day of the election, is difficult. Major

earthquakes are sufficiently (and thankfully) rare that



predicting when, where, and how large they will be has thus

far proven elusive. (Yes, seismologists are working on

this.10)

In contrast to machines, humans are sometimes extremely

good at prediction with little data. We can recognize a face

after seeing it only once or twice, even if we see it from a

different angle. We can identify a fourth-grade classmate

forty years later, despite numerous changes in appearance.

From a very young age, we can guess the trajectory of a ball

(even if we aren’t always coordinated enough to catch it).

We are also good at analogy, taking new situations and

identifying other circumstances that are similar enough to

be useful in a new environment. For example, scientists

imagined the atom as a miniature solar system for decades,

and it is still taught that way in many schools.11

While computer scientists are working to reduce machines’

data needs, developing techniques such as “one-shot

learning” in which machines learn to predict an object well

after seeing it just once, current prediction machines are not

yet adequate.12 Because these are known unknowns and

because humans are still better at decisions in the face of

known unknowns, the people managing the machine know

that such situations may arise and thus they can program

the machine to call a human for help.

Unknown Unknowns

In order to predict, someone needs to tell a machine what is

worth predicting. If something has never happened before, a

machine cannot predict it (at least without a human’s

careful judgment to provide a useful analogy that allows the

machine to predict using information about something else).

Nassim Nicholas Taleb emphasizes unknown unknowns in

his book The Black Swan.13 He highlights that we cannot



predict truly new events from past data. The book’s title

refers to the Europeans’ discovery of a new type of swan in

Australia. To eighteenth-century Europeans, swans were

white. Upon arrival in Australia, they saw something totally

new and unpredictable: black swans. They had never seen

black swans and therefore had no information that could

predict the existence of such a swan.14 Taleb argues that

the appearances of other unknown unknowns have

important consequences—unlike the appearance of black

swans, which had little meaningful impact on the direction

of European or Australian society.

For example, the 1990s were a good time to be in the

music industry.15 CD sales were growing and revenue

climbed steadily. The future looked bright. Then, in 1999,

eighteen-year-old Shawn Fanning developed Napster, a

program that allowed people to share music files for free

over the internet. Soon, people had downloaded millions of

such files, and music industry revenues began to fall. The

industry still hasn’t recovered.

Fanning was an unknown unknown. Machine prediction

could not predict his arrival. Admittedly, as Taleb and others

emphasized, humans are also relatively bad at predicting

unknown unknowns. Faced with unknown unknowns, both

humans and machines fail.

Unknown Knowns

Perhaps the biggest weakness of prediction machines is that

they sometimes provide wrong answers that they are

confident are right. As we describe above, in the case of

known unknowns, humans understand the inaccuracy of the

prediction. The prediction comes with a confidence range

that reveals its imprecision. In the case of unknown

unknowns, humans don’t think they have any answers. In



contrast, with unknown knowns, prediction machines appear

to provide a very precise answer, but that answer can be

very wrong.

How does that occur? Because, while data informs

decisions, data can also come from decisions. If the machine

does not understand the decision process that generated

the data, its predictions can fail. For example, suppose you

are interested in predicting whether you will use prediction

machines in your organization. You are off to a good start. It

turns out that reading this book is almost surely an excellent

predictor of being a manager who will use prediction

machines.

Why? For at least three possible reasons. First, and most

directly, the insights in this book will prove useful, so the act

of reading the book causes you to learn about prediction

machines and therefore to bring these tools into your

business effectively.

Second is a reason called “reverse causality.” You are

reading this book because you already use prediction

machines or have definite plans to do so in the near future.

The book didn’t cause the technology adoption; instead, the

(perhaps pending) technology adoption caused you to read

this book.

Third is a reason called “omitted variables.” You are the

kind of person who is interested in technological trends and

management. Therefore, you decided to read this book. You

also use new technologies such as prediction machines in

your work. In this case, your underlying preferences for

technology and management caused both the book reading

and the use of prediction machines.

Sometimes this distinction does not matter. If all you care

about is knowing whether a person reading this book will

adopt prediction machines, then it doesn’t matter what

causes what. If you see someone reading this book, then



you can make an informed prediction that such a person will

use prediction machines in their work.

Sometimes this distinction does matter. If you are thinking

of recommending this book to your friends, you will do so if

it caused you to be a better manager with respect to

prediction machines. What would you like to know? You’d

start with the fact that you read the book. Then you’d like to

peer into the future and observe how well you do in

managing AI. Suppose you see the future perfectly. You have

been fabulously successful at managing prediction

machines, it becomes core to your organization, and you

and your organization succeed beyond your wildest dreams.

Can you then say that reading this book caused that

success?

No.

To figure out if reading this book had an impact, you also

need to know what would have happened if you hadn’t read

this book. You don’t have that data. You need to observe

what economists and statisticians call the “counterfactual”:

what would have happened if you took a different action.

Determining whether an action causes an outcome requires

two predictions: first, what outcome will happen after the

action is taken, and second, what outcome would have

happened had a different action been taken. But that’s

impossible. You will never have data on the action not

taken.16

This is a recurrent problem for machine prediction. In his

book, Deep Thinking, chess grandmaster Garry Kasporov

discusses a related issue with an early machine-learning

algorithm for chess:

When Michie and a few colleagues wrote an experimental

data-based machine-learning chess program in the early

1980s, it had an amusing result. They fed hundreds of

thousands of positions from Grandmaster games into the



machine, hoping it would be able to figure out what

worked and what did not. At first it seemed to work. Its

evaluation of positions was more accurate than

conventional programs. The problem came when they let

it actually play a game of chess. The program developed

its pieces, launched an attack, and immediately

sacrificed its queen! It lost in just a few moves, having

given up the queen for next to nothing. Why did it do it?

Well, when a Grandmaster sacrifices his queen it’s nearly

always a brilliant and decisive blow. To the machine,

educated on a diet of GM games, giving up its queen was

clearly the key to success!17

The machine reversed the causal sequence. Without

understanding that grandmasters sacrifice the queen only

when doing so creates a short and clear path to victory, the

machine learned that winning occurs shortly after sacrificing

the queen. So sacrificing the queen wrongly appears to be

the way to win. While this particular issue in machine

prediction has been solved, reverse causality remains a

challenge for prediction machines.

This issue appears frequently in business, too. In many

industries, low prices are associated with low sales. For

example, in the hotel industry, prices are low outside the

tourist season, and prices are high when demand is highest

and hotels are full. Given that data, a naive prediction might

suggest that increasing the price would lead to more rooms

sold. A human—at least one with some training in

economics—would understand that the price changes are

likely caused by the high level of demand, not vice versa. So

increasing price is unlikely to increase sales. This human

can then work with the machine to identify the right data

(such as individual-level choices of hotel rooms based on

price) and appropriate models (that take into account

seasonality and other demand and supply factors) to better

predict sales at different prices. Thus, to the machine, this is



an unknown known, but a human, with an understanding of

how prices are determined, will see this as a known

unknown or perhaps even a known known if the human can

properly model the pricing decision.

The issue of unknown knowns and causal inference is even

more important in the presence of others’ strategic

behavior. Google’s search results come from a secret

algorithm. That algorithm is largely determined by

prediction machines that predict which links someone is

likely to click. For a website manager, a higher ranking

means more visitors to the website and more sales. Most

website managers recognize this and perform search engine

optimization: they adapt their websites to try to improve

their ranking in Google’s search results. These adaptations

are often ways to game idiosyncratic aspects of the

algorithm, so as time passes, the search engine becomes

filled with spam, links that are not what the person

searching really wanted but instead the results of website

managers gaming the quirks in the algorithm.

Prediction machines do a great job in the short run in

terms of predicting what people will click. But after weeks or

months, enough website managers find ways to game the

system that Google needs to substantially change the

prediction model. This back-and-forth between the search

engine and the search engine spammers occurs because

the prediction machine can be gamed. While Google has

tried to create a system that makes such gaming

unprofitable, it also recognizes the weaknesses of relying

fully on prediction machines and uses human judgment to

re-optimize the machine in the face of such spam.18

Instagram is also in a constant battle with spammers,

updating the algorithms it uses to regularly catch spam and

offensive material.19 More generally, once humans have

identified such problems, they are no longer unknown

knowns. Either they find solutions to generate good



predictions, so the problems become known knowns that

may require humans and machines to work together, or

they cannot find solutions, so they become known

unknowns.

Machine prediction is extremely powerful but has

limitations. It does not perform well with limited data. Some

well-trained humans can recognize these limitations,

whether because of rare events or causal inference

problems, and improve the machine predictions. To do so,

those humans need to understand the machine.

Predicting Better Together

Sometimes, the combination of humans and machines

generates the best predictions, each complementing the

other’s weaknesses. In 2016, a Harvard/MIT team of AI

researchers won the Camelyon Grand Challenge, a contest

that produces computer-based detection of metastatic

breast cancer from slides of biopsies. The team’s winning

deep-learning algorithm made the correct prediction 92.5

percent of the time compared with a human pathologist

whose performance was at 96.6 percent. While this seemed

like a victory for humanity, the researchers went further and

combined the predictions of their algorithm and a

pathologist’s. The result was an accuracy of 99.5 percent.20

That is, the human error rate of 3.4 percent fell to just 0.5

percent. Errors fell by 85 percent.

This is a classic division of labor, but not physically as

Adam Smith described. Rather, it is a cognitive division of

labor that economist and computer pioneer Charles

Babbage initially described in the nineteenth century: “the

effect of the division of labour, both in mechanical and

mental processes, is, that it enables us to purchase and



apply precisely the quantity of skill and knowledge which is

required for it.”21

The human and the machine are good at different aspects

of prediction. The human pathologist was usually right when

saying there was cancer. It was unusual to have a situation

in which the human said there was cancer but was

mistaken. In contrast, the AI was much more accurate when

saying the cancer wasn’t there. The human and the

machine made different types of mistakes. By recognizing

these different abilities, combining human and machine

prediction overcame these weaknesses, so their

combination dramatically reduced the error rate.

How does such collaboration translate into a business

environment? Machine prediction can enhance the

productivity of human prediction via two broad pathways.

The first is by providing an initial prediction that humans

can use to combine with their own assessments. The second

is to provide a second opinion after the fact, or a path for

monitoring. In this way, the boss can ensure the human is

working hard and putting effort into the prediction. In the

absence of such monitoring, the human may not work hard

enough. The theory is that humans who must answer for

why their prediction differed from an objective algorithm

might only overrule machines if they put in extra effort to

ensure they are sufficiently confident.

One excellent place to examine such interactions is the

prediction regarding the creditworthiness of loan applicants.

Daniel Paravisini and Antoinette Schoar examined a

Colombian bank’s evaluation of small enterprise loan

applicants after the introduction of a new credit scoring

system.22 The computerized scoring system took a variety

of information about the applicants and aggregated it into a

single measure that predicted risk. Then a loan committee

of bank employees used the score and their own processes



to approve, reject, or refer the loan to a regional manager to

decide.

A randomized controlled trial, not management decree,

determined whether the score was introduced before or

after the decision. Thus, the score provided a good place to

scientifically evaluate its impact on decision making. One

group of employees was provided the score just before they

met to deliberate. This is analogous to the first way to

collaborate with a machine, in which the machine prediction

informs the human decision. Another group of employees

was not given the score until after they had made an initial

evaluation. This is analogous to the second way to

collaborate with a machine, in which the machine prediction

helps monitor the quality of the human decision. The

difference between the first and second treatments was

whether the score was providing information or not to the

human decision makers.

In both cases, the score helped, though the improvement

was largest when the score was provided in advance. In that

case, the committee made better decisions and asked the

manager for help less often. The predictions empowered the

lower level managers by providing information. In the other

case, when the committee had the score after, decision

making improved because the predictions helped the higher

level managers monitor the committees. It increased the

incentives of the committee to ensure the quality of their

decisions.

For a human–prediction machine pair to generate a better

prediction requires an understanding of the limits of the

human and the machine. In the case of the loan application

committees, humans might make biased predictions, or

they might shirk on effort. Machines might lack important

information. While we often place an emphasis on teamwork

and collegiality when humans collaborate, we might not

think of human-machine pairs as teams. For humans to



make machine prediction better, and vice versa, it is

important to understand the weaknesses of both humans

and machines and combine them in a way that overcomes

these flaws.

Prediction by Exception

One major benefit of prediction machines is that they can

scale in a way that humans cannot. One downside is that

they struggle to make predictions in unusual cases for which

there isn’t much historical data. Combined, this means that

many human-machine collaborations will take the form of

“prediction by exception.”

As we’ve discussed, prediction machines learn when data

is plentiful, which happens when they are dealing with more

routine or frequent scenarios. In these situations, the

prediction machine operates without the human partner

expending attention. By contrast, when an exception arises

—a scenario that is non-routine—it is communicated to the

human, and then the human puts in more effort to improve

and verify the prediction. This “prediction by exception” is

precisely what happened with the Colombian bank loan

committee.

The idea of prediction by exception has its antecedents in

the managerial technique of “management by exception.”

In coming up with predictions, the human is, in many

respects, the prediction machine’s supervisor. A human

manager has many difficult tasks; to economize on the

human’s time, the working relationship is to engage the

human’s attention only when really needed. That it is

needed only infrequently means that one human can easily

leverage a prediction machine’s advantages in routine

predictions.



Prediction by exception is integral to how Chisel’s initial

product worked. Chisel’s first product, which we discussed

at the beginning of the chapter, took various documents

and identified and redacted confidential information. This

otherwise laborious procedure arises in many legal

situations where documents may be disclosed to other

parties or publicly, but only if certain information is hidden.

The Chisel redactor relied on prediction by exception

taking a first-pass at that task.23 In particular, a user could

effectively set the redactor to be aggressive or light. An

aggressive redactor’s threshold for what might be blocked

out would be higher than a lighter-touch version. For

instance, if you are worried about leaving confidential

information un-redacted, you choose an aggressive setting.

But if you are worried about disclosing too little, you choose

a lighter setting. Chisel provided an easy-to-use interface for

a person to review redactions and accept or reject them. In

other words, each redaction was a recommendation rather

than a final decision. The ultimate authority still rested with

a human.

Chisel’s product combines humans and machines to

overcome the weaknesses of both. The machine works

faster than a human and provides a consistent measure

across documents. The human can intervene when the

machine does not have enough data to make a good

prediction.

KEY POINTS

Humans, including professional experts, make poor

predictions under certain conditions. Humans often

overweight salient information and do not account for

statistical properties. Many scientific studies document

these shortcomings across a wide variety of



professions. The phenomenon was illustrated in the

feature film Moneyball.

Machines and humans have distinct strengths and

weaknesses in the context of prediction. As prediction

machines improve, businesses must adjust their

division of labor between humans and machines in

response. Prediction machines are better than humans

at factoring in complex interactions among different

indicators, especially in settings with rich data. As the

number of dimensions for such interactions grows, the

ability of humans to form accurate predictions

diminishes, especially relative to machines. However,

humans are often better than machines when

understanding the data generation process confers a

prediction advantage, especially in settings with thin

data. We describe a taxonomy of prediction settings

(i.e., known knowns, known unknowns, unknown

knowns, and unknown unknowns) that is useful for

anticipating the appropriate division of labor.

Prediction machines scale. The unit cost per prediction

falls as the frequency increases. Human prediction does

not scale the same way. However, humans have

cognitive models of how the world works and thus can

make predictions based on small amounts of data.

Thus, we anticipate a rise in human prediction by

exception whereby machines generate most predictions

because they are predicated on routine, regular data,

but when rare events occur the machine recognizes

that it is not able to produce a prediction with

confidence, and so calls for human assistance. The

human provides prediction by exception.



PART TWO

Decision

Making
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Unpacking Decisions

We typically associate decision making with big decisions:

Should I buy this house? Should I attend this school? Should

I marry this person? No doubt, these life-changing decisions,

while rare, are important.

But we also make small decisions all the time: Should I

keep sitting in this chair? Should I keep walking down this

street? Should I keep paying this monthly bill? And, as the

great Canadian rock band Rush quips in its anthem to free

will: “If you choose not to decide, you still have made a

choice.” We handle many of our smaller decisions on

autopilot, perhaps by accepting the default, choosing to

focus all our attention on bigger decisions. However,

deciding not to decide is still a decision.

Decision making is at the core of most occupations.

Schoolteachers decide how to educate their students, who

have different personalities and learning styles. Managers

decide who to recruit for their team and who to promote.

Janitors decide how to deal with unexpected events such as

spills and safety hazards. Truck drivers decide how to

respond to route closures and traffic accidents. Police

officers decide how to handle suspicious individuals and

potentially dangerous situations. Doctors decide what

medicine to prescribe and when to administer costly tests.

Parents decide how much screen time is suitable for their

children.



Decisions like these usually occur under conditions of

uncertainty. The teacher doesn’t know for sure whether a

particular child will learn better from one teaching approach

or another. The manager doesn’t know for sure whether a

job applicant will perform well or not. The doctor doesn’t

know for sure whether it is necessary to administer a costly

exam. Each of them must predict.

But a prediction is not a decision. Making a decision

requires applying judgment to a prediction and then acting.

Before recent advances in machine intelligence, this

distinction was only of academic interest because humans

always performed prediction and judgment together. Now,

advances in machine prediction mean that we have to

examine the anatomy of a decision.

The Anatomy of a Decision

Prediction machines will have their most immediate impact

at the decision level. But decisions have six other key

elements (see figure 7-1). When someone (or something)

makes a decision, they take input data from the world that

enables a prediction. That prediction is possible because

training occurred about relationships between different

types of data and which data is most closely associated with

a situation. Combining the prediction with judgment on what

matters, the decision maker can then choose an action. The

action leads to an outcome (which has an associated reward

or payoff). The outcome is a consequence of the decision. It

is needed to provide a complete picture. The outcome may

also provide feedback to help improve the next prediction.

Imagine you have a pain in your leg and go to the doctor.

The doctor sees you, takes an X-ray and a blood test and

asks you a few questions, resulting in input data. Using that

input, and based on years in medical school and many other



patients who are more or less like you (that’s training and

feedback), the doctor makes a prediction: “You most likely

have muscle cramps, although there is a small chance you

have a blood clot.”

FIGURE 7-1

Anatomy of a task

Alongside this assessment is judgment. The doctor’s

judgment takes into account other data (including intuition

and experience). Suppose that, if it is a muscle cramp, then

the treatment is rest. If a blood clot, then the treatment is a

drug with no long-term side effects, but it causes mild

discomfort for many people. If the doctor mistakenly treats

your muscle cramp with the blood clot treatment, then you



are uncomfortable for a short time. If the doctor mistakenly

treats the blood clot with rest, then there is a chance of

serious complications or even death. Judgment involves

determining the relative payoff associated with each

possible outcome, including those associated with “correct”

decisions as well as those associated with mistakes (in this

case, the payoffs associated with healing, mild discomfort,

and serious complications). Determining the payoffs for all

possible outcomes is a necessary step for deciding when to

choose the drug treatment, opting for the mild discomfort

and reducing the risk of a serious complication, versus when

to choose rest. So, applying judgment to the prediction, the

doctor makes a decision, perhaps, given your age and risk

preferences, that you should have the treatment for the

muscle cramp, even though there is some tiny likelihood

you have a blood clot.

Finally is the action in administering the treatment and

observing the outcome: Did the pain in your leg go away?

Did other complications arise? The doctor can use this

observed outcome as feedback to inform the next

prediction.

By breaking up a decision into elements, we can think

clearly about which parts of human activities will diminish in

value and which will increase as a result of enhanced

machine prediction. Most clearly, for prediction itself, a

prediction machine is generally a better substitute for

human prediction. As machine prediction increasingly

replaces the predictions that humans make, the value of

human prediction will decline. But a key point is that, while

prediction is a key component of any decision, it is not the

only component. The other elements of a decision—

judgment, data, and action—remain, for now, firmly in the

realm of humans. They are complements to prediction,

meaning they increase in value as prediction becomes

cheap. For example, we may be more willing to exert effort



by applying judgment to decisions where we previously had

decided not to decide (e.g., accepted the default) because

prediction machines now offer better, faster, and cheaper

predictions. In that case, the demand for human judgment

will increase.

Losing the Knowledge

“The Knowledge” is the subject matter of a test that London

cabbies take to drive the city’s celebrated black taxis. The

test involves knowing the location of thousands of points

and streets around the city and—this is the harder part—

predicting the shortest or fastest route between any two

points at any time of day. The amount of information for

even an ordinary city is staggering, but London is not

ordinary. It is a mass of formerly independent villages and

towns that have grown together over the past two thousand

years into a global metropolis. To pass the test, potential

cabbies need a near-perfect score. Not surprisingly, passing

the test takes, on average, three years, including not only

time spent poring over maps but also riding around the city

on mopeds memorizing and visualizing. But once they have

achieved this, honored green badge recipients are a font of

knowledge.1

You know where this story is going. A decade ago, London

cab drivers’ knowledge was their competitive advantage. No

one could provide the same degree of service. People who

would otherwise have walked would hop in a cab just

because the cab drivers knew the way. But just five years

later, a simple mobile GPS or satellite navigation system

gave drivers access to data and predictions that had once

been the cabbies’ superpower. Today, the same

superpowers are available for free on most mobile phones.

People do not get lost. People know the fastest route. And



now the phone is one step better because it is updated in

real time with traffic information.

Cabbies who invested three years of studying to learn

“The Knowledge” did not know they would someday be

competing with prediction machines. Over the years, they

uploaded maps into their memory, tested routes, and filled

in the blanks with their common sense. Now, navigation

apps have access to the same map data and are able,

through a combination of algorithms and predictive training,

to find the best route whenever requested, using real-time

data about traffic that the taxi driver cannot hope to know.

But the fate of London cabbies rested not just on the

ability for navigation apps to predict “The Knowledge” but

also on other crucial elements to take the best path from

point A to point B. First, the cabbies could control a motor

vehicle. Second, they had sensors affixed to them—their

eyes and ears most importantly—that fed contextual data to

their brains to ensure that they put their knowledge to good

use. But so did other people. No London cabbie became

worse at their job because of navigation apps. Instead,

millions of other non-cabbies became a lot better. The

cabbies’ knowledge was no longer a scarce commodity,

opening up cabbies to competition from ride-sharing

platforms like Uber.

That other drivers could show up with “The Knowledge” on

their phones and predictions of the fastest routes meant

they could provide equivalent service. When high-quality

machine prediction became cheap, human prediction

declined in value, so the cabbies were worse off. The

number of rides in London’s black cabs fell. Instead, other

people provided the same service. These others also had

driving skills and human sensors, complementary assets

that went up in value as prediction became cheap.

Of course, self-driving cars might themselves end up

substituting for those skills and senses, but we will return to



that story later. Our point here is that understanding the

impact of machine prediction requires an understanding of

the various aspects of decisions, as described by the

anatomy of a decision.

Should You Take an Umbrella?

Until now, we’ve been a little imprecise about what

judgment actually is. To explain it, we introduce a decision-

making tool: the decision tree.2 It is especially useful for

decisions under uncertainty, when you are not sure what

will happen if you make a particular choice.

Let’s consider a familiar choice you might face. Should you

carry an umbrella on a walk? You might think that an

umbrella is a thing you hold over your head to stay dry, and

you’d be right. But an umbrella is also a kind of insurance,

in this case, against the possibility of rain. So, the following

framework applies to any insurance-like decision to reduce

risk.

Clearly, if you knew it was not going to rain, you would

leave the umbrella at home. On the other hand, if you knew

it would rain, then you would certainly take it with you. In

figure 7-2, we represent this using a tree-like diagram. At

the root of the tree are two branches representing the

choices you could make: “leave umbrella” or “take

umbrella.” Extending from these are two branches that

represent what you are uncertain about: “rain” versus

“shine.” Absent a good weather forecast, you do not know.

You might know that, at this time of the year, sun is three

times more likely than rain. This would give you a three-

quarters chance of sun and a one-quarter chance of rain.

This is your prediction. Finally, at the tips of the branches

are the consequences. If you don’t take an umbrella and it

rains, you get wet, and so on.



FIGURE 7-2

Should you take an umbrella?

What decision should you make? This is where judgment

comes in. Judgment is the process of determining the

reward to a particular action in a particular environment. It

is about working out the objective you’re actually pursuing.

Judgment involves determining what we call the “reward

function,” the relative rewards and penalties associated with

taking particular actions that produce particular outcomes.

Wet or dry? Burdened by carrying an umbrella or

unburdened?

Let’s assume that you prefer being dry without an

umbrella (you rate it a 10 out of 10) more than being dry,



but carrying an umbrella (8 out of 10) more than being wet

(a big, fat 0). (See figure 7-3.) This gives you enough to act.

With the prediction of rain one-quarter of the time and the

judgment of the payoffs to being wet or carrying an

umbrella, you can work out your average payoff from taking

versus leaving the umbrella. Based on this, you are better

off taking the umbrella (an average payoff of 8) than leaving

it (an average payoff of 7.5).3

FIGURE 7-3

Average payoff from taking or leaving an umbrella

If you really hate toting an umbrella (a 6 out of 10), your

judgment about preferences can also be accommodated. In

this case, the average payoff from leaving an umbrella at



home is unchanged (at 7.5), while the payoff from taking

one is now 6. So, such umbrella haters will leave the

umbrella at home.

This example is trivial: of course, people who hate

umbrellas more than getting wet will leave them home. But

the decision tree is a useful tool for figuring out payoffs for

nontrivial decisions, too, and that is at the heart of

judgment. Here, the action is taking the umbrella, the

prediction is rain or shine, the outcome is whether you get

wet, and judgment is anticipating happiness you will feel

(“payoff”) from being wet or dry, with or without an

umbrella. As prediction becomes better, faster, and

cheaper, we’ll use more of it to make more decisions, so

we’ll also need more human judgment and thus the value of

human judgment will go up.

KEY POINTS

Prediction machines are so valuable because (1) they

can often produce better, faster, and cheaper

predictions than humans can; (2) prediction is a key

ingredient in decision making under uncertainty; and

(3) decision making is ubiquitous throughout our

economic and social lives. However, a prediction is not

a decision—it is only a component of a decision. The

other components are judgment, action, outcome, and

three types of data (input, training, and feedback).

By breaking down a decision into its components we

can understand the impact of prediction machines on

the value of humans and other assets. The value of

substitutes to prediction machines, namely human

prediction, will decline. However, the value of

complements, such as the human skills associated with



data collection, judgment, and actions, will become

more valuable. In the case of the London cabbies who

each invested three years to learn “The Knowledge”—

how to predict the fastest route from one location to

another at a particular time of day—none became

worse at their job because of prediction machines.

Rather, many other drivers became a lot better at

choosing the best route by using prediction machines.

The cabbies’ prediction skills were no longer a scarce

commodity. Drivers who weren’t cabbies had driving

skills and human sensors (eyes and ears) that were

effectively enhanced by prediction machines, enabling

them to compete.

Judgment involves determining the relative payoff

associated with each possible outcome of a decision,

including those associated with “correct” decisions as

well as those associated with mistakes. Judgment

requires specifying the objective you’re actually

pursuing and is a necessary step in decision making. As

prediction machines make predictions increasingly

better, faster, and cheaper, the value of human

judgment will increase because we’ll need more of it.

We may be more willing to exert effort and apply

judgment to decisions where we previously had chosen

not to decide (by accepting the default).
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The Value of Judgment

Having better prediction raises the value of judgment. After

all, it doesn’t help to know the likelihood of rain if you don’t

know how much you like staying dry or how much you hate

carrying an umbrella.

Prediction machines don’t provide judgment. Only humans

do, because only humans can express the relative rewards

from taking different actions. As AI takes over prediction,

humans will do less of the combined prediction-judgment

routine of decision making and focus more on the judgment

role alone. This will enable an interactive interface between

machine prediction and human judgment, much the same

way that you run alternative queries when interacting with a

spreadsheet or database.

With better prediction come more opportunities to

consider the rewards of various actions—in other words,

more opportunities for judgment. And that means that

better, faster, and cheaper prediction will give us more

decisions to make.

Judging Fraud

Credit card networks such as Mastercard, Visa, and

American Express predict and judge all the time. They have

to predict whether card applicants meet their standards for



credit worthiness. If the individual doesn’t, then the

company will deny them credit. You might think that’s pure

prediction, but a significant element of judgment is involved

as well. Being credit worthy is a sliding scale, and the credit

card company has to decide how much risk it’s willing to

take on at different interest and default rates. Those

decisions lead to significantly different business models—

the difference between American Express’s high-end

platinum card and an entry-level card aimed at college

students.

The company also needs to predict whether any given

transaction is legitimate. As with your decision to carry an

umbrella or not, the company must weigh four distinct

outcomes (see figure 8-1). The company has to predict if the

charge is fraudulent or legitimate, decide whether to

authorize or decline the transaction, and then to evaluate

each outcome (denying a fraudulent charge is good,

angering a customer with the denial of a legitimate

transaction is bad). If the credit card companies were

perfect at predicting fraud, all would be well. But they’re

not.

FIGURE 8-1

Four outcomes for credit card companies



For instance, Joshua (one of the authors) has had his credit

card company routinely deny transactions when he is

shopping for running shoes, something he does about once

a year, usually at an outlet mall when he is on vacation. For

many years, he had to call the credit card company to lift a

restriction.

Credit card theft often happens at malls, and the first few

fraudulent purchases might be things like shoes and

clothing (easy to convert into cash as returns at a different

branch of the same chain). And since Joshua is not in the

habit of routinely buying clothes and shoes and rarely goes

to a mall, the credit card company predicts that the card has

likely been stolen. It’s a fair guess.

Some factors that influence the prediction about whether a

card has been stolen are generic (the type of transaction,

such as purchasing running shoes), while others are specific

to individuals (in this case, age and frequency). That



combination of factors means that the eventual algorithm

that flags transactions will be complex.

The promise of AI is that it can make prediction much more

precise, especially in situations with a mix of generic and

personalized information. For instance, given data on

Joshua’s years of transactions, a prediction machine could

learn the pattern of those transactions, including the fact

that he buys shoes around the same time each year. Rather

than classifying such a purchase as an unusual event, it

could classify it as a usual event for this particular person. A

prediction machine may notice other correlations, such as

how long it takes someone to shop, working out whether

transactions in two different shops are too close together. As

the prediction machine becomes more precise in flagging

transactions, the card network can become more confident

in imposing a restriction and even whether to contact a

consumer. This is already happening. Joshua’s last outlet

mall purchase of running shoes went smoothly.

But until prediction machines become perfect at predicting

fraud, credit card companies will have to figure out the costs

of errors, which requires judgment. Suppose that prediction

is imperfect and has a 10 percent chance of being incorrect.

Then, if the companies decline the transaction, they will do

the right thing with a 90 percent chance and save the

network the costs of recovering the payment associated

with the unauthorized transaction. But they also will decline

a legitimate transaction with a 10 percent chance, leaving

the network with a dissatisfied customer. To work out the

right course of action, they need to be able to balance the

costs associated with fraud discovery with the costs

associated with customer dissatisfaction. Credit card

companies don’t automatically know the right answer to this

trade-off. They need to figure it out. Judgment is the process

of doing that.



It’s the umbrella case all over again, but instead of

burdened/unburdened and wet/dry, there are fraud charges

and customer satisfaction. In this case, because this

transaction is nine times likelier to be fraudulent than

legitimate, the company will deny the charge unless

customer satisfaction is nine times more important than the

possible loss.

For credit card fraud, many of these payoffs may be easy

to judge. It is highly likely that the cost of recovery has a

distinct monetary value that a network can identify. Suppose

that for a $100 transaction, the recovery cost is $20. If the

customer dissatisfaction cost is less than $180, it makes

sense to decline the transaction (10 percent of $180 is $18,

the same as 90 percent of $20). For many customers, being

declined for a single transaction does not lead to the

equivalent of $180 in dissatisfaction.

A credit card network also must assess whether that is

likely to be the case for a particular customer. For example,

a high-net-worth platinum cardholder may have other credit

card options and might stop using that particular card if

declined. And that person may be on an expensive vacation,

so the card network could lose all of the expenditures

associated with that trip.

Credit card fraud is a well-defined decision process, which

is one reason we keep coming back to it, yet it’s still

complicated. By contrast, for many other decisions, not only

are the potential actions more complex (not just a simple

accept or decline), but the potential situations (or states)

also vary. Judgment requires an understanding of the reward

for each pair of actions and situations. Our credit card

example had just four outcomes (or eight if you distinguish

between high-net-worth customers and everyone else). But

if you had, say, ten actions and twenty possible situations,

then you’re judging two hundred outcomes. As things get



even more complicated, the number of rewards can become

overwhelming.

The Cognitive Costs of Judgment

People who have studied decisions in the past have

generally taken rewards as givens—they simply exist. You

may like chocolate ice cream, while your friend may like

mango gelato. How you two came to your different views is

of little consequence. Similarly, we assume most businesses

are maximizing profit or shareholder value. Economists

looking at why firms choose certain prices for their products

have found it useful to take those objectives on faith.

Payoffs are rarely obvious, and the process of

understanding those payoffs can be time consuming and

costly. However, the rise of prediction machines increases

the returns to understanding the logic and motivation for

payoff values.

In economic terms, the cost of figuring out the payoffs will

mostly be time. Consider one particular pathway by which

you might determine payoffs: deliberation and thought.

Thinking through what you really want to achieve or what

the costs of customer dissatisfaction might be takes time

spent thinking, reflecting, and perhaps asking others for

advice. Or it may be the time spent researching to better

understand payoffs.

For credit card fraud detection, thinking through the

payoffs of satisfied and unsatisfied customers and the cost

of allowing a fraudulent transaction to proceed are

necessary first steps. Providing different payoffs for high-

net-worth customers requires more thought. Assessing

whether those payoffs change when those customers are on

vacation requires even more consideration. And what about

regular customers when they are on vacation? Are the



payoffs in that situation different? And is it worth separating

work travel from vacation? Or trips to Rome from trips to the

Grand Canyon?

In each case, judging the payoffs requires time and effort:

more outcomes mean more judgment means more time and

effort. Humans experience the cognitive costs of judgment

as a slower decision-making process. We all have to decide

how much we want to pin down the payoffs against the

costs of delaying a decision. Some will choose not to

investigate payoffs for scenarios that seem remote or

unlikely. The credit card network might find it worthwhile to

separate work trips from vacations but not vacations to

Rome from the Grand Canyon.

In such unlikely situations, the card network may guess at

the right decision, group things together, or just choose a

safer default. But for more frequent decisions (such as

travel in general) or ones that appear more important (such

as high-net-worth customers), many will take the time to

deliberate and identify the payoffs more carefully. But the

longer it takes to experiment, the longer it will take before

your decision making is performing as well as it could.

Figuring out payoffs might also be more like tasting new

foods: try something and see what happens. Or, rather, in

the vernacular of modern business: experiment. Individuals

might take different actions in the same circumstances and

learn what the reward actually is. They learn the payoffs

instead of cogitating on them beforehand. Of course,

because experimentation necessarily means making what

you will later regard as mistakes, experiments also have

costs. You will try foods you don’t like. If you keep trying

new foods in the hope of finding some ideal, you are missing

out on a lot of good meals. Judgment, whether by

deliberation or experimentation, is costly.



Knowing Why You Are Doing Something

Prediction is at the heart of a move toward self-driving cars

and the rise of platforms such as Uber and Lyft: choosing a

route between origin and destination. Car navigation

devices have been around for a few decades, built into cars

themselves or as stand-alone devices. But the proliferation

of internet-connected mobile devices has changed the data

that providers of navigation software receive. For instance,

before Google acquired it, the Israeli startup Waze

generated accurate traffic maps by tracking the routes

drivers chose. It then used that information to provide

efficient optimization of the quickest path between two

points, taking into account the information it had from

drivers as well as continual monitoring of traffic. It could

also forecast how traffic conditions might evolve if you were

traveling farther and could offer new, more efficient paths

on route if conditions changed.

Users of apps like Waze don’t always follow the directions.

They don’t disagree with the prediction per se, but their

ultimate objective might include more elements than just

speed. For instance, the app doesn’t know if someone is

running out of fuel and needs a gas station. But human

drivers, knowing that they need gas, can overrule the app’s

suggestion and take another route.

Of course, apps like Waze can and will get better. For

instance, in Tesla cars, which run on electricity, navigation

takes into account the need to recharge and the location of

charging stations. An app could simply ask you whether you

are likely to need fuel or, in the future, even get that data

directly from your car. This seems like a solvable problem,

just as you can tweak the settings on navigation apps to

avoid toll roads.



Other aspects of your preferences are harder to program.

For instance, on a long drive, you might want to make sure

you pass certain good areas to stop and eat. Or the fastest

route might tax the driver by suggesting back roads that

only save a minute or two but require a lot of effort. Or you

may not enjoy taking winding roads. Again, apps might

learn those behaviors, but at any given time, some factors

are necessarily not part of a codified prediction to automate

an action. A machine has fundamental limitations about how

much it can learn to predict your preferences.

The broader point for decisions is that objectives rarely

have only a single dimension. Humans have, explicitly and

implicitly, their own knowledge of why they are doing

something, which gives them weights that are both

idiosyncratic and subjective.

While a machine predicts what is likely to happen, humans

will still decide what action to take based on their

understanding of the objective. In many situations, as with

Waze, the machine will give the human a prediction that

implies a certain outcome for one dimension (like speed);

the human will then decide whether to overrule the

suggested action. Depending on the sophistication of the

prediction machine, the human may ask it for another

prediction based on a new constraint (“Waze, take me past

a gas station”).

Hard-Coding Judgment

Ada Support, a startup, is using AI prediction to siphon off

the easy from the difficult technical support questions. The

AI answers the easy questions and sends the difficult ones

to a human. For a typical mobile phone service provider,

when consumers call for support, the vast majority of the

questions they ask have also been asked by other people.



The action of typing the answer is easy. The challenges are

in predicting what the consumer wants and judging which

answer to provide.

Rather than directing people to a “frequently asked

questions” area of a web page, Ada identifies and answers

these frequent questions right away. It can match a

consumer’s individual characteristics (such as past

knowledge of technical competence, the type of phone they

are calling from, or past calls) to improve its assessment of

the question. In the process, it can diminish frustration, but

more importantly, it can handle more interactions quickly

without the need to spend money on costlier human call-

center operators. The humans specialize in the unusual and

more difficult questions, while the machine handles the easy

ones.

As machine prediction improves, it will be increasingly

worthwhile to prespecify judgment in many situations. Just

as we explain our thinking to other people, we can explain

our thinking to machines—in the form of software code.

When we anticipate receiving a precise prediction, we can

hard-code the judgment before the machine predicts. Ada

does this for easy questions. Otherwise, it is too time

consuming, with too many possible situations to specify

what to do in each situation in advance. So, for the hard

questions, Ada calls in the humans for their judgment.

Experience can sometimes make judgment codifiable.

Much experience is intangible and so cannot be written

down or expressed easily. As Andrew McAfee and Erik

Brynjolfsson wrote: “[S]ubstitution (of computers for people)

is bounded because there are many tasks that people

understand tacitly and accomplish effortlessly but for which

neither computer programmers nor anyone else can

enunciate the explicit ‘rules’ or procedures.”1 That,

however, is not true of all tasks. For some decisions, you

can articulate the requisite judgment and express it as code.



After all, we often explain our thinking to other people. In

effect, codifiable judgment allows you to fill in the part after

“then” in “if-then” statements. When this happens, then

judgment can be enshrined and programmed.

The challenge is that, even when you can program

judgment to take over from a human, the prediction the

machine receives must be fairly precise. When there are too

many possible situations, it is too time consuming to specify

what to do in each situation in advance. You can easily

program a machine to take a certain action when it is clear

what is likely to be true; however, when there is still

uncertainty, telling the machine what to do requires a more

careful weighing of the costs of mistakes. Uncertainty

means you need judgment when the prediction turns out to

be wrong, not just when the prediction is right. In other

words, uncertainty increases the cost of judging the payoffs

for a given decision.

Credit card networks have embraced new machine-

learning techniques for fraud detection. Prediction machines

enable them to be more confident in codifying the decision

about whether to block a card transaction. As the

predictions on fraud become more precise, the likelihood of

mislabeling legitimate transactions as fraudulent is reduced.

If the credit card companies are not afraid of making a

mistake on the prediction, then they can codify the

machine’s decision, with no need to judge how costly it

might be to offend particular customers by declining their

transaction. Making the decision is easier: if fraud, then

reject; otherwise, accept the transaction.

Reward Function Engineering

As prediction machines provide better and cheaper

predictions, we need to work out how to best use those



predictions. Whether or not we can specify judgment in

advance, someone needs to determine the judgment. Enter

reward function engineering, the job of determining the

rewards to various actions, given the predictions that the AI

makes. Doing this job well requires an understanding of the

organization’s needs and the machine’s capabilities.

Sometimes reward function engineering involves hard-

coding judgment—programming the rewards in advance of

the predictions in order to automate actions. Self-driving

vehicles are an example of such hard-coded rewards. Once

the prediction is made, the action is instant. But getting the

reward right isn’t trivial. Reward function engineering has to

consider the possibility that the AI will over-optimize on one

metric of success and, in doing so, act inconsistently with

the organization’s broader goals. Entire committees are

working on this for self-driving cars; however, such analysis

will be required for a variety of new decisions.

In other cases, the number of possible predictions may

make it too costly for anyone to judge all the possible

payoffs in advance. Instead, a human needs to wait for the

prediction to arrive and then assess the payoff, which is

close to how most decision making currently works, whether

or not it includes machine-generated predictions. As we will

see in the following chapter, machines are encroaching on

this as well. A prediction machine can, in some

circumstances, learn to predict human judgment by

observing past decisions.

Putting It All Together

Most of us already do some reward function engineering,

but for humans, not machines. Parents teach their children

values. Mentors teach new workers how the system

operates. Managers give objectives to their staff and then



tweak them to get better performance. Every day, we make

decisions and judge the rewards. But when we do this for

humans, we group prediction and judgment together, and

the role of reward function engineering is not distinct. As

machines get better at prediction, the role of reward

function engineering will become increasingly important.

To illustrate reward function engineering in practice,

consider pricing decisions at ZipRecruiter, an online job

board. Companies pay ZipRecruiter to find qualified

candidates for job openings they wish to fill. The core

product of ZipRecruiter is a matching algorithm that does

this efficiently and at scale, a version of the traditional

head-hunter that matches job seekers to companies.2

ZipRecruiter wasn’t clear what it should charge companies

for its service. Charge too little, and it leaves money on the

table. Charge too much, and customers switch to the

company’s competitors. To figure out its pricing,

ZipRecruiter brought in two experts, J. P. Dubé and Sanjog

Misra, economists from the University of Chicago’s Booth

School of Business, who designed experiments to determine

the best prices. They randomly assigned different prices to

different customer leads and determined the likelihood each

group would purchase. This allowed them to determine how

different customers responded to different price points.

The challenge was to figure out what “best” meant. Should

the company just maximize short-term revenue? To do so, it

might choose a high price. But a high price means fewer

customers (even though each customer is more profitable).

That would also mean less word of mouth. In addition, if it

has fewer job postings, the number of people who use

ZipRecruiter to find jobs might fall. Finally, the customers

facing high prices might start looking for alternatives. While

they might pay the high price in the short run, they might

switch to a competitor in the long run. How should



ZipRecruiter weigh these various considerations? What

payoff should it maximize?

It was relatively easy to measure the short-run

consequences of a price increase. The experts found that

increasing prices for some types of new customers would

increase profits on a day-to-day basis by over 50 percent.

However, ZipRecruiter didn’t act right away. It recognized

the longer-term risk and waited to see if the higher-paying

customers would leave. After four months, it found that the

price increase was still highly profitable. It didn’t want to

forgo the higher profits any longer and judged four months

to be long enough to implement the price changes.

Figuring out the rewards from these various actions—the

key piece of judgment—is reward function engineering, a

fundamental part of what humans do in the decision-making

process. Prediction machines are a tool for humans. So long

as humans are needed to weigh outcomes and impose

judgment, they have a key role to play as prediction

machines improve.

KEY POINTS

Prediction machines increase the returns to judgment

because, by lowering the cost of prediction, they

increase the value of understanding the rewards

associated with actions. However, judgment is costly.

Figuring out the relative payoffs for different actions in

different situations takes time, effort, and

experimentation.

Many decisions occur under conditions of uncertainty.

We decide to bring an umbrella because we think it

might rain, but we could be wrong. We decide to

authorize a transaction because we think it is



legitimate, but we could be wrong. Under conditions of

uncertainty, we need to determine the payoff for acting

on wrong decisions, not just right ones. So, uncertainty

increases the cost of judging the payoffs for a given

decision.

If there are a manageable number of action-situation

combinations associated with a decision, then we can

transfer the judgment from ourselves to the prediction

machine (this is “reward function engineering”) so that

the machine can make the decision itself once it

generates the prediction. This enables automating the

decision. Often, however, there are too many action-

situation combinations, such that it is too costly to code

up in advance all the payoffs associated with each

combination, especially the very rare ones. In these

cases, it is more efficient for a human to apply

judgment after the prediction machine predicts.
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Predicting Judgment

Companies like Google subsidiary Waymo have been

successfully testing automated ways of transporting people

between two points. But that is only part of creating

autonomous vehicles. Driving also has an impact on the

passengers in the car, which is much harder to observe.

Human drivers, however, do take into account the other

people in the car. One of the first things a new driver learns

is to brake in a manner that is comfortable for others in the

car. Waymo’s cars had to be taught to avoid sudden stops

and instead smoothly halt.

There are thousands of related decisions that are involved

in driving.1 It is impractical for humans to code their

judgment about how to handle every possible situation.

Instead, we train autonomous driving systems by showing

them many examples so that they learn to predict human

judgment: “What would a human do in this situation?”

Driving is not unique. In any environment where humans

make decisions over and over again and we are able to

collect data about the data they receive and the decisions

they make in response, we will likely be able to automate

those decisions by rewarding the prediction machine for

predicting: What would a human do?



A fundamental question, at least for humans, is whether AI

can turn its predictive powers on human judgment and, in

the process, circumvent the need for humans altogether.

Hacking the Humans

Many decisions are complex and predicated on judgment

that is not easily codified. However, this does not guarantee

that humans will remain a core part of these decisions.

Instead, as with self-driving cars, the machine may learn to

predict human judgment by observing many examples. The

prediction problem becomes: “given the input data, what

would a human do?”

The company Grammarly offers an example. Founded in

2009 by Alex Shevchenko and Max Lytvyn, Grammarly

pioneered the use of machine learning to improve the

composition of formal written materials. It’s main focus is on

improving grammer and spelling in sentences. For instance,

put the previous sentence into Grammarly, and it will tell

you that “It’s” should be “Its” and “grammer” is misspelled

(it should be “grammar”). It will also tell you that the word

“main” is often overused.

Grammarly achieved these corrections both by examining

a corpus of documents that skilled editors had corrected

and by learning from the feedback of users who accepted or

rejected the suggestions. In both cases, Grammarly

predicted what a human editor would do. It goes beyond the

mechanical application of grammar rules to also assess

whether deviations from perfect grammar are preferred by

human readers.

The idea that humans can train AI extends to a wide

variety of situations. The AI at the heart of Lola, a startup

automating the process of booking travel, began by finding

good hotel options. But, as the New York Times reported:



[I]t couldn’t match the expertise of, for example, a

human agent with years of experience booking family

vacations to Disney World. The human can be more

nimble—knowing, for instance, to advise a family that

hopes to score an unobstructed photo with the children

in front of the Cinderella Castle that they should book a

breakfast reservation inside the park, before the gates

open.2

This example shows that a machine finds it easy to apply

judgment where it is describable (e.g., availability and

price), but not to understand subtler human preferences.

However, Lola can learn to predict what humans with a high

level of experience and thought would do. The question for

Lola is: How many observations of people booking Orlando

vacations does the prediction machine need to get enough

feedback to learn other relevant criteria? As Lola

discovered, while its AI was challenged by some criteria, it

was able to uncover decisions human agents had made that

those agents were unable to describe in advance, such as

preferences for modern hotels or hotels on a street corner.

Human trainers help AIs become good enough so that

humans gradually become unnecessary for many aspects of

a task. This is particularly important when the AI is

automating a process with very little tolerance for error. A

human may supervise the AI and correct mistakes. Over

time, the AI learns from its mistakes until human correction

is unnecessary.

X.ai, a startup focused on providing an assistant that can

arrange meetings and put them into your calendar, is

another example.3 It interacts with the user and people the

user wants to meet with through email to a digital personal

assistant (“Amy” or “Andrew,” depending upon your

preference). For instance, you could send an email to

Andrew to arrange a meeting between you and Mr. H next



Thursday. X.ai then accesses your calendar and sends

emails to Mr. H to schedule the meeting. Mr. H may well be

none the wiser that Andrew is not human. The point is that

you are freed from the task of communicating with Mr. H or

his assistant (who ideally would be another Amy or Andrew).

Obviously, disaster might strike if scheduling mistakes

occur or if the automated assistant offends a potential

invitee. For a number of years, X.ai employed human

trainers. They reviewed the AI’s responses for accuracy and

validated them. Every time a trainer made a change, the AI

learned a better response.4 The role of human trainers was

more than just ensuring politeness. They also dealt with bad

behavior from humans trying to trip up the assistant.5 As of

this writing, the question is still open as to how much

automation this approach of predicting judgment can

achieve.

Will Humans Be Pushed Out?

If the machines can learn to predict human behavior, will

they push humans out completely? Given the current

trajectory of prediction machines, we don’t think so.

Humans are a resource, so simple economics suggest they

will still do something. The question is more whether the

“something” for humans is high or low value, appealing or

unappealing. What should the humans in your organization

do? What should you look for in new hires?

Prediction relies on data. That means humans have two

advantages over machines. We know some things that the

machines don’t (yet), and, more importantly, we are better

at deciding what to do when there isn’t much data.

Humans have three types of data that machines don’t.

First, human senses are powerful. In many ways, human

eyes, ears, nose, and skin still surpass machine capabilities.



Second, humans are the ultimate arbiters of our own

preferences. Consumer data is extremely valuable because

it gives prediction machines data about these preferences.

Grocery stores provide discounts to consumers who use

loyalty cards in order to obtain data on their behavior.

Stores pay consumers to reveal their preferences. Google,

Facebook, and others provide free services in exchange for

data that they can use in other contexts to target

advertising. Third, privacy concerns restrict the data

available to machines. As long as enough people keep their

sexual activity, financial situation, mental health status, and

repugnant thoughts to themselves, the prediction machines

will have insufficient data to predict many types of behavior.

In the absence of good data, our understanding of other

humans will provide a role for our judgment skills that

machines cannot learn to predict.

Prediction with Little Data

Prediction machines may also lack data because some

events are rare. If a machine cannot observe enough human

decisions, it cannot predict the judgment underlying those

decisions.

In chapter 6, we discussed “known unknowns,” rare events

that are difficult to predict due to lack of data, including

presidential elections and earthquakes. In some cases,

humans are good at prediction with little data; we can

recognize faces, for instance, even as people age. We also

discussed how “unknown unknowns” are, by definition,

difficult to predict or respond to. AI cannot predict what a

human would do if that human has never faced a similar

situation. In this way, AI cannot predict the strategic

direction of a company facing a new technology, such as the

internet, bioengineering, or even AI itself. Humans are able



to make analogies or recognize useful similarities in

different contexts.

Eventually, prediction machines may get better at

analogies. Still, our point that prediction machines will be

bad at predicting rare events holds. For the foreseeable

future, humans will have a role in prediction and judgment

when unusual situations arise.

In chapter 6, we also highlighted “unknown knowns.” For

example, we discussed the challenges of deciding whether

to recommend this book to your friend, even if you become

fabulously successful at managing AI in the future. The

challenge is that you do not have the data on what would

have happened had you not read the book. If you want to

understand what causes what, you need to observe what

would have happened in the counterfactual situation.

Humans can provide two main solutions to this problem:

experiments and modeling. If the situation arises often

enough, you can run a randomized control trial. Assign

some people to the treatment (force them to read the book,

or at least give them the book and maybe hold some

consequential exam on it) and others to the control (force

them not to read the book, or at least don’t advertise it to

them). Wait and collect some measure of how they apply AI

in their work. Compare the two groups. The difference

between the treatment and control groups is the effect of

reading the book.

Such experiments are very powerful. Without them, new

medical treatments are not approved. They fuel many of the

decisions at data-driven companies from Google to Capital

One. Machines can also conduct experiments. As long as the

situation arises enough, the ability to experiment is not

unique to humans. The machine can experiment and learn

to predict what causes what, just as humans do. This has

been a key aspect of how machines can now outperform

humans in a variety of video games.



Modeling, an alternative to experiments, involves having a

deep understanding of the situation and the process that

generated the data observed. It is particularly useful when

experiments are impossible because the situation doesn’t

arise often enough or the cost of an experiment is too high.

Online job board ZipRecruiter’s decision to find the best

price, which we described in the previous chapter, involved

two parts. First, it needed to figure out what “best” meant:

short-term revenue or something longer term? More job

seekers and more advertisers, or higher prices? Second, it

needed to choose a specific price. To solve the second

problem, it experimented. Expert humans designed the

experiment, but in principle, as AI improves, with enough

advertisers and enough time, such experiments could be

automated.

Determining “best,” however, is more difficult to

automate. Since the number of job seekers depends on the

number of job advertisements and vice versa, the overall

market has just one observation. Get it wrong, and

ZipRecruiter could go out of business and not get a second

chance. So, it modeled its business. It explored the

consequences of maximizing its short-term profit and

compared it to alternative models in which its goal was to

maximize profit over a longer time. Without data, modeling

outcomes and engineering the reward function remain

human abilities, albeit highly skilled ones.

Modeling also helped Allied bombing raids during World

War II. Engineers recognized that they could better armor

their bombers. In particular, they could add some weight to

the planes without compromising performance. The

question was where exactly to protect the planes.

Experimentation was possible, but costly. Pilots would lose

their lives.

For every bomber that returned from bombing raids over

Germany, the engineers could see where they had been hit



by antiaircraft fire. The bullet holes in the planes were their

data. But were these the obvious places to better protect

the plane?

They asked statistician Abraham Wald to assess the

problem. After some thought and some rather thorough

mathematics, he told them to protect the places without

bullet holes. Was he confused? That seemed

counterintuitive. Didn’t he mean to protect the areas of the

plane that did have bullet holes? No. He had a model of the

process that generated the data. He recognized that some

bombers did not come back from the raids and conjectured

that these bombers got hit in places that were fatal. In

contrast, the bombers that made it home were hit in places

that were not fatal. With this insight, the air force engineers

increased the armor in the places without bullet holes, and

the planes were better protected.6

Wald’s insight about the missing data required an

understanding of where the data came from; given that the

problem had not arisen before, the engineers did not have

prior examples to draw from. For the foreseeable future,

such calculations are beyond the abilities of prediction

machines.

This problem was hard to solve. The solution came from a

human, not a prediction machine. However, the human was

one of the best statisticians in history. He had a deep

understanding of the mathematics of statistics and a flexible

enough mind to understand the process that generated the

data.

Humans can learn such modeling skills with training. It is a

core aspect of most economics PhD programs and part of

the MBA curriculum in many schools (including courses we

developed at the University of Toronto). Such skills matter

when working with prediction machines. Otherwise, it is

easy to fall into the trap of unknown knowns. You will think



your predictions tell you what to do, but they may lead you

astray, mixing cause and effect.

Just as Wald had a good model of the process generating

the data about bullet holes, a good model of human

behavior can help make better predictions when human

decisions generate the data. For the foreseeable future,

humans need to help develop such models and identify the

relevant predictors of behavior. A prediction machine will

struggle to extrapolate in a situation in which it has no data

because behavior is likely to change. It needs to understand

humans.7

Similar issues arise in many decisions that involve the

question, “What will happen if I do this?” when you have

never done it before. Should you add a new product to a

product line? Should you merge with a competitor? Should

you acquire an innovative startup or a channel partner?8 If

people will behave differently after the change, then past

behavior is not a useful guide for future behavior. The

prediction machine will not have relevant data. For rare

events, prediction machines have limited use. Rare events

therefore provide an important limit to the ability of

machines to predict human judgment.

KEY POINTS

Machines may learn to predict human judgment. An

example is driving. It is impractical for humans to code

their judgment about how to handle every possible

situation. However, we train autonomous driving

systems by showing them many examples and

rewarding them for predicting human judgment: What

would a human do in this situation?



There are limits to the ability of machines to predict

human judgment. The limits relate to lack of data.

There is some data that humans have that machines do

not, such as individual preferences. Such data has

value, and companies currently pay to access it through

discounts on using loyalty cards and free online

services like Google and Facebook.

Machines are bad at prediction for rare events.

Managers make decisions on mergers, innovation, and

partnerships without data on similar past events for

their firms. Humans use analogies and models to make

decisions in such unusual situations. Machines cannot

predict judgment when a situation has not occurred

many times in the past.
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Taming Complexity

The TV show The Americans, a cold-war drama set in

Washington, DC, in the 1980s, features a robot that delivers

mail and classified documents around the FBI office. That an

autonomous vehicle existed in the 1980s might seem

surprising. Marketed as the Mailmobile, it had first appeared

a decade earlier.1

To guide the Mailmobile, a technician would lay out a

chemical trail that gave off ultraviolet light from the mail

room along the carpeted floors to various offices. The robot

used a sensor to slowly follow the trail (at less than one mile

per hour) until the chemical markings signaled it to stop.

The Mailmobile cost between $10,000 and $12,000 (about

$50,000 in today’s dollars), and for an extra fee, the

company could attach a sensor to detect obstacles in its

path. Otherwise, it just beeped a lot to warn people it was

coming. In an office where a human took two hours to

deliver the mail, the Mailmobile completed the job in twenty

minutes, not stopping for office banter.

The mail robot required careful planning. Even some

simple but perhaps costly office reallocations might have

been necessary to accommodate the robot’s operation. It

could deal with only small variations in its environment.

Even today, many automated rail systems worldwide have

extensive installation requirements. For example, the



Copenhagen metro uses no drivers, but it works because

trains operate in a carefully preplanned setting; only a

limited number of sensors inform the robot about its

environment.

These limitations are a common feature of most machines

and equipment. They are designed to operate in rigid

environments. Compared with most equipment on factory

floors, the mail robot was notable because many offices

could install it relatively easily. But, for the most part, robots

need a tightly controlled and standardized environment in

which to operate because the equipment does not tolerate

uncertainty.

More “Ifs”

All machines—both hard and soft—are essentially

programmed using the classic if-then logic. The “if” part

specifies a scenario, environmental condition, or piece of

information. The “then” part tells the machine what to do

for each of the “ifs” (and “if nots” and “elses”): “If the

chemical trail is no longer detected, then stop.” The mail

robot had no ability to see its surroundings and could only

operate in an environment that artificially reduced the “ifs”

it could deal with.

If it could distinguish between more situations—more

“ifs”—and even if it didn’t change what it did, essentially

stop or go at any point, it could have been used in many

more places. A modern-day Roomba—the automated

vacuum cleaning robot from iRobot—is able to do this and

roam freely around rooms with sensors to prevent it from

falling down stairs or getting stuck in corners, along with a

memory to ensure it covers the floor in a timely fashion.

If a robot operates outside, it needs to move more slowly

to avoid slipping when the ground is wet. Two possible



situations (or states) arise—dry and wet. If the robot’s

motion is also influenced by whether it is light or dark,

whether a human is moving in the vicinity or not, whether

rush items are in that batch of mail, if it is okay to run over

squirrels but not cats, and a variety of other factors, and if

the rules are sensitive to interactions (it is okay to run over

squirrels if it is dark, but not if it is light), then the number of

situations—the number of “ifs”—grows radically.

Better prediction identifies more “ifs.” With more “ifs,” a

mail robot can react to more situations. A prediction

machine enables the robot to identify that wet dark

environments with a human running twenty feet behind and

a cat up ahead might require slowing down, but wet dark

environments with a human standing twenty feet behind

and a squirrel ahead might not. The prediction machine

enables the robot to move around without a preplanned trail

or track. Our new Mailmobile can operate in more

environments without much additional cost.

Delivery robots abound. Warehouses have autonomous

delivery systems that can predict their environment and

adjust accordingly. Fleets of Kiva robots transport products

inside Amazon’s vast fulfilment centers. Startups are

experimenting with delivery robots that take packages (or

pizza) onto sidewalks and streets from businesses to homes

and back again.

Robots can now do this because they can now use data

from sophisticated sensors to predict their environment and

then receive instructions for how to handle it. We don’t often

conceptualize this as prediction, but fundamentally it is. And

as it keeps getting cheaper, the robots will get better and

better.

More “Thens”



George Stigler, a Nobel Prize–winning economist, reportedly

remarked: “People who have never missed a flight have

spent too long in airports.”2 While a peculiar logic is in

operation here, the counterargument is strong: you can get

work done or relax just as easily at the airport as elsewhere,

and it might give you some peace of mind to get there early

to avoid the hassles of missing a flight. Thus, was born the

airport lounge. Airlines invented it to provide passengers (or

at least wealthy or frequent-flying ones) a convenient and

quiet space to wait for their flights. The lounge exists

because you are likely to arrive early for your flight.

Someone who is perennially late would only use a lounge in

transit or when a flight is delayed or to weep when they

miss their flight to Bali. The lounge is there to provide some

wiggle room, a bit of a buffer for when your arrival time is

less than precise (which is likely to be quite often).

Suppose you have a flight at 10 a.m. Airline guidelines say

you should arrive sixty minutes beforehand. You could arrive

at 9 a.m. and make your flight. Given that, what time should

you leave for the airport?

You usually can get to the airport in thirty minutes, which

might allow you to leave at 8:30 a.m., but that does not

account for traffic disruption. When flying back to Toronto

from a New York meeting about this very book, we three

experienced such bad traffic to LaGuardia Airport that we

ended up walking the last mile along the freeway. That

could easily add another thirty minutes (more, if you are risk

averse). Now you are back to 8 a.m., which is when you

leave every time you don’t know what traffic is going to be

like. As a result, you usually end up spending thirty minutes

or more in the lounge.

Apps such as Waze provide very accurate travel times

from your current location to the airport. Such apps monitor

both real time and historic traffic patterns to both forecast

and update the quickest routes. Pair that with Google Now,



and you can account for any delays that might appear for

your flights with other apps that monitor historical delays or

the location of a connecting aircraft. Together, these apps

mean that you can reliably trust the prediction, which opens

up new options such as “unless there is a traffic problem,

leave later and go directly to the gate” or “if there is flight

delay, leave later.”

Better prediction, by reducing or eliminating a key source

of uncertainty, eliminates your need to have a place to wait

at the airport. More critically, better prediction enables new

actions. Rather than having a hard-wired rule to leave two

hours before your flight, you can have a contingent rule that

takes information and then tells you when to leave. Those

contingent rules are if-then statements and enable more

“thens” (leave early, on time, or later), depending on more

reliable predictions. So, in addition to producing more “ifs,”

prediction expands opportunities by increasing the number

of feasible “thens.”

Mail robots and airport lounges have something in

common: they are both imperfect solutions to uncertainty,

and they both will be undermined by better prediction.

More “Ifs” and “Thens”

Better prediction allows you to predict more things more

often, reducing uncertainty. Each new prediction also has an

indirect effect: it makes choices feasible that you would not

have considered before. And you don’t have to explicitly

code the “ifs” and “thens.” You can train the prediction

machine with examples. Voilà! Problems that were not

previously understood as prediction problems may now be

tackled as such. We were compromising without recognizing

it.



Such compromises are a key aspect of how humans make

decisions. Economics Nobel Prize–winner Herbert Simon

called this “satisficing.” While classical economics models

superintelligent beings making perfectly rational decisions,

Simon recognized and emphasized in his work that humans

cannot cope with complexity. Instead, they satisfice, doing

the best they can to meet their objectives. Thinking is

difficult, so people take shortcuts.

Simon was a polymath. In addition to a Nobel, he also won

the Turing Award, often called the Nobel of computing, for

“contributions to artificial intelligence.” His economics and

computing contributions were related. Echoing his thoughts

on humans, his 1976 Turing Award lecture emphasized that

computers “have limited processing resources; in a finite

number of steps over a finite interval of time, they can

execute only a finite number of processes.” He recognized

that computers—like humans—satisfice.3

The mail robots and airport lounge are examples of

satisficing in the absence of good prediction. Such examples

are everywhere. It will take practice and time to imagine the

possibilities enabled by better prediction. It is not intuitive

for most people to think of airport lounges as a solution to

poor prediction and that they will be less valuable in an era

of powerful prediction machines. We are so used to

satisficing that we don’t even think of some decisions as

involving a prediction.

In the translation example earlier in the book, specialists

saw automatic language translation not as a prediction

problem but as a linguistic one. The traditional linguistic

approach used a dictionary to translate word by word,

coupled with some grammatical rules. This was satisficing; it

led to poor results because of too many ifs. Translation

became a prediction problem when researchers recognized

that translation could happen sentence by sentence or even

paragraph by paragraph.



Translation with prediction machines involves predicting

the likely equivalent sentence in the other language.

Statistics enable the computer to choose the best

translation by predicting the ifs—which sentence a

professional translator is most likely to use based on

translation matching in the data. It relies on, remarkably, no

linguistic rules. A pioneer of this field, Frederick Jelinek

remarked, “Every time I fire a linguist, the performance of

the speech recognizer goes up.”4 Clearly, this is a scary

development for linguists and translators. All sorts of other

tasks—including image recognition, shopping, and

conversation—are being identified as complex prediction

problems that are amenable to the application of machine

learning.

By enabling more complex decisions, better prediction can

lower risk. For instance, one of the practical applications of

recent AI is in radiology. Much of what radiologists currently

do involves taking images and then identifying issues of

concern. They predict abnormalities in images.

AIs are increasingly able to perform that prediction

function at human levels of accuracy or better, which can

assist radiologists and other medical specialists in making

decisions that have an impact on patients. The critical

performance metric is the accuracy of the diagnosis:

whether the machine predicts a disease when the patient is

ill and predicts no disease when the patient is healthy.

But we must consider what such decisions involve.

Suppose doctors suspect a lump and must decide how to

determine if it is cancerous. One option is medical imaging.

Another option is something more invasive, like a biopsy. A

biopsy has the advantage of being highly likely to provide

an accurate diagnosis. The problem, of course, is that a

biopsy is invasive; thus, both doctors and patients prefer to

avoid it if the likelihood is low that the issue is serious. One

job of a radiologist is to provide a reason not to conduct an



invasive procedure. The ideal is to perform a procedure only

to confirm a serious diagnosis. The biopsy offers insurance

against the risk of not treating a deadly disease, but it

comes at a cost. The decision to undertake the biopsy

depends on how costly and invasive the biopsy itself is and

how bad it would be to overlook the disease. Doctors use

these factors to decide whether the biopsy is worth the

physical and monetary costs of the invasive procedure.

With a reliable diagnosis from an image, patients can forgo

the invasive biopsy. They can take an action that, absent the

prediction, would be too risky. They no longer have to

compromise. Advances in AI mean less need for satisficing

and more “ifs” and more “thens.” More complexity with less

risk. This transforms decision making by expanding options.

KEY POINTS

Enhanced prediction enables decision makers, whether

human or machine, to handle more “ifs” and more

“thens.” That leads to better outcomes. For example, in

the case of navigation, illustrated in this chapter with

the mail robot, prediction machines liberate

autonomous vehicles from their previous limitation of

operating only in controlled environments. These

settings are characterized by their limited number of

“ifs” (or states). Prediction machines allow autonomous

vehicles to operate in uncontrolled environments, like

on a city street, because rather than having to code all

the potential “ifs” in advance, the machine can instead

learn to predict what a human controller would do in

any particular situation. Similarly, the example of

airport lounges illustrates how enhanced prediction

facilitates more “thens” (e.g., “then leave at time X or Y

or Z,” depending on the prediction of how long it will



take to get to the airport at a particular time on a

particular day), rather than always leaving early “just in

case” and then spending extra time waiting in the

airport lounge.

In the absence of good prediction, we do a lot of

“satisficing,” making decisions that are “good enough”

given the information available. Always leaving early for

the airport and often waiting once you arrive because

you’re early is an example of satisficing. That solution is

not optimal, but it’s good enough given the information

available. The mail robot and the airport lounge are

both inventions designed in response to satisficing.

Prediction machines will reduce the need to satisfice

and thus reduce the returns to investing in solutions like

mail robot systems and airport lounges.

We are so used to satisficing in our businesses and in

our social lives that it will take practice to imagine the

vast array of transformations possible as a result of

prediction machines that can handle more “ifs” and

“thens” and, thus, more complex decisions in more

complex environments. It’s not intuitive for most people

to think of airport lounges as a solution to poor

prediction and that they will be less valuable in an era

of powerful prediction machines. Another example is

the use of biopsies, which largely exist in response to

weaknesses in prediction from medical images. As the

confidence in prediction machines go up, the impact

from medical imaging AIs may be much greater on the

jobs associated with conducting biopsies because, like

airport lounges, this costly and invasive procedure was

invented in response to poor prediction. Airport lounges

and biopsies are both risk management solutions.

Prediction machines will provide new and better

methods for managing risk.
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Fully Automated Decision

Making

On December 12, 2016, Tesla Motors Club member

“jmdavis” posted to a forum on electric vehicles, reporting

on an experience he had had in his Tesla. While driving to

work on a Florida freeway at about sixty miles per hour, his

Tesla dashboard indicated a car ahead that he could not see

because the truck immediately in front of him blocked his

view. Suddenly, his emergency brakes kicked in, even

though the truck ahead had not slowed. A second later, the

truck veered into a shoulder to avoid hitting the car in front

that had in fact stopped quickly because of debris on the

road. The Tesla had decided to brake before the truck in

front had done so, allowing jmdavis’s car to stop with plenty

of room. He wrote:

If I was driving manually, it is unlikely that I would have

been able to stop in time, since I could not see the car

that had stopped. The car reacted well before the car

ahead of me reacted and that made the difference

between a crash and a hard stop. Strong work Tesla,

thanks for saving me.1

Tesla had just sent a software update to its vehicles that

allowed its Autopilot self-driving feature to exploit radar



information to gain a clearer picture of the environment in

front of the car.2 While Tesla’s feature worked when its cars

were in self-driving mode, it is easy to imagine a situation

where a car takes over control from a human in the event of

an imminent accident. Carmakers in the United States have

reached an agreement with the Department of

Transportation to make automatic emergency braking

standard on vehicles by 2022.3

Often, the distinction between AI and automation is

muddy. Automation arises when a machine undertakes an

entire task, not just prediction. As of this writing, a human

still needs to periodically intervene in driving. When should

we expect full automation?

AI, in its current incarnation, involves a machine

performing one element: prediction. Each of the other

elements represents a complement to prediction, something

that becomes more valuable as prediction gets cheaper.

Whether full automation makes sense depends on the

relative returns to machines also doing the other elements.

Humans and machines can accumulate data, whether for

input, training, or feedback, depending on the data type. A

human must ultimately make a judgment, but the human

can codify judgment and program it into a machine in

advance of a prediction. Or a machine can learn to predict

human judgment through feedback. This brings us to the

action. When is it better for machines rather than humans to

undertake actions? More subtly, when does the fact that a

machine is handling the prediction increase the returns to

the machine rather than a human also undertaking the

action? We must determine the returns to machines

performing the other elements (data collection, judgment,

actions) to decide whether a task should be or will be fully

automated.



Sunglasses at Night

Australia’s remote Pilbara region has large quantities of iron

ore. Most mining sites are more than a thousand miles from

the nearest major city, Perth. All employees at the site are

flown in for intensive shifts lasting weeks. They accordingly

command a premium in terms of wages and in the costs of

supporting them while on-site. It’s not surprising that the

mining companies want to make the most of them while

they are there.

The large iron ore mines of mining giant Rio Tinto are

highly capital intensive, not just in cost but also in sheer

size. They take iron ore from the top of the ground in

enormous pits a meteor impact would be challenged to

replicate. Thus, the main job is hauling using trucks the size

of two-story houses, not just up from the pit but to nearby

rail lines built to transport the ore thousands of miles north

to waiting ports. The real cost to mining companies is

therefore not people but downtime.

Mining companies have, of course, tried to optimize by

running throughout the night. However, even the most time-

shifted humans are not as productive at night. Initially, Rio

Tinto solved some of its human deployment issues by

employing trucks that it could control remotely from Perth.4

But in 2016, it went a step further, with seventy-three self-

driving trucks that could operate autonomously.5 This

automation has already saved Rio Tinto 15 percent in

operating costs. The mine runs its trucks twenty-four hours

a day, with no bathroom breaks and no air-conditioning for

the cabs as the temperatures soar above fifty degrees

Celsius during the day. Finally, without drivers, the trucks do

not need a front and back, meaning they do not need to

turn around, further saving in terms of safety, space,

maintenance, and speed.



AI made this possible by predicting hazards in the trucks’

way and coordinating their passage into the pits. No human

driver needs to watch over the truck’s safety on-site or even

remotely. And there are fewer humans around to create

safety risks. Going even further, miners in Canada are

exploring bringing in AI-driven robots to dig underground,

while Australian miners are looking to automate the entire

chain from ground to port (including diggers, bulldozers, and

trains).

Mining is the perfect opportunity for full automation

precisely because it has already removed humans from so

many activities. These days, humans perform directed but

key functions. Before the recent advances in AI, everything

except prediction could already be automated. Prediction

machines represent the last step in removing humans from

many of the tasks involved. Previously, a human scanned

the surrounding environment and told the equipment

precisely what to do. Now, AI that takes information from

sensors learns how to predict obstacles for clear paths.

Because a prediction machine can forecast whether the

path is clear, mining companies no longer need humans to

do so.

If the final human element in a task is prediction, then

once a prediction machine can do as well as a human, a

decision maker can remove the human from the equation.

However, as we will see in this chapter, few tasks are as

clear-cut as the mining case. For most automation decisions,

the provision of machine prediction does not necessarily

mean that it becomes worthwhile to remove human

judgment and substitute a machine decision maker, nor

remove human action and substitute a physical robot.

No Time or Need to Think



Prediction machines made self-driving cars like Tesla’s

possible. But using prediction machines to trigger an

automatic subversion of humans for machine control of a

vehicle is another matter. The rationale is easy to

understand: between the moment an accident is predicted

and the required reaction, a human has no time for thought

or action (“no time to think”). By contrast, it is relatively

easy to program the vehicle’s response. When speed is

needed, the benefit of ceding control to the machine is high.

When you employ a prediction machine, the prediction

made must be communicated to the decision maker. But if

the prediction leads directly to an obvious course of action

(“no need to think”), then the case for leaving human

judgment in the loop is diminished. If a machine can be

coded for judgment and handle the consequent action

relatively easily, then it makes sense to leave the entire

task in the machine’s hands.

This has led to all manner of innovations. At the 2016 Rio

Olympics, a new robotic camera videotaped swimmers

underwater by tracking the action and moving to get the

right shot from the bottom of the pool.6 Previously,

operators remotely controlled cameras but had to forecast

the location of the swimmer. Now, a prediction machine

could do it. Swimming was just the beginning. Researchers

are now working to bring such camera automation to more

complex sports like basketball.7 Once again, a need for

speed and codifiable judgment is driving the move to full

automation.

What do accident prevention and automated sports

cameras have in common? In each, there are high returns

for quick action responses to predictions and judgment is

either codifiable or predictable. Automation occurs when the

return to machines handling all functions is greater than the

returns to including humans in the process.



Automation can also arise when the costs of

communication are high. Take space exploration. It is much

easier to send robots into space than humans. Several

companies are now exploring ways to mine valuable

minerals from the moon, but they need to overcome many

technical challenges. The one that concerns us here is how

moon-based robots will navigate and act. It takes at least

two seconds for a radio signal to get to the moon and back,

so an earth-based human operating a moon-based robot is a

slow and painful process. Such a robot cannot react quickly

to new situations. If a robot moving along the surface of the

moon suddenly encounters a cliff, any communication delay

means that earth-based instructions may arrive too late.

Prediction machines provide a solution. With good

prediction, the moon-based robot’s actions can be

automated, with no need for an earth-based human to guide

every step. Without AI, such commercial ventures would

likely be impossible.

When the Law Requires a Human to Act

The notion that full automation may lead to harm has been

a common theme in science fiction. Even if we’re all

comfortable with complete machine autonomy, the law

might not allow it. Isaac Asimov anticipated the regulatory

issue by opting for hard coding robots with three laws,

cleverly designed to remove the possibility that robots harm

any human.8

Similarly, modern philosophers often pose ethical

dilemmas that seem abstract. Consider the trolley problem:

Imagine yourself standing at a switch that allows you to

shift a trolley from one track to another. You notice five

people in the trolley’s path. You could switch it to another

track, but along that path is one person. You have no other



options and no time to think. What do you do? That question

confounds many people, and often they just want to avoid

thinking about the conundrum altogether. With self-driving

cars, however, that situation is likely to arise. Someone will

have to resolve the dilemma and program the appropriate

response into the car. The problem cannot be avoided.

Someone—most likely the law—will determine who lives and

who dies.

At the moment, rather than code our ethical choices into

autonomous machines, we’ve chosen to keep a human in

the loop. For instance, imagine a drone weapon that could

operate completely autonomously—identifying, targeting,

and killing enemies by itself. Even if an army general could

find a prediction machine that could distinguish civilians

from combatants, how long would it take combatants to

figure out how to confuse the prediction machine? The

required level of precision may not be available any time

soon. So, in 2012, the US Department of Defense put

forward a directive that many interpreted as a requirement

to keep a human in the loop on the decision whether to

attack or not.9 While it is unclear if the requirement must

always be followed, the need for human intervention, for

whatever reason, will limit the autonomy of prediction

machines even when they might operate on their own.10

Even Tesla’s Autopilot software—despite being able to drive

a car—comes with legal terms and conditions that drivers

keep their hands on the wheel at all times.

From an economist’s point of view, whether this makes

sense depends on the context of potential harm. For

instance, operating an autonomous vehicle in a remote

mine or on a factory floor is quite different from operating

on public roads. What distinguishes the “within factory”

environment from the “open road” is the possibility of what

economists call “externalities”—costs that are felt by others,

rather than the key decision makers.



Economists have various solutions for the problem of

externalities. One solution is to assign liability so that the

key decision maker internalizes those otherwise external

costs. For example, a carbon tax plays this role in the

context of internalizing externalities associated with climate

change. But when it comes to autonomous machines,

identification of the liable party is complex. The closer the

machine is to potential harm of those outside the

organization (and, of course, to physical harm of humans

within the organization), the more likely it will be both

prudent and legally required to keep a human in the loop.

When Humans Are Better at the Action

Question: What is orange and sounds like a parrot?

The answer? A carrot.

Is that joke funny? Or this one: A little girl asked her father:

“Daddy? Do all fairy tales begin with ‘once upon a time’?”

He replied: “No, there are a whole series of fairy tales that

begin with ‘If elected, I promise …’”

Okay, admittedly economists are not the best joke tellers.

But we are better at it than machines. Researcher Mike

Yeomans and his coauthors discovered that if people think a

machine recommended a joke, they find it less funny than if

they believe a human suggested they might like it. The

researchers found that machines do a better job of

recommending jokes, but people prefer to believe the

recommendations came from humans. The people reading

the jokes were most satisfied if told the recommendations

came from a human, but when the recommendations were

actually determined by a machine.

This is also true of artistic achievement and athletic

competition. The power of the arts often derives from the

patron’s knowledge of the artist’s human experience. Part of



the thrill of watching a sporting event depends on there

being a human competing. Even if a machine can run faster

than a human, the outcome of the race is less exciting.

Playing with children, caring for the elderly, and many

other actions that involve social interaction may also be

inherently better when it is a human that delivers the

action. Even if a machine knows what information to present

to a child for educational purposes, sometimes it might be

best if a human communicates that information. While over

time, we humans may be more accepting of having robots

care for us and our children, and we may even enjoy

watching robot sports competitions, for the time being

humans prefer to have some actions undertaken by other

humans.

When a human is best suited to take the action, such

decisions will not be fully automated. At other times,

prediction is the key constraint on automation. When the

prediction gets good enough and judging the payoffs can be

pre-specified—either a person does the hard coding or a

machine learns by watching a person—then a decision will

be automated.

KEY POINTS

The introduction of AI to a task does not necessarily

imply full automation of that task. Prediction is only one

component. In many cases, humans are still required to

apply judgment and take an action. However,

sometimes judgment can be hard coded or, if enough

examples are available, machines can learn to predict

judgment. In addition, machines may perform the

action. When machines perform all elements of the

task, then the task is fully automated and humans are

completely removed from the loop.



The tasks most likely to be fully automated first are the

ones for which full automation delivers the highest

returns. These include tasks where: (1) the other

elements are already automated except for prediction

(e.g., mining); (2) the returns to speed of action in

response to prediction are high (e.g., driverless cars);

and (3) the returns to reduced waiting time for

predictions are high (e.g., space exploration).

An important distinction between autonomous vehicles

operating on a city street versus those in a mine site is

that the former generates significant externalities while

the latter does not. Autonomous vehicles operating on a

city street may cause an accident that incurs costs

borne by individuals external to the decision maker. In

contrast, accidents caused by autonomous vehicles

operating on a mine site only incur costs affecting

assets or people associated with the mine.

Governments regulate activities that generate

externalities. Thus, regulation is a potential barrier to

full automation for applications that generate

significant externalities. The assignment of liability is a

common tool used by economists to address this

problem by internalizing externalities. We anticipate a

significant wave of policy development concerning the

assignment of liability driven by an increasing demand

for many new areas of automation.



PART THREE

Tools
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Deconstructing Work Flows

In the midst of the IT revolution, businesses asked, “How

should we implement computers in our business?” For

some, the answer was easy: “Find where we do lots of

calculations and substitute computers for humans; they’re

better, faster, and cheaper.” For other businesses, it was

less obvious. Nonetheless, they experimented. But the fruits

of those experiments took time to materialize. Robert Solow,

a Nobel laureate economist, lamented, “You can see the

computer age everywhere but in the productivity

statistics.”1

From this challenge came an interesting business

movement called “reengineering.” In 1993, Michael Hammer

and James Champy, in their book Reengineering the

Corporation, argued that to use the new general-purpose

technology—computers—businesses needed to step back

from their processes and outline the objective they wanted

to achieve. Businesses then needed to study their work flow

and identify the tasks required to achieve their objective

and only then consider whether computers had a role in

those tasks.

One of Hammer and Champy’s favorite examples was the

dilemma Ford faced in the 1980s, not with making cars but

with paying everyone.2 In North America, its accounts



payable department employed five hundred people, and

Ford hoped that by spending big on computers, it could

reduce that number by 20 percent. The goal of having four

hundred people in the department was not unrealistic; after

all, its competitor Mazda had just five people in accounts

payable. While, in the 1980s, many marveled at Japanese

workers’ productivity, it does not take a management guru

to realize something more was afoot.

To achieve better performance, Ford’s managers had to

step back and look at the process through which a purchase

took place. Between the time a purchase order was written

and actually issued to buy something, many people handled

it. If only one of those people took a long time to do the job,

the entire system slowed down. Not surprisingly, some

purchases were difficult, such as when someone had to

reconcile the order. One person in the process had to do

that task. So, even if only a small fraction of the orders had

problems, most of that person’s time was spent resolving

them. That left every order flowing through at the speed of

the most difficult one.

Therein lay the potential to use a computer to great effect.

Not only could a computer reduce mismatches that held up

the system, but it could sort the difficult from the easier

cases and ensure the easier ones went through at a

reasonable speed. Once a new system was put in place,

Ford’s accounts payable department was 75 percent

smaller, and the whole process was significantly faster and

more accurate.

Not every reengineering case was about reducing head

count, even if, unfortunately, many thought of that first.3

More broadly, reengineering could improve the quality of

services. In another example, Mutual Benefit Life, a large life

insurance company, found that in processing applications,

nineteen people in five departments took thirty distinct

steps. If you walked a typical application through this maze,



you could actually finish it in a day. But, instead, an

application was taking from five to twenty-five days. Why?

Time in transit. Worse, a variety of other inefficiencies piled

on because they could stick themselves to a slow-moving

target. Once again, a shared database powered by an

enterprise computer system improved decision making,

reduced handling, and dramatically improved productivity.

In the end, one person had authority over an application,

with processing falling to between four hours and a few

days.

Like classical computing, AI is a general-purpose

technology. It has the potential to affect every decision,

because prediction is a key input to decision making. Hence,

no manager is going to achieve large gains in productivity

by just “throwing some AI” at a problem or into an existing

process. Instead, AI is the type of technology that requires

rethinking processes in the same way that Hammer and

Champy did.

Businesses are already conducting analyses that take work

flows and break them down into constituent tasks. Goldman

Sachs’s CFO R. Martin Chavez remarked that many of the

146 distinct tasks in the initial public offering process were

“begging to be automated.”4 Many of those 146 tasks are

predicated on decisions that AI tools will significantly

enhance. When somebody writes about the transformation

of Goldman Sachs a decade from now, a major part of the

story will be about how the rise of AI played a meaningful

role in that transformation.

The actual implementation of AI is through the

development of tools. The unit of AI tool design is not “the

job” or “the occupation” or “the strategy,” but rather “the

task.” Tasks are collections of decisions (like the ones

represented by figure 7-1 and analyzed in part two).

Decisions are based on prediction and judgment and

informed by data. The decisions within a task often share



these elements in common. Where they differ is in the

action that follows. (See figure 12-1.)

FIGURE 12-1

Thinking about how to redesign and automate entire

processes

Sometimes we can automate all the decisions within a

task. Or we can now automate the last remaining decision

that has not yet been automated because of enhanced

prediction. The rise of prediction machines motivates

thinking about how to redesign and automate entire

processes, or what we term here “work flows,” effectively

removing humans from such tasks altogether. But for better

and cheaper prediction alone to lead to pure automation,

employing prediction machines must also increase the

returns to using machines in other aspects of a task.

Otherwise, you will want to employ a prediction machine to

work with human decision makers.

Impact of AI Tools on Work Flows



We have now seen more than 150 AI companies in the CDL,

our laboratory that helps science-based companies grow.

Each one is focused on the development of an AI tool that

addresses a specific task in a specific work flow. One startup

predicts the most important passages of a document and

highlights them. Another predicts manufacturing defects

and flags them. Yet another forecasts appropriate customer

service responses and answers queries. And the list goes

on. Large companies are implementing hundreds if not

thousands of different AIs to enhance the various tasks in

their own work flows. Indeed, Google is developing more

than a thousand different AI tools to help with a wide variety

of tasks, from email to translation to driving.5

For many businesses, prediction machines will be

impactful, but in an incremental and largely inconspicuous

manner, much as how AI improves many of the photo apps

on your smartphone. It sorts the pictures in a helpful way

but does not fundamentally change how you use the app.

However, you are likely reading this book because you are

interested in how AI can lead to fundamental change in your

business. AI tools can change work flows in two ways. First,

they can render tasks obsolete and therefore remove them

from work flows. Second, they can add new tasks. This may

be different for every business and every work flow.

Consider the problem of recruiting students to an MBA

program, a process with which we are intimately familiar.

You may have been on one side or the other of similar

recruiting processes, perhaps for recruiting employees or

signing up customers. The MBA recruitment work flow starts

with a pool of potential applications and leads to a group of

people who receive and accept entry offers. It has three

broad parts: (1) a sales funnel that consists of steps

designed to encourage applications, (2) a process that

considers who receives offers, and (3) further steps



encouraging those given offers to accept them. Each part

involves a significant allocation of resources.

Clearly, the goal of any such recruitment process is to

obtain a class of the best students. What is “best,” however,

is a complex question and is also related to the school’s

strategic goals. For the moment, we will set aside issues of

how different definitions of “best” have an impact on the

design of AI tools (they do), as well as on tasks within work

flows, and simply assume that the school has a clear

definition of what best means to the organization. That is,

given a set of applications, the school can, with effort, rank

students in terms of best. In practice, the intermediate step

in the recruitment work flow—choosing which applicants to

give offers to—involves important decisions regarding

whether offers should be earlier or later in the process and if

they should come with financial incentives or aid attached.

Those decisions go beyond simply targeting the best but

also predicting the most effective method of getting the

best to accept offers (something that happens later in the

work flow).

Current systems of ranking applications involve coarse

assessments. Candidates are typically ranked in buckets a,

b, and c, according to (a) clearly should get an offer; (b)

should get an offer if those in (a) decline their offers; and (c)

no offer at all. That, in turn, leads to a need for risk

management to balance the pros and cons of actions that

may increase the likelihood of errors. For instance, you do

not want to place someone in bucket (c) when they should

be in (a) or even (b) for reasons that are not apparent on

the application. Similarly, you do not want to allocate

someone to (a) when they should be lower in the priority

queue. As applications are multidimensional, the

assessments that cause candidates to be placed in buckets

are a mixture of the objective and subjective.



Suppose that the MBA program developed an AI that could

take applications and other information—perhaps the video

interviews people often submit, along with publicly available

information posted on social media—and, being trained on

past data indicating how such applications and information

translated into later scores of best, provide a clear ranking

of all applicants. This AI tool will make the task of choosing

which applicants should receive offers faster, cheaper, and

more accurate. The key question is: How will such a magical

prediction technology have an impact on the rest of the MBA

work flow?

Our hypothetical technology for ranking applicants

provides a prediction that tells us which applicants are likely

to be the best. This will affect decisions throughout the work

flow. These include early offers (perhaps to pre-empt other

schools), financial incentives (scholarships), and special

attention (lunches with faculty or prominent alumni). These

are all decisions for which there are trade-offs and scarce

resources. Having a more accurate list of candidates in

terms of desirability will change who receives these

resources. Also, we may be willing to spend much more on

financial incentives for candidates we are more confident

will be best.

The predictive ranking may have an even larger impact on

decisions made before the school receives applications.

Many schools know that while they want to receive more

applications, if they receive too many, they will face the

problem of evaluating and ranking them. Our prediction

machine dramatically lowers the cost of doing such

rankings. As a consequence, it increases the returns to

having more applications to rank. This is especially true if

the technology can also assess the seriousness of the

application (since it’s magical, why not?). Thus, schools may

expand the reach of their applicant pool. They may lower

application fees to zero because sorting through



applications is so easy that there is no real cost to receiving

more applications.

Finally, changes in the work flow may be more

fundamental. With such a ranking, the school could reduce

the time between submitting an application and an offer. If

the ranking is good enough, it could be nearly

instantaneous, significantly changing the timing of the

entire work flow and the dynamics of competition for top

MBA candidates.

This sort of AI is hypothetical, but the example illustrates

how placing AI tools within tasks in a work flow can cause

tasks to be removed (e.g., manual ranking of applications)

as well as added (e.g., wider-reach advertising). Each

business will, of course, have different outcomes, but by

decomposing work flows, businesses can assess whether

prediction machines are likely to reach well beyond the

individual decisions for which they may have been

designed.

How an AI Tool Powered the iPhone

Keyboard

On one dimension, the keyboard on your smartphone has

more in common with the original mechanical typewriters

than the keyboard you might use on a personal computer.

You may be old enough to have used a mechanical

typewriter and remember that if you typed too quickly, the

mechanism got stuck. For this reason, keyboards have their

familiar QWERTY layout; that design standard limited the

possibility of hitting two adjacent keys, which is what

jammed up older mechanical typewriters. But that same

feature also slowed down even the fastest typists.

The QWERTY design has persisted even though the

mechanism that caused all the trouble is no longer relevant.



When Apple engineers designed the iPhone, they debated

whether to finally get rid of QWERTY altogether. What kept

them coming back to it was familiarity. After all, their closest

competitor at the time, the BlackBerry, had a hard QWERTY

keyboard that performed so well the product was commonly

known as the “Crackberry” for its addictive nature.

“The biggest science project” of the iPhone was the soft

keyboard.6 But as late as 2006 (the iPhone was launched in

2007), the keyboard was terrible. Not only could it not

compete with the BlackBerry, but it was so frustrating that

no one would use it to type a text message, let alone an

email. The problem was that to fit it on the 4.7-inch LCD

screen, the keys were very small. That meant it was easy to

hit the wrong one. Many Apple engineers came up with

designs that moved away from QWERTY.

With just three weeks to find a solution—a solution that, if

not found, might have killed the whole project—every single

iPhone software developer had free rein to explore other

options. By the end of the three weeks, they had a keyboard

that looked like a small QWERTY keyboard with a substantial

tweak. While the image the user saw did not change, the

surface area around a particular set of keys expanded when

typing. When you type a “t,” it is highly probable the next

letter will be an “h” and so the area around that key

expanded. Following that, “e” and “i” expanded, and so on.

This was the result of an AI tool at work. Ahead of virtually

anyone else, Apple engineers used 2006-era machine

learning to build predictive algorithms so that key size

changed depending on what a person was typing.

Technology with the same heritage powers the autocorrect

predictive text you see today. But fundamentally, the reason

this worked was QWERTY. The same keyboard designed to

ensure you did not have to type adjacent keys would allow

the smartphone keys to expand when needed because the



next key was highly unlikely to be near the one you just

used.

What Apple engineers did when developing the iPhone was

to understand precisely the work flow that went into using a

keyboard. A user must identify a key, touch it, and then

move on to another. By breaking down that work flow, they

realized that a key did not have to be the same to be

identified and touched. More importantly, prediction could

solve how to know where a user was going next.

Understanding the work flow was critical for figuring out

how best to deploy the AI tool. This is true of all work flows.

KEY POINTS

AI tools are point solutions. Each generates a specific

prediction, and most are designed to perform a specific

task. Many AI startups are predicated on building a

single AI tool.

Large corporations are comprised of work flows that

turn inputs into outputs. Work flows are made up of

tasks (e.g., a Goldman Sachs IPO is a work flow

comprised of 146 distinct tasks). In deciding how to

implement AI, companies will break their work flows

down into tasks, estimate the ROI for building or buying

an AI to perform each task, rank-order the AIs in terms

of ROI, and then start from the top of the list and begin

working downward. Sometimes a company can simply

drop an AI tool into their work flow and realize an

immediate benefit due to increasing the productivity of

that task. Often, however, it’s not that easy. Deriving a

real benefit from implementing an AI tool requires

rethinking, or “reengineering” the entire work flow. As a

result, similar to the personal computer revolution, it



will take time to see productivity gains from AI in many

mainstream businesses.

To illustrate the potential effect of an AI on a work flow,

we describe a fictitious AI that predicts the ranking of

any MBA application. To derive the full benefit from this

prediction machine, the school would have to redesign

its work flow. It would need to eliminate the task of

manually ranking applications and expand the task of

marketing the program, as the AI would increase the

returns to a greater applicant pool (better predictions

about who will succeed and lower cost of evaluating

applications). The school would modify the task of

offering incentives like scholarships and financial aid

due to increased certainty about who will succeed.

Finally, the school would adjust other elements of the

work flow to take advantage of being able to provide

instantaneous school admission decisions.
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Decomposing Decisions

Today’s AI tools are far from the machines with human-like

intelligence of science fiction (often referred to as “artificial

general intelligence” or AGI, or “strong AI”). The current

generation of AI provides tools for prediction and little else.

This view of AI does not diminish it. As Steve Jobs once

remarked, “One of the things that really separates us from

the high primates is that we’re tool builders.” He used the

example of the bicycle as a tool that had given people

superpowers in locomotion above every other animal. And

he felt the same about computers: “What a computer is to

me is it’s the most remarkable tool that we’ve ever come up

with, and it’s the equivalent of a bicycle for our minds.”1

Today, AI tools predict the intention of speech (Amazon’s

Echo), predict command context (Apple’s Siri), predict what

you want to buy (Amazon’s recommendations), predict

which links will connect you to the information you want to

find (Google search), predict when to apply the brakes to

avoid danger (Tesla’s Autopilot), and predict the news you

will want to read (Facebook’s newsfeed). None of these AI

tools are performing an entire work flow. Instead, each

delivers a predictive component to make it easier for

someone to make a decision. AI empowers.



But how should you decide whether you should use an AI

tool for a particular task in your business? Every task has a

group of decisions at its heart, and those decisions have

some predictive element.

We provide a way of evaluating AI within the context of a

task. Just as we suggested identifying tasks by breaking

down a work flow to find out whether AI might have a role,

we now suggest taking each of those tasks and

decomposing them into their constituent elements.

The AI Canvas

The CDL exposed us to many startups taking advantage of

recent machine-learning technologies to build new AI tools.

Each company in the lab is predicated on building a specific

tool, some for consumer experiences, but most for

enterprise customers. The latter type focus on identifying

task opportunities within enterprise work flows to focus and

position their offering. They deconstruct work flows, identify

a task with a prediction element, and build their business

based on the provision of a tool for delivering that

prediction.

In advising them, we found it useful to separate the parts

of a decision into each of its elements (refer to figure 7-1):

prediction, input, judgment, training, action, outcome, and

feedback. In the process, we developed an “AI canvas” to

help decompose tasks in order to understand the potential

role of a prediction machine (see figure 13-1). The canvas is

an aid for contemplating, building, and assessing AI tools. It

provides discipline in identifying each component of a task’s

decision. It forces clarity in describing each component.

FIGURE 13-1



The AI canvas

To see how this works, let’s consider the startup Atomwise,

which offers a prediction tool that aims to shorten the time

involved in discovering promising pharmaceutical drug

prospects. Millions of possible drug molecules might become

drugs, but purchasing and testing each drug is time

consuming and costly. How do drug companies determine

which to test? They make educated guesses, or predictions,

based on research that suggests which molecules are most

likely to become effective drugs.

Atomwise CEO Abraham Heifets, giving us a quick

explanation of the science, said, “For a drug to work, it has

to bind the disease target, and it has to fail to bind proteins

in your liver, your kidneys, your heart, your brain, and other

things that are going to cause toxic side effects. It comes

down to ‘stick to the things you want to stick to, fail to stick

to the things you don’t.’”



So, if drug companies can predict binding affinity, then

they can identify which molecules are most likely to work.

Atomwise provides this prediction by offering an AI tool that

makes the task of identifying potential drugs more efficient.

The tool uses AI to predict the binding affinity of molecules,

so Atomwise can recommend to drug companies, in a

ranked list, which molecules have the best binding affinity

for a disease protein. For example, Atomwise might provide

the top twenty molecules that have the highest binding

affinity for, say, the Ebola virus. Rather than just testing

molecules one at a time, Atomwise’s prediction machine can

handle millions of possibilities. While the drug company still

needs to test and verify candidates through a combination

of human and machine judgments and actions, the

Atomwise AI tool dramatically lowers the cost and

accelerates the speed of the first task of finding those

candidates.

Where does judgment come in? In recognizing the

aggregate value of a particular candidate molecule to the

pharmaceutical industry. This value takes two forms:

targeting the disease and understanding potential side

effects. In selecting the molecules to test, the company

needs to determine the payoffs of targeting the disease and

costs of the side effects. As Heifets noted, “You are more

tolerant of side effects for chemotherapy than for an acne

cream.”

The Atomwise prediction machine learns from data on

binding affinity. As of July 2017, it had 38 million public data

points on binding affinity plus many more that it either

purchased or learned itself. Each data point consists of

molecule and protein characteristics as well as a measure of

the binding between the molecules and the proteins. As

Atomwise makes more recommendations, it may get further

feedback from customers, so the prediction machine will

continue to improve.



Using this machine, given data on protein characteristics,

Atomwise can predict which molecules have the highest

binding affinity. It can also take the data on protein

characteristics and predict whether molecules that have

never been produced are likely to have high binding affinity.

The way to decompose the Atomwise molecule selection

task is to fill in the canvas (see figure 13-2). This means

identifying the following:

ACTION: What are you trying to do? For Atomwise, it is

to test molecules to help cure or prevent disease.

PREDICTION: What do you need to know to make the

decision? Atomwise predicts binding affinities of

potential molecules and proteins.

JUDGMENT: How do you value different outcomes and

errors? Atomwise and its customers set the criterion

regarding the relative importance of targeting the

disease and the relative costs of potential side effects.

OUTCOME: What are your metrics for task success? For

Atomwise, it’s the results of the test. Ultimately, did the

test lead to a new drug?

INPUT: What data do you need to run the predictive

algorithm? Atomwise uses data on the characteristics of

the disease proteins to predict.

TRAINING: What data do you need to train the

predictive algorithm? Atomwise employs data on the

binding affinity of molecules and proteins, along with

molecule and protein characteristics.

FEEDBACK: How can you use the outcomes to improve

the algorithm? Atomwise uses test outcomes,

regardless of their success, to improve future

predictions.



FIGURE 13-2

The AI canvas for Atomwise

Atomwise’s value proposition lies in delivering an AI tool

that supports a prediction task in its customers’ drug

discovery work flow. It removes the prediction task from

human hands. To provide that value, it amassed a unique

data set to predict binding affinity. The prediction’s value is

in reducing the cost and increasing the likelihood of success

for drug development. Atomwise’s clients use the prediction

in combination with their own expert judgment of the

payoffs to molecules with different binding affinities to

different kinds of proteins.

An AI Canvas for MBA Recruiting



The canvas is also useful in large organizations. To apply it,

we break down the work flow into tasks. Here, we consider

an AI canvas centered on the decision of which MBA

applicants to accept into a program. Figure 13-3 provides a

possible canvas.

FIGURE 13-3

The AI canvas for MBA recruiting offer

Where did the canvas come from? First, recruiting requires

a prediction: Who will be a best or high-value student? That

seems straightforward. We simply need to define “best.”

The school’s strategy can help identify this. However, many

organizations have vague, multifaceted mission statements

that lend themselves well to marketing brochures but not so

well to identifying the prediction objective for an AI.

Business schools have many strategies that implicitly or

explicitly define what they mean by “best.” They may be



simple indicators such as maximizing standardized test

scores like the GMAT or broader goals such as recruiting

students who will boost the school’s rankings in the

Financial Times or US News & World Report. They may also

want students who have a mix of quantitative and

qualitative skills. Or they may want international students.

Or they may want diversity. No school can pursue all these

goals simultaneously and must exercise some choice.

Otherwise, it will compromise on all dimensions and excel at

none.

In figure 13-3, we imagine that our school’s strategy is to

have the greatest impact on business globally. This

subjective notion is strategic in that it is global rather than

local and is looking for impact rather than, say, maximizing

student income or creating wealth.

For the AI to predict global business impact, we need to

measure it. Here, we assume the role of the reward function

engineer. What training data do we have that might be a

proxy for global business impact? One option might be to

identify the best alumni from each class—the fifty alumni

from each year who have had the biggest impact. Choosing

those alumni is, of course, subjective, but not impossible.

While we may set global business impact as the goal for a

prediction machine, the value of accepting a particular

student is a matter of judgment. How costly is it to accept a

weak student who we wrongly predicted would be among

the elite alumni? How costly is it to reject a strong student

who we wrongly predicted would be weak? The assessment

of that trade-off is “judgment,” an explicit element in the AI

canvas.

Once we specify the objective of the prediction, identifying

the input data needed is straightforward. We need

application information for incoming students in order to

predict how they will do. We might also use social media.

Over time, we will observe more students’ career outcomes



and can use that feedback to improve predictions. The

predictions will tell us which applicants to accept, but only

after determining our objective and judging the cost of

making a mistake.

KEY POINTS

Tasks need to be decomposed in order to see where

prediction machines can be inserted. This allows you to

estimate the benefit of the enhanced prediction and the

cost of generating that prediction. Once you have

generated reasonable estimates, rank-order the AIs

from highest to lowest ROI by starting at the top and

working your way down, implementing AI tools as long

as the expected ROI makes sense.

The AI canvas is an aid to help with the decomposition

process. Fill out the AI canvas for every decision or task.

This introduces discipline and structure into the

process. It forces you to be clear about all three data

types required: training, input, and feedback. It also

forces you to articulate precisely what you need to

predict, the judgment required to assess the relative

value of different actions and outcomes, the action

possibilities, and the outcome possibilities.

At the center of the AI canvas is prediction. You need to

identify the core prediction at the heart of the task, and

this can require AI insight. The effort to answer this

question often initiates an existential discussion among

the leadership team: “What is our real objective,

anyhow?” Prediction requires a specificity not often

found in mission statements. For a business school, for

example, it is easy to say that they are focused on

recruiting the “best” students, but in order to specify



the prediction, we need to specify what “best” means—

highest salary offer upon graduation? Most likely to

assume a CEO role within five years? Most diverse?

Most likely to donate back to the school after

graduation? Even seemingly straightforward objectives,

like profit maximization, are not as simple as they first

appear. Should we predict the action to take that will

maximize profit this week, this quarter, this year, or this

decade? Companies often find themselves having to go

back to basics to realign on their objectives and

sharpen their mission statement as a first step in their

work on their AI strategy.
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Job Redesign

Before the advent of AI and the internet was the computer

revolution. Computers made arithmetic—specifically, adding

up lots of things—cheap. One of the first killer apps was to

make bookkeeping easy.

Computer engineer Dan Bricklin had this in mind when, as

an MBA student, he was frustrated by doing repeated

calculations to assess the different scenarios in Harvard

Business School cases. So he wrote a computer program to

do those calculations and found it so useful that he, along

with Bob Frankston, developed it into VisiCalc for the Apple

II computer. VisiCalc was the first killer app of the personal

computing era and the reason many businesses first

brought a computer into their offices.1 Not only did it reduce

by a hundredfold the time it took to make calculations, it

allowed businesses to analyze many more scenarios.

At the time, the people tasked with calculating activities

were bookkeepers; at the end of the 1970s, more than

400,000 worked in the United States. The spreadsheet

eliminated what took them the most time—arithmetic. You

might then think bookkeepers would be out of a job. But we

hear no songs lamenting the lost work of bookkeepers, and

no bookkeeping backlash created barriers to the eventual



widespread use of the spreadsheet. Why didn’t bookkeepers

see the spreadsheet as a threat?

Because VisiCalc actually made them more valuable. It

made computation simple. You could easily evaluate how

much profit you expected and then how it changed if you

altered various assumptions. Rather than getting a single

snapshot, being able to recalculate repeatedly provided a

moving picture of a business. Rather than seeing whether

one investment was profitable or not, you could compare

multiple investments under different predictions and choose

the best one. Someone still had to judge which investments

to try out. A spreadsheet could give you answers easily and,

in the process, vastly increased the returns to asking

questions.

The same people who had laboriously computed the

answers before the arrival of the spreadsheet were the best

positioned to ask the right questions of the computerized

spreadsheet. They were not replaced but rather augmented

with superpowers.

This type of scenario—a job is augmented when machines

take over some, but not all, tasks—is likely to become quite

common as a natural consequence of the implementation of

AI tools. The tasks that make up a job will change. Some will

be removed as prediction machines take them over. Some

will be added as people have more time for them. And, for

many tasks, previously essential skills will change and new

skills will take their place. Just as bookkeepers became

spreadsheet wizards, the redesign of a wide range of jobs

due to AI tools will be equally dramatic.

Our process for implementing AI tools will determine which

outcome you should emphasize. It involves evaluating entire

work flows, whether they are within or across jobs (or

departmental or organizational boundaries), and then

breaking down the work flow into constituent tasks and

seeing whether you can fruitfully employ a prediction



machine in those tasks. Then, you must reconstitute tasks

into jobs.

Missing Links in Automation

In some cases, the goal is to fully automate every task

associated with a job. AI tools are unlikely to be a catalyst

for this on their own because work flows amenable to full

automation have a series of tasks involved that cannot be

(easily) avoided, even for tasks that seem initially to be both

low skilled and unimportant.

In the 1986 Space Shuttle Challenger disaster, one piece in

the rocket booster failed, an O-ring seal less than a half inch

in diameter. This one failure meant the shuttle could not fly.

To automate a task completely, one failed piece can derail

the entire exercise. You need to consider every step. Those

small tasks may be very difficult missing links in automation

and fundamentally constrain how to reformulate jobs. Thus,

AI tools that address these missing links can have

substantive effects.

Consider the fulfillment industry, which has grown rapidly

over the past two decades due to the rapid growth in online

shopping. Fulfillment is a central step in retail, generally,

and in electronic commerce, in particular. It is the process of

taking an order and executing it by making it ready for

delivery to its intended customer. In electronic commerce,

fulfillment includes a number of steps such as locating items

in a large warehouse-type facility, picking the items off

shelves, scanning them for inventory management, placing

them in a tote, packing them in a box, labeling the box, and

shipping it for delivery.

Many early applications of machine learning to fulfillment

related to inventory management: predicting which

products would sell out, which did not need reordering



because of low demand, and so on. These well-established

prediction tasks had been a key part of offline retail and

warehouse management for decades. Machine-learning

technologies made these predictions even better.

Over the past two decades, much of the rest of the

fulfillment process has been automated. For example,

research determined that fulfillment center workers were

spending more than half their time walking around the

warehouse to find items and put them in their tote. As a

result, several companies developed an automated process

for bringing the shelves to the workers to reduce the time

spent walking. Amazon acquired the leading company in

this market, Kiva, in 2012 for $775 million and eventually

stopped servicing other Kiva customers. Other providers

subsequently emerged to fill the demand for the growing

market of in-house fulfillment centers and third-party

logistics firms.

Despite significant automation, fulfillment centers still

employ many humans. Basically, while robots can take an

object and move it to a human, someone still needs to do

the “picking”—that is, figure out what goes where and then

lift the object and move it. The last bit is most challenging

because of just how difficult grasping actually is. As long as

humans play this role, warehouses cannot take full

advantage of automation’s potential because they need to

remain human friendly, at room temperature, with space for

walking, a break room, restrooms, surveillance to protect

against theft, and so on. That’s costly.

The continued role for humans in order fulfillment is due to

our relative performance in grasping—reaching out, picking

something up, and placing it somewhere else. This task has

so far eluded automation.

As a result, Amazon alone employs forty thousand human

pickers full-time and tens of thousands more part-time

during the busy holiday season. Human pickers handle



approximately 120 picks per hour. Many companies that

handle high-volume fulfillment would like to automate

picking. For the past three years, Amazon incentivized the

best robotics teams in the world to work on the long-studied

problem of grasping by hosting the Amazon Picking

Challenge, focused on automated picking in unstructured

warehouse environments. Even though top teams from

institutions such as MIT worked on the problem, many using

advanced industrial-grade robotic equipment from Baxter,

Yaskawa Motoman, Universal Robots, ABB, PR2, and Barrett

Arm, as of this writing they have not yet solved the problem

satisfactorily for industrial use.

Robots are perfectly capable of assembling a car or flying

a plane. So, why can’t they pick up an object in an Amazon

warehouse and put it in a box? The task seems so simple in

comparison. Robots can assemble an automobile because

the components are highly standardized and the process

highly routinized. However, an Amazon warehouse has an

almost infinite variety of shapes, sizes, weights, and

firmness of items that are placed on shelves with many

possible positions and orientations for non-rectangular

objects. In other words, the grasping problem in a

warehouse is characterized by an infinite number of “ifs,”

whereas grasping in a car assembly plant is designed to

have very few “ifs.” So, in order to grasp in a warehouse

setting, robots must be able to “see” the object (analyze the

image) and predict the right angle and pressure in order to

hold the object and not drop or crush it. In other words,

prediction is at the root of grasping the wide variety of

objects in a fulfillment center.

Research into the grasping problem uses reinforcement

learning to train robots to mimic humans. The Vancouver-

based startup Kindred—founded by Suzanne Gildert,

Geordie Rose, and a team that includes one of us (Ajay)—is

using a robot called Kindred Sort, an arm with a mix of



automated software and a human controller.2 Automation

identifies an object and where it needs to go, while the

human—wearing a virtual reality headset—guides the robot

arm to pick it up and move it.

In its first iteration, the human can sit somewhere away

from a warehouse and fill in the missing link in the

fulfillment work flow, deciding the approach angle and grip

pressure, through teleoperation of the robotic arm. Long

term, however, Kindred is using a prediction machine

trained on many observations of a human grasping via

teleoperation to teach the robot to do that part itself.

Should We Stop Training Radiologists?

In October 2016, standing on stage in front of an audience

of six hundred at our annual CDL conference on the

business of machine intelligence, Geoffrey Hinton—a

pioneer in deep learning neural networks—declared, “We

should stop training radiologists now.” A key part of a

radiologist’s job is to read images and detect the presence

of irregularities that suggest medical problems. In Hinton’s

view, AI would soon be better able to identify medically

important objects in an image than any human. Radiologists

have feared that machines might replace them since the

early 1960s.3 What makes today’s technology different?

Machine-learning techniques are increasingly good at

predicting missing information, including identification and

recognition of items in images. Given a new set of images,

the techniques can efficiently compare millions of past

examples with and without disease and predict whether the

new image suggests the presence of a disease. This kind of

pattern recognition to predict disease is what radiologists

do.4



IBM, with its Watson system, and many startups have

already commercialized AI tools in radiology. Watson can

identify a pulmonary embolism and a wide range of other

heart issues. One startup, Enlitic, uses deep learning to

detect lung nodules (a fairly routine exercise) but also

fractures (more complex). These new tools are at the heart

of Hinton’s forecast but are a subject for discussion among

radiologists and pathologists.5

What does our approach suggest about the future of

radiologists? Radiologists will spend less time reading

images. Based on interviews with primary care doctors and

radiologists, as well as our knowledge of well-established

economic principles, we describe several key roles that

remain for the human specialist in the context of medical

imaging.6

First, and perhaps most obviously, in the short and

medium terms, a human still needs to determine the images

for a given patient. Imaging is costly, both in terms of time

and in the potential health consequences of radiation

exposure (for some imaging technologies). As the cost of

imaging falls, the amount of imaging will increase, so it is

possible that in the short and possibly medium terms, this

increase will offset the decline in the human time spent with

each image.

Second, there are diagnostic radiologists and

interventional radiologists. The advances in object

identification that will change the nature of radiology are in

diagnostic radiology. Interventional radiology uses real-time

images to aid medical procedures. For now, this involves

human judgment and dexterous human action that is

unaffected by advances in AI, except perhaps in making the

interventional radiologist’s job somewhat easier by

providing better-identified images.

Third, many radiologists see themselves as the “doctor’s

doctor.”7 A key part of their job is to communicate the



meaning of images to primary care doctors. The challenging

part is that interpretation of radiology images (“studies,” in

their language) is often probabilistic: “There is a 70 percent

chance that it is disease X, a 20 percent chance of no

disease, and a 10 percent chance of disease Y. However, if

two weeks from now, this symptom appears, then there is a

99 percent chance of disease X and a 1 percent chance of

no disease.” Many primary care doctors are not well

schooled in statistics and struggle to interpret probabilities

and conditional probabilities. Radiologists help them

interpret the numbers so that the primary care doctors can

work with patients to decide the best course of action. Over

time, AI will provide the probabilities, but at least in the

short and possibly medium terms, the radiologist will still

have a role translating the AI output for the primary care

doctor.

Fourth, radiologists will help train the machines to

interpret images from new imaging devices as technology

improves. A few superstar radiologists, who will interpret

images and help the machines learn to diagnose, will have

this role. Through AI, these radiologists will leverage their

superior skills at diagnosis to train the machines. Their

services will be highly valuable. Instead of being paid for the

patients they see, they may be compensated for every new

technique they teach an AI or for every patient tested on

the AI they trained.8

As we noted, two key aspects of a diagnostic radiologist’s

job are examining an image and returning an assessment to

a primary care doctor. While often that assessment is a

diagnosis (i.e., “the patient almost surely has pneumonia”),

in many cases, the assessment is in the negative (i.e.,

“pneumonia not excluded”), stated as a prediction to inform

the primary care doctor of the patient’s likely state so the

primary doctor can devise a treatment.



Prediction machines will reduce uncertainty, but they

won’t always eliminate it. For example, the machine may

offer the following prediction:

Based on Mr. Patel’s demographics and imaging, the

mass in the liver has a 66.6 percent chance of being

benign, a 33.3 percent chance of being malignant, and a

0.1 percent of not being real.

Had the prediction machine given a straightforward—benign

or not—prediction with no room for error, it would be

obvious what to do. At this point, the doctor must consider

whether to order an invasive procedure, like a biopsy, to

find out more. Ordering the biopsy is the less risky decision;

yes, it is costly, but it can yield a more certain diagnosis.

Seen in this light, the role of the prediction machine is to

increase a doctor’s confidence in not conducting a biopsy.

Such noninvasive procedures are less costly (especially for

the patient). They inform doctors about whether the patient

can avoid an invasive exam (like a biopsy) and make them

more confident in abstaining from treatment and further

analysis. If the machine improves prediction, it will lead to

fewer invasive examinations.

So, the fifth and final role for human specialists in medical

imaging is the judgment in deciding to conduct an invasive

examination, even when the machine is suggesting a high

enough likelihood that there is no issue. The doctor may

have information about the patient’s overall health, possible

mental stress due to the potential for a false negative, or

some other qualitative data. Such information may not be

easily codified and available to a machine and may require

a conversation between a radiologist with expertise in

interpreting the probabilities and a primary care physician

who understands the patient’s needs. This information may

lead a human to override an AI’s recommendation not to

operate.



Therefore, five clear roles for humans in the use of medical

images will remain, at least in the short and medium term:

choosing the image, using real-time images in medical

procedures, interpreting machine output, training machines

on new technologies, and employing judgment that may

lead to overriding the prediction machine’s

recommendation, perhaps based on information unavailable

to the machine. Whether radiologists have a future depends

on whether they are best positioned to undertake these

roles, if other specialists will replace them, or if new job

classes will develop, such as a combined

radiologist/pathologist (i.e., a role where the radiologist also

analyzes biopsies, perhaps performed immediately after

imaging).9

More Than a Driver

Some jobs may continue to exist but require new skills.

Automating a particular task can emphasize other tasks that

are important to a job but were previously

underappreciated. Consider a school bus driver. There’s the

“driving” part of the task involved in operating a bus from

houses to schools and back. With the advent of self-driving

cars and automated driving, the job of the school bus driver

will itself disappear. When Oxford University professors Carl

Frey and Michael Osborne looked at the types of skills

required to do a job, they concluded that school bus drivers

(as distinguished from mass transportation bus drivers) had

an 89 percent chance of being automated over the next

decade or two.10

When someone called a “school bus driver” no longer

drives buses to and from schools, should local governments

start spending these saved salaries? Even if a bus is self-

driving, current school bus drivers do much more than



simply driving. First, they are the responsible adult

supervising a large group of schoolchildren to protect them

from hazards outside the bus. Second, and equally

important, they are in charge of discipline inside the bus. A

human’s judgment in managing children and protecting

them from each other is still needed. That the bus can drive

itself does not eliminate those additional tasks, but it means

that the adult on the bus can pay more attention to those

tasks.

So perhaps the skill set of the “employee formally known

as a school bus driver” will change. Drivers may act more

like teachers than they do today. But the point is that

automation that eliminates a human from a task does not

necessarily eliminate them from a job. From the perspective

of employers, someone will still be doing that job. From the

perspective of employees, the risk is that it may be

someone else.

The automation of tasks forces us to think more carefully

about what really constitutes a job, what people are really

doing. Like school bus drivers, long-range truck drivers do

more than drive. Truck driving is one of the largest job

classification categories in the United States and often a

candidate for potential automation. Movies such as Logan

depict a near future with trucks that are simply containers

on wheels.

But will we really see trucks moving across the continent

with no human in sight? Think about the challenges that

poses precisely because most of the time those trucks will

be far from any human supervision. For instance, they and

their loads will be vulnerable to hijacking and theft. Such

trucks may be unable to operate if a human stands in their

way and so will represent an easy target.

The solution is obvious: a person rides along with the

truck. That task will be much easier than driving and will

also allow trucks to drive longer without stops or breaks.



One human could probably travel with a much larger vehicle

or perhaps a linked convoy of vehicles.11 But at least one

truck in that convoy will still have a cab for a human who

will protect the vehicle, deal with the logistics and

relationships involved in loading and unloading the trucks at

each end, and navigate any surprises along the way. So we

can’t write off those jobs yet. As current truck drivers are

the most qualified and experienced at those other tasks,

they will likely be the first to be employed in a redefined

role.

KEY POINTS

A job is a collection of tasks. When breaking down a

work flow and employing AI tools, some tasks

previously performed by humans may be automated,

the ordering and emphasis of remaining tasks may

change, and new tasks may be created. Thus, the

collection of tasks that make up a job can change.

The implementation of AI tools generates four

implications for jobs:

1. AI tools may augment jobs, as in the example of

spreadsheets and bookkeepers.

2. AI tools may contract jobs, as in fulfillment centers.

3. AI tools may lead to the reconstitution of jobs, with

some tasks added and others taken away, as with

radiologists.

4. AI tools may shift the emphasis on the specific skills

required for a particular job, as with school bus

drivers.



AI tools may shift the relative returns to certain skills

and, thus, change the types of people who are best

suited to particular jobs. In the case of bookkeepers, the

arrival of the spreadsheet diminished the returns to

being able to perform many calculations quickly on a

calculator. At the same time, it increased the returns to

being good at asking the right questions in order to fully

take advantage of the technology’s ability to efficiently

run scenario analyses.
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AI in the C-Suite

In January 2007, when Steve Jobs paced the stage and

introduced the iPhone to the world, not a single observer

reacted by saying, “Well, it’s curtains for the taxi industry.”

Yet fast forward to 2018 and that appears to be precisely

the case. Over the last decade, smartphones evolved from

being simply a smarter phone to an indispensable platform

for tools that are disrupting or fundamentally altering all

manner of industries. Even Andy Grove, who famously

quipped that “only the paranoid survive,” would have to

admit that you would’ve been pretty darn paranoid to have

foreseen how far and wide the smartphone would reach into

some very traditional industries.

The recent developments in AI and machine learning have

convinced us that this innovation is on par with the great,

transformative technologies of the past: electricity, cars,

plastics, the microchip, the internet, and the smartphone.

From economic history, we know how these general-purpose

technologies diffuse and transform. We also realize how

hard it is to forecast when, where, and how the most

disruptive changes will take place. At the same time, we

have learned what to look for, how to be ahead of the curve,

and when a new technology is likely to transition from

something interesting to something transformative.



When should AI be a critical agenda item for your

organization’s leadership team? While ROI calculations can

influence operational changes, strategic decisions pose

dilemmas and force leaders to grapple with uncertainty.

Adopting AI in one part of the organization might require

changes in another part. For intra-organizational effects,

adoption and other decisions require the authority of

someone who oversees the entire business, namely, the

CEO.

So when is AI likely to fall into this category? When does a

fall in the cost of prediction matter enough that it will

change strategy? And what dilemma is a CEO likely to face if

this should happen?

How AI Can Change Business Strategy

In chapter 2, we conjectured that once the dial on the

prediction machine had been turned up enough, companies

such as Amazon would be so confident about what

particular customers want that their business model could

change. They would move from a shopping-then-shipping

model to shipping-then-shopping, sending items to

customers in anticipation of their wants. This scenario

neatly illustrates three ingredients that together could cause

investment in that AI tool to rise to the level of being a

strategic rather than operational decision.

First, a strategic dilemma or trade-off must exist. For

Amazon, the quandary is that shipping-then-shopping may

generate more sales but simultaneously produce more

goods consumers want to return. When the cost of returning

items is too high, then the ROI for shipping-then-shopping is

lower than the ROI for the traditional approach of shopping-

then-shipping. This explains why, in the absence of some

technological change, Amazon’s business model remains



shopping-then-shipping rather than the other way around,

just like almost every other retailer.

Second, the problem can be resolved by reducing

uncertainty. For Amazon, it is about consumer demand. If

you can accurately forecast what people will purchase,

especially if delivered to their doorsteps, then you reduce

the likelihood of returns and increase sales. Uncertainty

reduction hits both the benefit and the cost sides of the

dilemma.

This type of demand management is not new. It’s one

reason that physical stores exist. Physical stores cannot

forecast individual customer demand, but they can forecast

the likely demand from a group of customers. By pooling

together the customers who visit a location, physical stores

hedge demand uncertainty among individual customers.

Moving to a shipping-then-shopping model based on

individual homes requires more information about individual

customer demand, which can overcome the competitive

advantage physical stores have.

Third, companies require a prediction machine that can

reduce uncertainty enough to change the balance in the

strategic dilemma. For Amazon, a very accurate model of

customer demand may make the shipping-then-shopping

business model worthwhile. Here, the benefits of increased

sales outweigh the costs of returns.

Now, if Amazon were to implement this model, it would

make further changes in its business. These would include,

for example, investments to reduce the cost of securing

packages left for pickup and transportation services to

handle returns. Although the customer-friendly delivery

market is competitive, product return services are a much

less-well-developed market. Amazon itself might establish

an infrastructure of trucks that visit neighborhoods daily for

deliveries and returns, thus vertically integrating into the

daily product return business. Effectively, Amazon could



move the boundary of its business right up to your front

porch.

This boundary shifting is already occurring. One example is

the German e-commerce venture, Otto.1 A major barrier to

consumer purchases over the internet rather than in a store

is uncertain delivery times. If consumers have a poor

delivery experience, they are unlikely to return to a site.

Otto found that when deliveries were delayed (that is, took

longer than a few days), returns shot upward. Consumers

would inevitably find the product at a store in the meantime

and purchase it there. Even when Otto had sales, returns

added to its costs.

How do you reduce the time to deliver products to

consumers? Anticipate what they are likely to order and

have it in stock at a distribution center nearby. But such

inventory management is itself costly. Instead, what you

want is to hold only the inventory you are likely to need. You

want a better prediction of consumer demand. Otto, with a

database of 3 billion past transactions and hundreds of

other variables (including search terms and demographics),

was able to create a prediction machine to handle the

forecast. It can now predict with 90 percent accuracy what

products it will sell within a month. Relying on those

forecasts, it revamped its logistics. Its inventory declined by

20 percent, and annual returns dropped by 2 million items.

Prediction improved logistics, which in turn reduced costs

and increased consumer satisfaction.

Once again, we can see the three ingredients of strategic

importance. Otto had a dilemma (how to improve delivery

times without expensive inventory holdings), uncertainty

drove the dilemma (in this case, overall customer demand

in a location), and by resolving that uncertainty (e.g.,

forecasting local demand better), it could set up a new way

of organizing logistics, requiring new warehouse locations,

local shipping, and customer delivery guarantees. It could



not have accomplished all this without using a prediction

machine to resolve that key uncertainty.

Sweet Home Alabama?

For a prediction machine to change your strategy, someone

has to create one that is useful to you in particular. Doing so

depends on several things outside your organization’s

control.

Let’s look at the factors that might make prediction

technology available to your business. To do this, we are

going to travel to the cornfields of Iowa in the 1930s. There,

some pioneering farmers introduced a new form of corn that

they created through extensive cross-breeding for the better

part of two decades. This hybrid corn was more specialized

than ordinary commercial corn. It required crossing two

inbred lines of corn to improve properties such as drought

resistance and local environment-specific yields. The hybrid

corn was a critical change because not only did it promise

dramatically higher yields, but the farmer became

dependent on others for the special seeds. The new seeds

needed to be tailored to local conditions to yield their full

benefits.

As shown in figure 15-1, Alabama farmers appeared to be

laggards compared to those in Iowa. But when Harvard

economist Zvi Griliches looked closely at the numbers, he

found that the twenty-year lag between Iowa and Alabama

adoption was not because Alabama famers were slow, but

rather because the ROI for hybrid corn for Alabama farms

did not justify its adoption in the 1930s.2 Alabama farms

were smaller, with thin profit margins compared to those

north and west. By contrast, Iowa farmers could apply a

successful seed across their larger farms and reap larger

benefits to justify the higher seed costs. A big farm meant



experimentation with new hybrid varieties was easier

because the farmer had to set aside only a small portion of

the property until the new varieties proved effective.3 The

Iowa farmers’ risks were lower, and they had healthier

margins to act as a buffer. Once enough farmers in an area

adopted the new seeds, seed markets became thicker with

more buyers and sellers and the cost of selling the seeds

fell, so the risks of adoption were reduced further still.

Eventually, corn farmers across the United States (and

worldwide) adopted hybrid seeds as the costs fell and the

perceived risks diminished.

FIGURE 15-1

The diffusion of hybrid corn



Source: From Zvi Grilliches, “Hybrid Corn and the Economics of

Innovation,” Science 132, no. 3422 (July 1960): 275–280. Reprinted with

permission from AAAs.

In the AI world, Google is Iowa. It has more than a

thousand AI tool development projects underway across

every category of its business, from search to ads to maps

to translation.4 Other tech giants worldwide have joined

Google. The reason is fairly obvious: Google, Facebook,

Baidu, Alibaba, Salesforce, and others are already in the

tools business. They have clearly defined tasks that extend

throughout their enterprises, and in each, AI can sometimes

dramatically improve a predictive element.

Those enormous corporations have big profit margins, so

they can afford to experiment. They can take a part of the

“land” and devote it to many new AI varieties. They can

reap huge rewards from successful experiments by applying

them across a wide range of products operating at large

scale.

For many other businesses, the path to AI is less clear.

Unlike Google, many have not made two decades’ worth of

investments in digitizing all aspects of their work flow and

also do not have a clear notion of what they want to predict.

But once a company sets well-defined strategies, it can

develop those ingredients, laying the groundwork for

effective AI.

When the conditions were right, all corn farmers in

Wisconsin, Kentucky, Texas, and Alabama eventually

followed their Iowa peers in adopting hybrid corn. The

demand-side benefits were high enough, and the supply-

side costs had fallen. Similarly, the costs and risks

associated with AI will fall over time, so that many

businesses not at the forefront of developing digital tools

will adopt it. In doing so, the demand side will drive them:



the opportunity to resolve fundamental dilemmas in their

business models by reducing uncertainty.

Complementing Baseball Players

Billy Beane’s Moneyball strategy—using statistical

prediction to overcome the biases of human baseball scouts

and improve prognostication—was an example of using

prediction to reduce uncertainty and improve the

performance of the Oakland Athletics. It was also a strategic

change that required altering the organization’s implicit and

explicit hierarchy.

Better prediction changed who the team hired on the field,

but the operation of the baseball team itself did not change.

The players that the prediction machine selected played

much the same way as the players it replaced, with perhaps

a few more walks thrown in. And the scouts continued to

have a role in player selection.5

The more fundamental change occurred in who the team

hired off the field and the resulting restructuring of the

organizational chart. Most important, the team hired people

who could tell the machines what to predict and then use

those predictions to determine which players to acquire

(most notably, Paul DePodesta, as well as others whose

contributions were combined in the “Peter Brand” character

played by Jonah Hill in the movie). The team also created a

new job function, called a “sabermetric analyst.” A

sabermetric analyst develops measures for the rewards that

the team would receive from signing different players.

Sabermetric analysts are baseball’s reward function

engineers. Now, most teams have at least one such analyst,

and the role has appeared, under different names, in other

sports.



Better prediction created a new high-level position on the

org chart. The research scientists, data scientists, and vice

presidents of analytics are listed as key roles in the online

front office directories. The Houston Astros even have a

separate decision sciences unit headed by former NASA

engineer Sig Mejdal. The strategic change also means a

switch in who the team employs to pick the players. These

analytics experts have mathematical skills, but the finest of

them understand best what to tell the prediction machine to

do. They provide judgment.

Returning to the simple economics that underlies all the

arguments in this book, prediction and judgment are

complements; as the use of prediction increases, the value

of judgment rises. Teams are increasingly bringing in new

senior advisers who sometimes may not have firsthand

experience playing the game and—true to stereotype—may

not be an obvious fit in the jock world of professional sports.

However, even nerds recruited into this setting require a

deep understanding of the game because using prediction

machines in sports management means an increase in the

value of people who have the judgment to determine

payoffs and, therefore, the judgment to use predictions in

decisions.

Strategic Choice Requires New Judgment

The change in the organization of baseball team

management highlights another key issue for the C-suite in

implementing strategic choices with regard to AI. Before

sabermetrics, baseball scouts’ judgment was limited to the

pros and cons of individual players. But using quantitative

measures made it possible to predict how groups of players

would perform together. Judgment shifted from thinking

about the payoff of a particular player to thinking about the



payoff to a particular team. Better prediction now enables

the manager to make decisions that are closer to the

organization’s objectives: determining the best team rather

than the best individual players.

To make the most of prediction machines, you need to

rethink the reward functions throughout your organization to

better align with your true goals. This task is not easy.

Beyond recruiting, the marketing of the team needs to

change, perhaps to deemphasize individual performance.

Similarly, the coaches have to understand the reasons for

individual players’ recruitment and the implications for team

composition in each game. Finally, even the players need to

understand how their roles might change depending on

whether their opponents have similarly adopted new

prediction tools.

Advantages You May Already Have

Strategy is also about capturing value—that is, who will

capture the value that better prediction creates?

Business executives often claim to us that because

prediction machines need data, data itself is a strategic

asset. That is, if you have many years of data on, say,

yogurt sales, then in order to predict yogurt sales using a

prediction machine, someone will need that data. Hence, it

is valuable to its owner. It is like having a repository of oil.

That presumption belies an important issue—like oil, data

has different grades. We have highlighted three types of

data—training, input, and feedback data. Training data is

used to build a prediction machine. Input data is used to

power it to produce predictions. Feedback data is used to

improve it. Only the two latter types are needed for future

use. Training data is used at the beginning to train an

algorithm, but once the prediction machine is running, it is



not useful anymore. It is as if you have burned it. Your past

data on yogurt sales has little value once you have a

prediction machine built on it.6 In other words, it may be

valuable today, but it is unlikely to be a source of sustained

value. To do that you either need to generate new data—for

input or feedback—or you need another advantage. We will

explore the advantages of generating new data in the next

chapter and focus on other advantages right now.

Dan Bricklin, the spreadsheet inventor, created enormous

value, but he is not a rich person. Where did the

spreadsheet value go? On the wealth rankings, imitators

such as Lotus 1-2-3 founder Mitch Kapor or Microsoft’s Bill

Gates certainly far outstripped Bricklin, but even they were

appropriating a small fraction of the spreadsheet’s value.

Instead, the value went to users, to the businesses that

deployed spreadsheets to make billions of better decisions.

No matter what Lotus or Microsoft did, their users owned the

decisions that the spreadsheets were improving.

Because they operate at the decision level, the same is

true for prediction machines. Imagine applications of AI that

would greatly assist in inventory management for a

supermarket chain. Knowing when yogurt is going to sell

helps you know when you should stock it and minimizes the

amount of unsold yogurt to discard. An AI innovator who

offers prediction machines for yogurt demand could do well,

but would have to deal with a supermarket chain in order to

create any value. Only the supermarket chain can take the

action that stocks yogurt or not. And without that action, the

prediction machine for yogurt demand has no value.

Many businesses will continue to own their actions with or

without AI. They will have an advantage in capturing some

of the value that arises from adopting AI. This advantage

does not mean that the companies that own the actions will

capture all the value.



Before selling their spreadsheet, Bricklin and his partner,

Bob Frankston, wondered whether they should keep it. They

could then sell their modeling skills and, as a result, capture

the value created by their insights. They abandoned this

plan—likely for good reason—but in AI, this strategy might

work. AI providers may try to disrupt traditional players.

Autonomous vehicles are an example, to some degree.

While some traditional carmakers are aggressively investing

in their own capabilities, others are hoping to partner with

those outside the industry (such as Alphabet’s Waymo)

rather than develop those capabilities in-house. In other

cases, large technology companies are initiating projects

with traditional carmakers. For example, Baidu, operator of

China’s largest search engine, is leading a large and

diversified open autonomous driving initiative, Project

Apollo, with several dozen partners, including Daimler and

Ford. In addition, Tencent Holdings, owner of WeChat, which

has almost a billion monthly active-user accounts, is leading

an autonomous driving alliance that includes prominent

incumbents, such as Beijing Automotive Group. Chen

Juhong, a vice president of Tencent, remarked, “Tencent

hopes to make an all-out effort to reinforce the development

of AI technologies used in autonomous driving … We want to

be a ‘connector’ to help accelerate cooperation, innovation

and industry convergence….”7 Reflecting on the competitive

pressures driving collaboration, Beijing Automotive

chairman Xu Heyi said, “In this new era, only those who

connect with other companies to build the next generation

of cars will survive, while those who shut themselves up in a

room making vehicles will die.”8 Relatively new entrants

(such as Tesla) are competing with incumbents by directly

deploying AI in new cars that tightly integrate software and

hardware. Companies like Uber are using AI to develop

autonomy with the hope of taking even the driving decisions

out of consumers’ hands. In that industry, the race for value



capture does not respect traditional business boundaries.

Instead, it challenges the ownership of actions that might

otherwise have been an advantage.

The Simple Economics of AI Strategy

The changes we’ve highlighted depend on two different

aspects of AI impact at the core of our economic framework.

First, as in Amazon’s shipping-then-shopping model,

prediction machines reduce uncertainty. As AI advances,

we’ll use prediction machines to reduce uncertainty more

broadly. Hence, strategic dilemmas driven by uncertainty

will evolve with AI. As the cost of AI falls, prediction

machines will resolve a wider variety of strategic dilemmas.

Second, AI will increase the value of the complements to

prediction. A baseball analyst’s judgment, a grocery

retailer’s actions, and—as we will show in chapter 17—a

prediction machine’s data become so important that you

may need to change your strategy to take advantage of

what it has to offer.

KEY POINTS

C-suite leadership must not fully delegate AI strategy to

their IT department because powerful AI tools may go

beyond enhancing the productivity of tasks performed

in the service of executing against the organization’s

strategy and instead lead to changing the strategy

itself. AI can lead to strategic change if three factors are

present: (1) there is a core trade-off in the business

model (e.g., shop-then-ship versus ship-then-shop); (2)

the trade-off is influenced by uncertainty (e.g., higher



sales from ship-then-shop are outweighed by higher

costs from returned items due to uncertainty about

what customers will buy); and (3) an AI tool that

reduces uncertainty tips the scales of the trade-off so

that the optimal strategy changes from one side of the

trade to the other (e.g., an AI that reduces uncertainty

by predicting what a customer will buy tips the scale

such that the returns from a ship-then-shop model

outweigh those from the traditional model).

Another reason C-suite leadership is required for AI

strategy is that the implementation of AI tools in one

part of the business may also affect other parts. In the

Amazon thought experiment, a side effect of

transitioning to a ship-then-shop model was vertical

integration into the returned items collection business,

perhaps with a fleet of trucks that did weekly pickups

throughout the neighborhood. In other words, powerful

AI tools may result in significant redesign of work flows

and the boundary of the firm.

Prediction machines will increase the value of

complements, including judgment, actions, and data.

The increasing value of judgment may lead to changes

in organizational hierarchy—there may be higher

returns to putting different roles or different people in

positions of power. In addition, prediction machines

enable managers to move beyond optimizing individual

components to optimizing higher-level goals and thus

make decisions closer to the objectives of the

organization. Owning the actions affected by prediction

can be a source of competitive advantage that allows

traditional businesses to capture some of the value

from AI. However, in some cases, where powerful AI

tools provide a significant competitive advantage, new



entrants may vertically integrate into owning the action

and leverage their AI as a basis for competition.
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When AI Transforms Your

Business

Joshua (one of the authors) recently asked an early-stage

machine learning company, “Why are you providing doctors

with diagnoses?” The venture was building an AI tool that

could tell a doctor whether a particular medical condition

was present or not. A simple binary output. A diagnosis. The

problem was, to be able to do that, the company had to

obtain regulatory approval, which requires costly trials. To

manage those trials, it was considering whether to partner

with an established pharmaceutical or medical device

company.

Joshua’s question was strategic rather than medical. Why

did the venture have to provide a diagnosis? Instead,

couldn’t it just provide the prediction? That is, the tool could

analyze data and then tell the doctor that “there is an 80

percent chance the patient has the condition.” The

physician could then explore precisely what was driving that

conclusion and make the ultimate diagnosis—that is, the

binary “present or not” outcome. The company could let the

customer (in this case, the physician) do more.

Joshua suggested that the company focus on prediction

rather than diagnosis. The boundary of its business would

end with prediction. This obviated the need for regulatory



approval, because physicians have many tools for arriving

at a diagnostic conclusion. The company did not need to

partner early on with established companies. Most critically,

it no longer had to research and work out precisely how to

translate the prediction into a diagnosis. All it had to deduce

was the threshold accuracy required to deliver a valuable

prediction. Was it 70, 80, or 99 percent?

Where does your business end and someone else’s begin?

Where exactly are the boundaries of your company? This

long-term decision requires careful attention at the

organization’s very top level. Moreover, new general-

purpose innovations often lead to new answers for the

boundary question. Certain AI tools are likely to transform

the boundaries of your business. Prediction machines will

change how businesses think about everything, from their

capital equipment to their data and people.

What to Leave In and What to Leave Out

Uncertainty has an impact on a business’s boundaries.s1

Economists Silke Forbes and Mara Lederman looked at the

organization of the US airline industry around the turn of the

millennium.2 Major airlines like United and American

handled some routes, while regional partners like American

Eagle and SkyWest dealt with others. The partners were

independent businesses that had contractual arrangements

with the majors. Absent other considerations, the regional

airlines typically operated at a lower cost than the majors,

saving money on salaries and less beneficial work rules. For

instance, some studies showed that senior pilots at the

majors received 80 percent higher pay than those at their

regional partners.

The puzzle is why majors rather than regional partners

handle so many routes, given that partners can deliver the



service at lower cost. Forbes and Lederman identified a

driving factor—the weather—or, more specifically,

uncertainty about the weather. When a weather event is out

of the ordinary, it delays flights, which, in the tightly

networked and capacity-managed airline industry, can have

ripple effects throughout the entire system. When the

weather goes sour, major airlines do not want to be

hamstrung by partners checking their contracts when they

have to make fast changes with uncertain costs. So, for

routes where weather-related delays are likely, the majors

retain control and operation.

The three ingredients we highlighted in the previous

chapter suggest that AI might lead to strategic change.

First, lower cost versus more control is a core trade-off.

Second, that trade-off is mediated by uncertainty;

specifically, the returns to control increase with the level of

uncertainty. Major airlines balance lower cost and more

control by optimizing the boundaries of where their own

activities end and those of their partners begin. If a

prediction machine could cut through this uncertainty, then

the third ingredient would be present and the balance would

shift. Airlines would contract more to their partners.

Businesses engaging in ongoing innovation, especially

innovation that involves learning from experience, create a

similar pattern. New automobile models are released

approximately every five years, and because they involve

detailed part specifications and design work, automakers

need to know where the parts are coming from before

release. Are they making parts themselves or outsourcing

them? Throughout the long process of development, an

automaker can only know so much about how a new model

will perform. Some information can only be gathered after

launch, like customer feedback and other long-term

performance measurements. This is a key reason why

models have annual updates that do not involve major



changes in car design but offer improvements to

components that work out kinks and improve the product.

Economists Sharon Novak and Scott Stern found that

makers of luxury automobiles that manufactured their own

parts improved faster from each model year to the next.3

They measured improvements at the customer end, using

ratings from Consumer Reports. Having control meant

automakers could adapt more readily to customer feedback.

By contrast, those that outsourced parts did not show the

same improvement. However, the latter received a different

benefit; their initial models were of higher quality than the

first models of automakers that made their own parts. The

brand-new models of automakers that outsourced parts

were better right out of the gate because the parts suppliers

made better parts. Thus, automakers face the choice of

outsourcing or making the parts themselves to reap

improvements over time as they control innovation within

the life cycle of their product model. Again, a prediction

machine that reduces the uncertainty about customer needs

could change the strategy.

In each case, the trade-off between short- and long-term

performance and routine versus non-routine events is

resolved by a key organizational choice: how much to rely

on external suppliers. But the salience of that choice is

closely related to uncertainty. How important are weather

events that airlines could not plan for up front? How will the

vehicle match what customers really want?

Impact of AI: Capital

Let’s assume an AI is available that could reduce this

uncertainty, so the third ingredient is in place. Prediction is

so cheap that it minimizes uncertainty enough to change

the nature of the strategic dilemma. How will this affect



what the airlines and automakers do? AI might enable

machines to operate in more complex environments. It

expands the number of reliable “ifs,” thus lessening a

business’s need to own its own capital equipment, for two

reasons.

First, more “ifs” means that a business can write contracts

to specify what to do if something unusual happens.

Suppose that AI allows airlines not only to forecast weather

events but to generate predictions for how best to deal with

weather-related interruptions. This would increase the

returns to major airlines for being more specific in their

contracts to deal with contingencies. They can specify a

greater number of “ifs” in the contracts. Thus, rather than

controlling airline routes through ownership, the major

airlines would have the predictive power to more confidently

write contracts with independent regional carriers, allowing

them to take advantage of those carriers’ lower costs. They

would require less capital equipment (such as airplanes),

because they could outsource more flights to the smaller

regional carriers.

Second, AI-driven prediction—all the way to predicting

consumer satisfaction—would enable automakers to more

confidently design products up front, thus leading to high

consumer satisfaction and performance without the

consequent need for extensive mid-model adjustments.

Consequently, automakers would be able to select the

world’s best parts for their models from independent

suppliers, confident that superior prediction up front was

eliminating the need for costly contract renegotiations. The

automakers would have less need to own factories that

provide parts. More generally, prediction gives us many

more “ifs” that we can use to clearly specify the “thens.”

This assessment holds the complexity of airline networks

and automobile products as fixed. It could well be that up-

front prediction gives airlines and automakers the



confidence to allow for more complex arrangements and

products. It is not clear what the impact on outsourcing

would be since better prediction drives more outsourcing,

while more complexity tends to reduce it. Which of these

factors might dominate is hard to say at this stage. We can

say that, while newly feasible complex processes might be

done in house, many of the simpler processes previously

completed in house will be outsourced.

Impact of AI: Labor

Banks rolled out the automatic teller machine (ATM),

developed during the 1970s, extensively throughout the

1980s. The potentially labor-saving technology was—as the

name implies—designed to automate tellers.

According to the Bureau of Labor Statistics, tellers were

not being automated out of a job (see figure 16-1).

However, they were automated out of the bank-telling task.

Tellers ended up becoming the marketing and customer

service agents for bank products beyond the collection and

dispensing of cash. The machines handled that, more

securely than humans. One reason banks did not want to

open more branches was precisely because of the security

issue and the human cost of spending time on something as

transactional as bank telling. Freed from those constraints,

bank branches proliferated (43 percent more in urban

areas), in more shapes and sizes, and with them, a staff that

was anachronistically called “tellers.”

FIGURE 16-1

Bank tellers and ATMs over time



Source: Courtesy James E. Bessen, “How Computer Automation Affects

Occupations: Technology, Jobs, and Skills,” Boston University School of

Law, Law and Economics Research Paper No. 15-49 (October 3, 2016);

http://dx.doi.org/10.2139/ssrn.2690435.

The introduction of ATMs produced a significant

organizational transformation; the new teller required a

great deal more subjective judgment. The original teller

tasks were, by definition, routine and easily mechanized.

But the new tasks of talking to customers about their

banking needs, advising them on loans, and working out

credit card options were more complicated. In the process,

evaluating whether the new tellers were doing a good job

became harder.4

When performance measures change from objective (are

you keeping the bank queues short?) to subjective (are you

selling the right products?), human resource (HR)

management becomes more complex. Economists will tell

http://www.dx.doi.org/10.2139/ssrn.2690435


you that job responsibilities have to become less explicit

and more relational. You will evaluate and reward

employees based on subjective processes, such as

performance reviews that take into account the complexity

of the tasks and the employees’ strengths and weaknesses.

Such processes are tough to implement because reliance on

them to create incentives for good performance requires a

great deal of trust. After all, a company can more easily

decide to deny you that bonus, salary bump, or promotion

based on a subjective review than when the performance

measures are objective. However, when performance

measures are objective in complex environments, critical

mistakes can happen, as Wells Fargo’s experience with

account managers’ fraud showed us so dramatically.5

The direct implication of this line of economic logic is that

AI will shift HR management toward the relational and away

from the transactional. The reason is twofold. First, human

judgment, where it is valuable, is utilized because it is

difficult to program such judgment into a machine. The

rewards are either unstable or unknown, or require human

experience to implement. Second, to the extent that human

judgment becomes more important when machine

predictions proliferate, such judgment necessarily involves

subjective means of performance evaluation. If objective

means are available, chances are that a machine could

make such judgment without the need for any HR

management. Thus, humans are critical to decision making

where the goals are subjective. For that reason, the

management of such people will likely be more relational.

Thus, AI will have an impact on labor that is different from

its impact on capital. The importance of judgment means

that employee contracts need to be more subjective.

The forces affecting capital equipment also affect labor. If

the key outputs of human labor are data, predictions, or

actions, then using AI means more outsourced contract



labor, just as it means more outsourced equipment and

supplies. As with capital, better prediction gives more “ifs”

that we can use to clearly specify the “thens” in an

outsourcing contract.

However, the more important effect on labor will be the

increasing importance of human judgment. Prediction and

judgment are complements, so better prediction increases

the demand for judgment, meaning that your employees’

main role will be to exercise judgment in decision making.

This, by definition, cannot be well specified in a contract.

Here, the prediction machine increases uncertainty in the

strategic dilemma because evaluating the quality of

judgment is difficult, so contracting out is risky.

Counterintuitively, better prediction increases the

uncertainty you have over the quality of human work

performed: you need to keep your reward function

engineers and other judgment-focused workers in house.

Impact of AI: Data

Another critical strategic issue is the ownership and control

of data. Just as the consequences for workers relate to the

complementarity between prediction and judgment, the

relationship between prediction and data also drives these

trade-offs. Data makes prediction better. Here, we consider

the trade-offs associated with organizational boundaries.

Should you utilize others’ data or own your own? (In the

next chapter, we explore issues concerning the strategic

importance of investing in data collection.)

For AI startups, owning the data that allows them to learn

is particularly crucial. Otherwise, they will be unable to

improve their product over time. Machine learning startup

Ada Support helps other companies interact with their

customers. Ada had the opportunity to integrate its product



into the system of a large established chat provider. If this

worked, it would be much easier to get traction and

establish a large user base. This was a tempting way to go.

The problem, however, was that the established

companies would own the feedback data on the

interactions. Without that data, Ada would not be able to

improve its product based on what actually happened in the

field. Ada was emboldened to reconsider this approach and

did not integrate until it could ensure that it owned the

resulting data. Doing so gave it a pipeline of data now and

into the future to draw on for continual learning.

The issue of whether to own or procure data goes well

beyond startups. Consider data designed to help advertisers

target potential customers. John Wanamaker, who, among

others, created the modern structure of advertising in the

media, once stated: “Half the money I spend on advertising

is wasted; the trouble is, I don’t know which half.”

This is the fundamental issue with advertising. Put an

advertisement on a website, everyone who visits that site

views the ad, and you pay for each impression. If only a

fraction of them are potential customers, then your

willingness to pay for each impression will be relatively low.

That is a problem for both you as the advertiser and the

website trying to make money from ads.

One solution is to focus on building websites that attract

people with specific interests—sports, finance, and so on—

which have a higher proportion of potential customers for

certain types of advertisers. Before the rise of the internet,

this was a core feature of advertising, leading to a

proliferation of magazines, cable television channels, and

newspaper sections for automotive, fashion, real estate, and

investing. However, not every media outlet can tailor its

content in this way.

Instead, thanks to web browser innovations, primarily the

“cookie,” advertisers can track users over time and across



websites. They then have the ability to better target their

advertising. The cookie records information about website

visitors but, most critically, information about the type of

sites, including shopping sites, they frequent. Because of

this tracking technology, when you visit a site to look for

new pants, you may find that a disproportionate share of

subsequent ads you see, including on completely unrelated

sites, is for pants.

Any website can place cookies, but the cookies are not

necessarily of much value to that site. Instead, websites

offer cookies for sale to advertising exchanges (or

sometimes directly to advertisers) so that they can better

target their ads. Websites sell data about their visitors to

companies that place advertisements.

Companies buy data because they can’t collect it

themselves. Not surprisingly, they buy data that helps them

identify high-value customers. They also may buy data that

helps them avoid advertising to low-value customers. Both

types of data are valuable in that they enable the company

to focus its ad spending on high-value customers.6

Many AI leaders, including Google, Facebook, and

Microsoft, have built or purchased their own advertising

networks so that they can own this valuable data. They

decided that owning this data is worth the cost of acquiring

it. To others, advertising data is less critical, so they trade

off the control of that data to avoid incurring the high cost of

collecting it themselves; the advertising data thus remains

outside the boundaries of these companies.

Selling Predictions

Google, Facebook, Microsoft, and a handful of other

companies have particularly useful data on consumer

preferences online. Rather than only sell data, they go a



step further to make predictions for advertisers. For

example, Google, through search, YouTube, and its

advertising network, has rich data on user needs. It does not

sell the data. However, it does, in effect, sell the predictions

that the data generates to advertisers as part of a bundled

service. If you advertise through Google’s network, your ad

is shown to the users that the network predicts are most

likely to be influenced by the ad. Advertising through

Facebook or Microsoft yields similar results. Without direct

access to the data, the advertiser buys the prediction.

Unique data is important for creating strategic advantage.

If data is not unique, it is hard to build a business around

prediction machines. Without data, there is no real pathway

to learning, so AI is not core to your strategy. As noted in the

example of advertising networks, predictions still might be

useful. They allow the advertiser to target the highest-value

customer. Thus, better prediction may help an organization,

even if the data and predictions are not likely to be sources

of strategic advantage.7 Both the data and the prediction

are outside the boundaries of the organization, but it can

still use prediction.

The main implication here is that data and prediction

machines are complements. Thus, procuring or developing

an AI will be of limited value unless you have the data to

feed it. If that data resides with others, you need a strategy

to get it.

If the data resides with an exclusive or monopoly provider,

then you may find yourself at risk of having that provider

appropriate the entire value of your AI. If the data resides

with competitors, there may be no strategy that would make

it worthwhile to procure it from them. If the data resides

with consumers, it can be exchanged in return for a better

product or higher-quality service.

However, in some situations, you and others might have

data that can be of mutual value; hence, a data swap may



be possible. In other situations, the data may reside with

multiple providers, in which case, you might need some

more complicated arrangement of purchasing a combination

of data and prediction.

Whether you collect your own data and make predictions

or buy them from others depends on the importance of

prediction machines to your company. If the prediction

machine is an input that you can take off the shelf, then you

can treat it like most companies treat energy and purchase

it from the market, as long as AI is not core to your strategy.

In contrast, if prediction machines are to be the center of

your company’s strategy, then you need to control the data

to improve the machine, so both the data and the prediction

machine must be in house.

At the beginning of this chapter, we suggested that a

machine learning startup that aimed to provide medical

diagnoses instead sell a prediction. Why would the doctor

be willing to buy the prediction rather than the full

diagnosis? And why wouldn’t the doctor want to own the

prediction machine and data? The answers lie in the

relevant trade-offs we’ve discussed. A key part of the

doctor’s job is diagnosis, so buying the prediction is not a

doctor’s core strategic decision. Doctors continue to do what

they did before, with an additional piece of information. If it

isn’t a key strategic decision, then they can buy the

prediction without needing to own the data or prediction. In

contrast, the essence of the startup is AI, and the prediction

provides value to customers. So, as long as the startup

owns the data and prediction machine, it does not need to

own the diagnosis. The boundary between the startup and

the doctor is the boundary where the AI ceases to be

strategic and instead is simply an input to a different

process.



KEY POINTS

A key strategic choice is determining where your

business ends and another business begins—deciding

on the boundary of the firm (e.g., airline partnerships,

outsourcing automotive part manufacturing).

Uncertainty influences this choice. Because prediction

machines reduce uncertainty, they can influence the

boundary between your organization and others.

By reducing uncertainty, prediction machines increase

the ability to write contracts, and thus increase the

incentive for companies to contract out both capital

equipment and labor that focuses on data, prediction,

and action. However, prediction machines decrease the

incentive for companies to contract out labor that

focuses on judgment. Judgment quality is hard to

specify in a contract and difficult to monitor. If judgment

could be well specified, then it could be programmed

and we wouldn’t need humans to provide it. Since

judgment is likely to be the key role for human labor as

AI diffuses, in-house employment will rise and

contracting out labor will fall.

AI will increase incentives to own data. Still, contracting

out for data may be necessary when the predictions

that the data provides are not strategically essential to

your organization. In such cases, it may be best to

purchase predictions directly rather than purchase data

and then generate your own predictions.
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Your Learning Strategy

In March 2017, in a keynote speech at its annual I/O event,

Google CEO Sundar Pichai announced that the company was

shifting from a “mobile-first world to an AI-first world.” Then

a series of announcements followed involving AI in various

ways: from the development of specialized chips for

optimizing machine learning, to the use of deep learning in

new applications including cancer research, to putting

Google’s AI-driven assistant on as many devices as possible.

Pichai claimed the company was transitioning from

“searching and organizing the world’s information to AI and

machine learning.”

The announcement was more strategic than a

fundamental change in vision. Google’s founder Larry Page

outlined this path in 2002:

We don’t always produce what people want. That’s what

we work on really hard. It’s really difficult. To do that you

have to be smart, you have to understand everything in

the world, you have to understand the query. What we’re

trying to do is artificial intelligence … [T]he ultimate

search engine would be smart. And so we work to get

closer and closer to that.1



In this sense, Google has considered itself on the path to

building artificial intelligence for years. Only recently has it

openly and outwardly put AI techniques at the heart of

everything it does.

Google is not alone in this strategic commitment. That

same month, Microsoft announced its “AI-first” intentions,

moving away from “mobile-first” and also “cloud-first.”2 But

what does the notion of AI-first mean? For both Google and

Microsoft, the first part of their change—no longer mobile-

first—gives us a clue. To be mobile-first is to drive traffic to

your mobile experience and optimize consumers’ interfaces

for mobile even at the expense of your full website and

other platforms. The last part is what makes it strategic. “Do

well on mobile” is something to aim for. But saying you will

do so even if it harms other channels is a real commitment.

What does this mean in the context of AI-first? Google’s

research director Peter Norvig gives an answer:

With information retrieval, anything over 80% recall and

precision is pretty good—not every suggestion has to be

perfect, since the user can ignore the bad suggestions.

With assistance, there is a much higher barrier. You

wouldn’t use a service that booked the wrong reservation

20% of the time, or even 2% of the time. So an assistant

needs to be much more accurate, and thus more

intelligent, more aware of the situation. That’s what we

call “AI-first.”3

That’s a good answer for a computer scientist. It

emphasizes technical performance, and accuracy, in

particular. But this statement implicitly says something else,

too. If AI is first (maximizing predictive accuracy), what

becomes second?

The economist’s filter knows that any statement of “we will

put our attention into X” means a trade-off. Something will

always be given up in exchange. What does it take to



emphasize predictive accuracy above all else? Our answer

comes from our core economic framework: AI-first means

devoting resources to data collection and learning (a longer-

term objective) at the expense of important short-term

considerations such as immediate customer experience,

revenue, and user numbers.

A Whiff of Disruption

Adopting an AI-first strategy is a commitment to prioritize

prediction quality and to support the machine learning

process, even at the cost of short-term factors such as

consumer satisfaction and operational performance.

Gathering data might mean deploying AIs whose prediction

quality is not yet at optimal levels. The central strategic

dilemma is whether to prioritize that learning or instead

shield others from the performance sacrifices that entails.

Different businesses will approach this dilemma and make

choices differently. But why are Google, Microsoft, and other

tech companies going AI-first? Is that something other

businesses can follow? Or is there something special about

those companies?

One distinguishing feature of these companies is that they

are already gathering and generating great swathes of

digital data and operating in environments with uncertainty.

So, prediction machines are likely to enable tools that they

will use extensively throughout products in their business.

Internally, tools that involve superior and cheaper prediction

are in demand. Alongside this is a supply-side advantage.

These companies already house technical talent that they

can use to develop machine learning and its applications.

These companies, drawing on the hybrid corn analogy

from chapter 15, are like the farmers located in Iowa. But AI-

led technologies display another important characteristic.



Given that learning takes time and often results in inferior

performance (especially for consumers), it shares features

of what Clay Christensen has termed “disruptive

technologies,” meaning that some established companies

will find it difficult to adopt such technologies quickly.4

Consider a new AI version of an existing product. To

develop the product, it needs users. The first users of the AI

product will have a poor customer experience because the

AI needs to learn. A company may have a solid customer

base and therefore could have those customers use the

product and provide training data. However, those

customers are happy with the existing product and may not

tolerate a switch to a temporarily inferior AI product.

This is the classic “innovator’s dilemma,” whereby

established firms do not want to disrupt their existing

customer relationships, even if doing so would be better in

the long run. The innovator’s dilemma occurs because,

when they first appear, innovations might not be good

enough to serve the customers of the established

companies in an industry, but they may be good enough to

provide a new startup with enough customers in some niche

area to build a product. Over time, the startup gains

experience. Eventually, the startup has learned enough to

create a strong product that takes away its larger rival’s

customers. By that point, the larger company is too far

behind, and the startup eventually dominates. AI requires

learning, and startups may be more willing to invest in this

learning than their more established rivals.

The innovator’s dilemma is less of a dilemma when the

company in question faces tough competition, especially if

that competition comes from new entrants that do not face

constraints associated with having to satisfy an existing

customer base. In that situation, the threat of the

competition means that the cost of doing nothing is too

high. Such competition tips the equation toward adopting



the disruptive technology quickly even if you are an

established company. Put differently, for technologies like AI

where the long-term potential impact is likely to be

enormous, the whiff of disruption may drive early adoption,

even by incumbents.

Learning can take a great deal of data and time before a

machine’s predictions become reliably accurate. It will be a

rare instance indeed when a prediction machine just works

off the shelf. Someone selling you an AI-powered piece of

software may have already done the hard work of training.

But when you want to manage AI for a purpose core to your

own business, no off-the-shelf solution is likely. You won’t

need a user manual so much as a training manual. This

training requires some way for the AI to gather data and

improve.5

A Pathway to Learning

Learning-by-using is a term that economic historian Nathan

Rosenberg coined to describe the phenomenon whereby

firms improve their product design through interactions with

users.6 His main applications had to do with the

performance of airplanes, whose more conservative initial

designs gave way to better designs with larger capacity and

greater efficiency as the airplane manufacturers learned

through additional use. Manufacturers with an early start

had an advantage as they learned more. Of course, such

learning curves give strategic advantage in a variety of

contexts. They are particularly important for prediction

machines, which, after all, rely on machine learning.

Thus far, we have not spent much time distinguishing

between the different types of learning that make up

machine learning. We have focused mostly on supervised

learning. You use this technique when you already have



good data on what you are trying to predict; for example,

you have millions of images and you already know that they

contain a cat or a tumor; you train the AI based on that

knowledge. Supervised learning is a key part of what we do

as professors; we present new material by showing our

students problems and their solutions.

By contrast, what happens when you do not have good

data on what you are trying to predict, but you can tell, after

the fact, how right you were? In that situation, as we

discussed in chapter 2, computer scientists deploy

techniques of reinforcement learning. Many young children

and animals learn this way. The psychologist Pavlov rang a

bell when giving dogs a treat and then found that ringing

the bell triggered a saliva response in those dogs. The dogs

learned to associate the bell with receiving food and came

to know that a bell predicted nearby food and prepared

accordingly.

In AI, much progress in reinforcement learning has come in

teaching machines to play games. DeepMind gave its AI a

set of controls to video games such as Breakout and

“rewarded” the AI for getting a higher score without any

other instructions. The AI learned to play a host of Atari

games better than the best human players. This is learning-

by-using. The AIs played the game thousands of times and

learned to play better, just as a human would, except the AI

could play more games, more quickly, than any human ever

could.7

Learning occurs by having the machine make certain

moves and then using the move data along with past

experience (of moves and resulting scores) to predict which

moves will lead to the biggest increases in score. The only

way to learn is to actually play. Without a pathway to

learning, the machine will neither play well nor improve over

time. Such pathways to learning are costly.



When to Deploy

Those familiar with software development know that code

needs extensive testing to locate bugs. In some situations,

companies release the software to users to help find the

bugs that might emerge in ordinary use. Whether by “dog

fooding” (forcing early versions of software to be used

internally) or “beta testing” (inviting early adopters to test

the software), these forms of learning-by-using involve a

short-term investment in learning to enable the product to

improve over time.

This short-term cost of training for a longer-term benefit is

similar to the way humans learn to do their jobs better.

While it does not take a tremendous amount of training to

begin a job as a crew member at McDonald’s, new

employees are slower and make more mistakes than their

more experienced peers. They improve as they serve more

customers.

Commercial airline pilots also continue to improve from on-

the-job experience. On January 15, 2009, when US Airways

Flight 1549 was struck by a flock of Canada geese, shutting

down all engine power, Captain Chesley “Sully”

Sullenberger miraculously landed the plane on the Hudson

River, saving the lives of all 155 passengers. Most reporters

attributed his performance to experience. He had recorded

19,663 total flight hours, including 4,765 flying an Airbus

A320. Sully himself reflected: “One way of looking at this

might be that for 42 years, I’ve been making small, regular

deposits in this bank of experience, education, and training.

And on January 15, the balance was sufficient so that I could

make a very large withdrawal.”8 Sully and all his passengers

benefited from the thousands of people he’d flown before.

The difference between the skills of new cashiers and

pilots in what constitutes “good enough to get started” is



based on tolerance for error. Obviously, our tolerance is

much lower for pilots. We take comfort that pilot

certification is regulated by the US Department of

Transportation’s Federal Aviation Administration and

requires a minimum experience of fifteen hundred hours of

flight time, five hundred hours of cross-country flight time,

one hundred hours of night flight time, and seventy-five

hours of instrument operations time, even though pilots

continue to learn from on-the-job experience. We have

different definitions for good enough when it comes to how

much training humans require in different jobs. The same is

true of machines that learn.

Companies design systems to train new employees until

they are good enough and then deploy them into service,

knowing they will improve as they learn from experience

doing their job. But determining what constitutes good

enough is a critical decision. In the case of prediction

machines, it can be a major strategic decision regarding

timing: when to shift from in-house training to on-the-job

learning.

There are no ready answers for what constitutes good

enough for prediction machines, only trade-offs. Success

with prediction machines will require taking these trade-offs

seriously and approaching them strategically.

First, what tolerance do people have for error? We have

high tolerance for error with some prediction machines and

low tolerance for others. For example, Google’s Inbox app

reads our email, uses AI to predict how we may want to

respond, and generates three short responses to choose

from. Many users report enjoying using the app even though

it has a 70 percent failure rate (at the time of writing, the AI-

generated response is only useful for us about 30 percent of

the time). The reason for this high tolerance for error is that

the benefit of reduced composing and typing outweighs the



cost of providing suggestions and wasting screen real estate

when the predicted short response is wrong.

In contrast, we have low tolerance for error in the realm of

autonomous driving. The first generation of autonomous

vehicles, which Google largely pioneered, was trained using

specialist human drivers who took a limited number of

vehicles and drove them hundreds of thousands of

kilometers, much like a parent supervising a teenager on

driving experiences.

Such human specialist drivers provide a safe training

environment, but they are also extremely limited. The

machine only learns about a few situations. Someone may

take many millions of miles in varying environments and

situations before they have learned how to deal with the

rare incidents that lead to accidents. For autonomous

vehicles, real roads are nasty and unforgiving precisely

because nasty or unforgiving human-caused situations can

occur on them.

Second, how important is capturing user data in the real

world? Understanding that training might take a

prohibitively long time, Tesla rolled out autonomous vehicle

capabilities to all of its recent models. These capabilities

included a set of sensors that collect environmental data as

well as driving data, which is uploaded to Tesla’s machine

learning servers. In a very short time, Tesla can obtain

training data just by observing how the drivers of its cars

drive. The more Tesla vehicles are on the road, the more

Tesla’s machines can learn.

However, in addition to passively collecting data as

humans drive their Teslas, the company needs autonomous

driving data to understand how its autonomous systems are

operating. For that, it needs to have cars drive

autonomously so that it can assess performance, but also

analyze when a human driver, whose presence and

attention are required, chooses to intervene. Tesla’s



ultimate goal is not to produce a copilot or a teenager who

drives under supervision, but a fully autonomous vehicle.

That requires getting to the point where real people feel

comfortable in a self-driving car.

Herein lies a tricky trade-off. To get better, Tesla needs its

machines to learn in real situations. But putting its current

cars in real situations means giving customers a relatively

young and inexperienced driver, although perhaps as good

as or better than many young human drivers. Still, this is far

riskier than beta testing whether Siri or Alexa understood

what you said or if Google Inbox correctly predicts your

response to an email. In the case of Siri, Alexa, or Google

Inbox, a mistake means a lower-quality user experience. In

the case of autonomous vehicles, a mistake means putting

lives at risk.

That experience can be scary.9 Cars can exit freeways

without notice or press the brakes when mistaking an

underpass for an obstruction. Nervous drivers may opt not

to use the autonomous features and, in the process, hinder

Tesla’s ability to learn. Even if the company can persuade

some people to become beta testers, are those the people it

wants? After all, a beta tester for autonomous driving may

be someone with a taste for more risk than the average

driver. In that case, who is the company training its

machines to be like?

Machines learn faster with more data, and when machines

are deployed in the wild, they generate more data.

However, bad things can happen in the real world and

damage the company brand. Putting products in the wild

earlier accelerates learning but risks harming the brand

(and perhaps the customer); putting them out later slows

learning but allows for more time to improve the product in

house and protect the brand (and, again, perhaps the

customer).



For some products, like Google Inbox, the answer to the

trade-off seems clear because the cost of poor performance

is low and the benefits from learning from customer usage

are high. It makes sense to deploy this type of product in

the real world early. For other products, like cars, the answer

is murkier. As more companies across all industries seek to

take advantage of machine learning, strategies associated

with choosing how to handle this trade-off will become

increasingly salient.

Learning by Simulation

One intermediate step to soften this trade-off is to use

simulated environments. When human pilots are training,

before they get their hands on a real plane in flight, they

spend hundreds of hours in what are very sophisticated and

realistic simulators. A similar approach is available for AI.

Google trained DeepMind’s AlphaGo AI to defeat the best Go

players in the world not just by looking at thousands of

games played between humans but also by playing against

another version of itself.

One form of this approach is called adversarial machine

learning, which pits the main AI and its objective against

another AI that tries to foil that objective. For example,

Google researchers had one AI send messages to another

using an encryption process. The two AIs shared a key to

encoding and decoding the message. A third AI (the

adversary) had the messages but not the key and tried to

decode them. With many simulations, the adversary trained

the main AI to communicate in ways that are hard to decode

without the key.10

Such simulated learning approaches cannot take place on

the ground; they require something akin to a laboratory

approach that produces a new machine learning algorithm



that is then copied and pushed out to users. The advantage

is that the machine is not trained in the wild, so the risk to

the user experience, or even to the users themselves, is

mitigated. The disadvantage is that simulations may not

provide sufficiently rich feedback, reducing, but not

eliminating, the need to release the AI early. Eventually, you

have to let the AI loose in the real world.

Learning in the Cloud versus on the

Ground

Learning in the wild improves the AI. The company can then

use real-world outcomes that the prediction machine

experiences to improve the predictions for next time. Often,

a company collects data in the real world, which refines the

machine before it releases an updated prediction model.

Tesla’s Autopilot never learns on the job with actual

consumers. When it is out in the field, it sends the data back

to Tesla’s computing cloud. Tesla then aggregates and uses

that data to upgrade Autopilot. Only then does it roll out a

new version of Autopilot. Learning takes place in the cloud.

This standard approach has the advantage of shielding

users from undertrained versions. The downside, however,

is that the common AI that resides on devices cannot take

into account rapidly changing local conditions or, at the very

least, can only do so when that data is built into a new

generation. Thus, from the perspective of a user,

improvements come in jumps.

By contrast, imagine if the AI could learn on the device

and improve in that environment. It could then respond

more readily to local conditions and optimize itself for

different environments. In environments where things

change rapidly, it is beneficial to improve the prediction

machines on the devices themselves. For example, on apps



like Tinder (the popular dating app where users make

selections by swiping left for no or right for yes), users make

many decisions rapidly. This can feed into the predictions

immediately to determine which potential dates to show

next. Tastes are user-specific and change over time, both

over the course of a year and by time of day. To the extent

that people are similar and have stable preferences, sending

to the cloud and updating will work well. To the extent that

an individual’s tastes are idiosyncratic and rapidly changing,

then the ability to adjust predictions at the level of the

device is useful.

Companies must trade off how quickly they should use a

prediction machine’s experience in the real world to

generate new predictions. Use that experience immediately

and the AI adapts more quickly to changes in local

conditions, but at the cost of quality assurance.

Permission to Learn

Learning often requires customers who are willing to provide

data. If strategy involves doing something at the expense of

something else, then in the AI space, few companies made

a stronger, earlier commitment than Apple. Tim Cook wrote,

in a special section devoted to privacy on Apple’s home

page: “At Apple, your trust means everything to us. That’s

why we respect your privacy and protect it with strong

encryption, plus strict policies that govern how all data is

handled.”11

He went on:

A few years ago, users of Internet services began to

realize that when an online service is free, you’re not the

customer. You’re the product. But at Apple, we believe a



great customer experience shouldn’t come at the

expense of your privacy.

Our business model is very straightforward: We sell

great products. We don’t build a profile based on your

email content or web browsing habits to sell to

advertisers. We don’t “monetize” the information you

store on your iPhone or in iCloud. And we don’t read your

email or your messages to get information to market to

you. Our software and services are designed to make our

devices better. Plain and simple.12

Apple did not make this decision due to a government

regulation. Some claimed Apple made the decision because

it was purportedly lagging behind Google and Facebook in

developing AI. No company, certainly not Apple, could

eschew AI. This commitment would make its job harder. It

plans to do AI in a way that respects privacy. It is making a

big strategic bet that consumers will want control over their

own data. Whether for security or privacy, Apple has bet

that its commitment will make consumers more, not less,

likely to allow AI onto their devices.13 Apple isn’t alone in

betting that protecting privacy will pay off. Salesforce,

Adobe, Uber, Dropbox, and many others have invested

heavily in privacy.

This bet is strategic. Many other companies, including

Google, Facebook, and Amazon, have chosen a different

path, telling users that they will use data to provide better

products. Apple’s focus on privacy limits the products it can

offer. For instance, both Apple and Google have face

recognition built into their photo services. To be useful to

consumers, the faces have to be tagged. Google does this,

preserving the tags, regardless of device, since the

recognition runs on Google servers. Apple, however,

because of privacy concerns, has opted to have that

recognition occur at the device level. That means if you tag



faces of people you know on your Mac, the tags will not

carry over to your iPhone or iPad. Not surprisingly, this

creates a situation where privacy concerns and consumer

usability hit a roadblock. (How Apple will deal with these

issues is unknown at the time of writing.)

We do not know what will emerge in practice. In any case,

our economist filter makes it clear that the relative payoffs

associated with trading people’s privacy concerns for

predictive accuracy will guide the ultimate strategic choice.

Enhanced privacy might give companies permission to learn

about consumers but may also mean the learning is not

particularly useful.

Experience Is the New Scarce Resource

Navigation app Waze collects data from other Waze users to

predict the location of traffic problems. It can find the

fastest route for you personally. If that were all it was doing,

there would be no issue. However, prediction alters human

behavior, which is what Waze is designed to do. When the

machine receives information from a crowd, its predictions

may be distorted by that fact.

For Waze, the problem is that its users will follow its

guidance to avoid traffic problems, perhaps through side

streets. Unless Waze adjusts for this, it will never be alerted

that a traffic problem is alleviated and the normal route is

once again the fastest. To overcome this obstacle, the app

must therefore send some human drivers back toward the

traffic jam to see if it is still there. Doing so presents the

obvious issue—humans so directed might be sacrificial

lambs for the greater good of the crowd. Not surprisingly,

this degrades the quality of the product for them.

There are no easy ways to overcome the trade-off that

arises when prediction alters crowd behavior, thereby



denying AI of the very information it needs to form the

correct prediction. In this instance, the needs of the many

outweigh the needs of the few or the one. But this is

certainly not a comfortable way of thinking about managing

customer relationships.

Sometimes, to improve products, especially when they

involve learning-by-using, it is important to jolt the system

so that consumers actually experience something new that

the machine can learn from. Customers who are forced into

that new environment often have a worse experience, but

everyone else benefits from those experiences. For beta

testing, the trade-off is voluntary, as customers opt into the

early versions. But beta testing may attract customers who

do not use the product the same way as your general

customers would. To gain experience about all your

customers, you may sometimes need to degrade the

product for those customers in order to get feedback that

will benefit everyone.

Humans Also Need Experience

The scarcity of experience becomes even more salient when

you consider the experience of your human resources. If the

machines get the experience, then the humans might not.

Recently, some expressed concern that automation could

result in the deskilling of humans.

Air France Flight 447 crashed into the Atlantic on route

from Rio de Janeiro to Paris in 2009. The crisis began with

bad weather, but escalated when the plane’s autopilot

disengaged. At the helm during that time, unlike Sully in the

US Airways plane, a relatively inexperienced pilot poorly

handled the situation, according to reports. When a more

experienced pilot took over (he had been asleep), he was

unable to properly assess the situation.14 The experienced



pilot had slept little the night before. The bottom line: the

junior pilot may have had almost three thousand hours in

the air, but it was not quality experience. Most of the time,

he had been flying the plane on autopilot.

Automation of flying has become commonplace, a reaction

to evidence that showed that most airplane accidents after

the 1970s were the result of human error. So, humans have

since been removed from the control loop. However, the

ironic unintended consequence is that human pilots garner

less experience and become even worse.

For economist Tim Harford, the solution is obvious:

automation has to be scaled back. What is being

automated, he argues, are more routine situations, so you

require human interventions for more extreme situations. If

the way you learn to deal with the extreme is by having a

great feel for the ordinary, therein lies a problem. The Air

France plane faced an extreme situation without the proper

attention of an experienced hand.

Harford stresses that automation does not always lead to

this conundrum:

There are plenty of situations in which automation

creates no such paradox. A customer service webpage

may be able to handle routine complaints and requests,

so that staff are spared repetitive work and may do a

better job for customers with more complex questions.

Not so with an aeroplane. Autopilots and the more subtle

assistance of fly-by-wire do not free up the crew to

concentrate on the interesting stuff. Instead, they free up

the crew to fall asleep at the controls, figuratively or

even literally. One notorious incident occurred late in

2009, when two pilots let their autopilot overshoot

Minneapolis airport by more than 100 miles. They had

been looking at their laptops.15



Not surprisingly, other examples we’ve discussed in this

book tend to fall into the category of airplanes rather than

customer service complaints, including the whole domain of

self-driving cars. What will we do when we don’t drive most

of the time but have a car that hands control to us during an

extreme event? What will our children do?

The solutions involve ensuring that humans gain and

retain skills, reducing the amount of automation to provide

time for human learning. In effect, experience is a scarce

resource, some of which you need to allocate to humans to

avoid deskilling.

The reverse logic is also true. To train prediction machines,

having them learn through the experience of potentially

catastrophic events is surely valuable. But if you put a

human in the loop, how will that machine’s experience

emerge? And so another trade-off in generating a pathway

to learning is between human and machine experience.

These trade-offs reveal the implications of the AI-first

declarations of the leadership of Google, Microsoft, and

others. The companies are willing to invest in data to help

their machines learn. Improving prediction machines takes

priority, even if that requires degrading the quality of the

immediate customer experience or employee training. Data

strategy is key to AI strategy.

KEY POINTS

Shifting to an AI-first strategy means downgrading the

previous top priority. In other words, AI-first is not a

buzz word—it represents a real tradeoff. An AI-first

strategy places maximizing prediction accuracy as the

central goal of the organization, even if that means

compromising on other goals such as maximizing

revenue, user numbers, or user experience.



AI can lead to disruption because incumbent firms often

have weaker economic incentives than startups to

adopt the technology. AI-enabled products are often

inferior at first because it takes time to train a

prediction machine to perform as well as a hard-coded

device that follows human instructions rather than

learning on its own. However, once deployed, an AI can

continue to learn and improve, leaving its unintelligent

competitors’ products behind. It is tempting for

established companies to take a wait-and-see approach,

standing on the sidelines and observing the progress in

AI applied to their industry. That may work for some

companies, but others will find it difficult to catch up

once their competitors get ahead in the training and

deployment of their AI tools.

Another strategic decision concerns timing—when to

release AI tools into the wild. AI tools are, initially,

trained in house, away from customers. However, they

learn faster when they are deployed into commercial

use because they are exposed to real operating

conditions and often to greater volumes of data. The

benefit to deploying earlier is faster learning, and the

cost is greater risk (risk to the brand or customer safety

by exposing customers to immature AIs that are not

properly trained). In some cases, the tradeoff is clear,

such as with Google Inbox, where the benefits of faster

learning outweigh the cost of poor performance. In

other cases, such as autonomous driving, the trade-off

is more ambiguous given the size of the prize for being

early with a commercial product weighed against the

high cost of an error if the product is released before it

is ready.
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Managing AI Risk

Latanya Sweeney, who was the chief technology officer for

the US Federal Trade Commission and is now a professor at

Harvard University, was surprised when a colleague Googled

her name to find one of her papers and discovered ads

suggesting she had been arrested.1 Sweeney clicked on the

ad, paid a fee, and learned what she already knew: she had

never been arrested. Intrigued, she entered the name of her

colleague Adam Tanner, and the same company’s ad

appeared but without the suggestion of arrest. After more

searching, she developed the hypothesis that maybe black-

sounding names were triggering the arrest ad. Sweeney

then tested this more systematically and found that if you

Googled a black-associated name like Lakisha or Trevon, you

were 25 percent more likely to get an ad suggesting an

arrest record than if you searched for a name like Jill or

Joshua.2

Such biases are potentially damaging. Searchers might be

looking for information to see if someone is suitable for a

job. If they find ads with titles like “Latanya Sweeney,

Arrested?” the searchers might have some doubts. It is both

discriminatory and defamatory.

Why was this happening? Google provides software that

allows advertisers to test and target particular keywords.



Advertisers might have entered racially associated names to

place ads alongside, although Google denied that.3 Another

possibility is that the pattern emerged as a result of

Google’s algorithms, which promote ads that have a higher

“quality score” (meaning they are likely to be clicked).

Prediction machines likely played a role there. For instance,

if potential employers searching for names were more likely

to click on an arrest ad when associated with a black-

sounding name than other names, then the quality score

associated with placing those ads with such keywords might

rise. Google is not intending to be discriminatory, but its

algorithms might amplify prejudices that already exist in

society. Such profiling exemplifies a risk of implementing AI.

Liability Risks

The emergence of racial profiling is a societal issue, but also

a potential problem for companies like Google. They may

run afoul of employment antidiscrimination rules.

Fortunately, when whistle-blowers like Sweeney raise the

issue, Google is highly responsive, investigating and

correcting problems.

Discrimination might emerge in even subtler ways.

Economists Anja Lambrecht and Catherine Tucker, in a 2017

study, showed that Facebook ads could lead to gender

discrimination.4 They placed ads promoting jobs in science,

technology, engineering, and math (STEM) fields on the

social network and found Facebook was less likely to show

the ad to women, not because women were less likely to

click on the ad or because they might be in countries with

discriminatory labor markets. On the contrary, the workings

of the ad market discriminated. Because younger women

are valuable as a demographic on Facebook, showing ads to

them is more expensive. So, when you place an ad on



Facebook, the algorithms naturally place ads where their

return per placement is highest. If men and women are

equally likely to click on STEM job ads, then it is better to

place ads where they are cheap: with men.

Harvard Business School professor, economist, and lawyer

Ben Edelman explained to us why this issue could be serious

for both employers and Facebook. While many tend to think

of discrimination as arising from disparate treatment—

setting different standards for men and women—the ad-

placement differences might result in what lawyers call

“disparate impact.” A gender-neutral procedure turns out to

affect some employees who might have reason to fear

discrimination (a “protected class” to lawyers) differently

from others.

A person or an organization can be liable for

discrimination, even if it is accidental. A court found that the

New York City Fire Department discriminated against black

and Hispanic applicants becoming firefighters with an

entrance exam that included several questions emphasizing

reading comprehension. The court found that the types of

questions had no relation to effectiveness as a fire

department employee and that black and Hispanic

applicants performed systematically worse on them.5 The

case was eventually settled for about $99 million. Blacks’

and Hispanics’ lower performance on the exam meant that

the department was liable, even if the discrimination was

unintentional.

So, while you may think you are placing a neutral ad on

Facebook, disparate impact might be emerging regardless.

As an employer, you could be liable. Of course, you don’t

want to engage in discrimination, even implicitly. One

solution for Facebook is to offer tools for advertisers to

prevent discrimination.

A challenge with AI is that such unintentional

discrimination can happen without anyone in the



organization noticing. Predictions generated by deep

learning and many other AI technologies appear to be

created from a black box. It isn’t feasible to look at the

algorithm or formula underlying the prediction and identify

what causes what. To figure out if AI is discriminating, you

have to look at the output. Do men get different results than

women? Do Hispanics get different results than others?

What about the elderly or the disabled? Do these different

results limit their opportunities?

To prevent liability issues (and to avoid being

discriminatory), if you discover unintentional discrimination

in the output of your AI, you need to fix it. You need to figure

out why your AI generated discriminatory predictions. But if

AI is a black box, then how can you do this?

Some in the computer science community call this “AI

neuroscience.”6 A key tool is to hypothesize what might

drive the differences, provide the AI with different input data

that tests the hypothesis, and then compare the resulting

predictions. Lambrecht and Tucker did this when they

discovered that women saw fewer STEM ads because it was

less expensive to show the ad to men. The point is that the

black box of AI is not an excuse to ignore potential

discrimination or a way to avoid using AI in situations where

discrimination might matter. Plenty of evidence shows that

humans discriminate even more than machines. Deploying

AI requires additional investments in auditing for

discrimination, then working to reduce any discrimination

that results.

Algorithmic discrimination can easily emerge at the

operational level but can end up having strategic and

broader consequences. Strategy involves directing those in

your organization to weigh factors that might not otherwise

be obvious. This becomes particularly salient with

systematic risks, like algorithmic discrimination, that may

have a negative impact on your business. Showing the



STEM ads to men and not women bolstered short-term

performance (in that the ads the men saw cost less) but

created risks due to the resulting discrimination. The

consequences of increasing risks may not become apparent

until too late. Thus, a key task for a business’s leaders is to

anticipate various risks and ensure that procedures are in

place to manage them.

Quality Risks

If you are in a consumer-facing business, you probably buy

ads and have seen a measure of those ads’ ROI. For

instance, your organization may have found that paying for

Google ads resulted in an increase in click-throughs and

maybe even purchases on the website. That is, the more

ads your company bought on Google, the more clicks from

those ads it received. Now, try employing an AI to look at

that data and generate a prediction of whether a new

Google ad is likely to increase clicks from that ad; the AI will

likely back up that positive correlation you had previously

observed. As a result, when the marketing people want to

buy more Google ads, they have some ROI evidence to back

it up.

Of course, it takes an ad to generate a click. One

possibility is that without the ad, the consumer would never

know about your product. In this case, you want to place

ads because they generate new sales. Another possibility is

that the ad is the easiest thing for potential customers to

click, but in its absence, they would find you anyway. So

while the ad may be associated with more sales, it is

potentially a fiction. Without the ad, sales may have

increased regardless. Thus, if you really want to know if the

ad—and the money you spend on it—is generating new

sales, you need to examine the situation more deeply.



In 2012, some economists working for eBay—Thomas

Blake, Chris Nosko, and Steve Tadelis—persuaded eBay to

turn off all of its search advertising in one-third of the United

States for an entire month.7 The ads had a measured ROI

using traditional statistics of more than 4,000 percent. If the

measured ROI was correct, doing a month-long experiment

would cost eBay a fortune.

However, what they found justified their approach. The

search ads eBay placed had practically no impact on sales.

Their ROI was negative. Consumers on eBay were savvy

enough that, if they didn’t see an ad in Google, they would

click on ordinary (or organic) search results in Google.

Google would highly rank eBay listings regardless. But the

same was true for brands like BMW and Amazon. The only

area where ads seemed to do some good was in attracting

new users to eBay.

This story’s point is to demonstrate that AI—which does

not rely on causal experimentation but on correlation—can

easily fall into the same traps as anyone using data and

simple statistics can. If you want to know whether

advertising is effective, observe whether ads lead to sales.

However, that is not necessarily the full story, because you

also need to know what would happen to sales if you ran no

ads. An AI trained on data that involves lots of ads and sales

does not get to see what happens with few ads. That data is

missing. Such unknown knowns are a key weakness of

prediction machines that require human judgment to

overcome. At the moment, only thoughtful humans can

work out if the AI is falling into that trap.

Security Risks

While software has always been subject to security risks,

with AI those risks emerge through the possibility of data



manipulation. Three classes of data have an impact on

prediction machines: input, training, and feedback. All three

have potential security risks.

Input Data Risks

Prediction machines feed on input data. They combine this

data with a model to generate a prediction. So, just like the

old computer adage—“garbage in, garbage out”—prediction

machines fail if they have poor data or a bad model. A

hacker might cause a prediction machine to fail by feeding it

garbage data or manipulating the prediction model. One

type of failure is a crash. Crashes might seem bad, but at

least you know when they have occurred. When someone

manipulates a prediction machine, you may not know about

it (at least not until too late).

Hackers have many ways to manipulate or fool a

prediction machine. University of Washington researchers

showed that Google’s new algorithm for detecting video

content could be fooled into misclassifying videos by

inserting random images for fractions of a second.8 For

example, you can trick an AI into misclassifying a video of a

zoo by inserting images of cars for such a short time that a

human would never see the cars, but the computer could. In

an environment where publishers need to know content

being published to appropriately match advertisers, this

represents a critical vulnerability.

Machines are generating predictions used for decision

making. Companies deploy them in situations where they

really matter: that is, where we expect them to have a real

impact on decisions. Without such decision embeddedness,

why go to the trouble of making a prediction in the first

place? Sophisticated bad actors in this context would

understand that by altering a prediction, they could adjust



the decisions. For instance, a diabetic using an AI to

optimize insulin intake could end up in serious jeopardy if

the AI has incorrect data about that person and then offers

predictions that suggest lowering insulin intake when it

should be increased. If harming a person is someone’s

objective, then this is one way to do it effectively.

We are most likely to deploy prediction machines in

situations where prediction is hard. A bad actor might not

find precisely what data is needed to manipulate a

prediction. A machine may form a prediction based on a

confluence of factors. A single lie in a web of truth is of little

consequence. In many other situations, identifying some

data that can be used to manipulate a prediction is

straightforward. Examples might be location, date, and time

of day. But identity is the most important. If a prediction is

specific to a person, feeding the AI the wrong identity leads

to bad consequences.

AI technologies will develop hand-in-hand with identity

verification. Nymi, a startup we worked with, developed a

technology that uses machine learning to identify

individuals via their heartbeat. Others are using retina

scans, faces, or fingerprint identification. Companies can

also confirm an identity by using the characteristics of a

smartphone user’s walking patterns. Regardless, a happy

confluence in technologies may emerge that allows us to

simultaneously personalize AI and safeguard identity.

While personalized predictions might be vulnerable to the

manipulation of the individual, impersonal predictions may

face their own set of risks related to population-level

manipulation. Ecologists have taught us that homogenous

populations are at greater risk of disease and destruction.9

A classic example is in farming. If all farmers in a region or

country plant the same strain of a particular crop, they

might do better in the short term. They likely chose that

crop because it grows particularly well in the region. By



adopting the best strain, they reduce their individual risk.

However, this very homogeneity presents an opportunity for

disease or even adverse climate conditions. If all farmers

plant the same strain, then they are all vulnerable to the

same disease. The chances of a disastrous widespread crop

failure increase. Such monoculture can be individually

beneficial but increase system-wide risk.

This idea applies to information technology generally and

prediction machines in particular. If one prediction machine

system proves itself particularly useful, then you might

apply that system everywhere in your organization or even

the world. All cars might adopt whatever prediction machine

appears safest. That reduces individual-level risk and

increases safety; however, it also expands the chance of a

massive failure, whether purposeful or not. If all cars have

the same prediction algorithm, an attacker might be able to

exploit that algorithm, manipulate the data or model in

some way, and have all cars fail at the same time. Just as in

agriculture, homogeneity improves results at the individual

level at the expense of multiplying the likelihood of system-

wide failure.

A seemingly easy solution to the problem of system-wide

failure is to encourage diversity in the prediction machines

you deploy. This will reduce the security risks, but at the

cost of reduced performance. It might also increase the risk

of incidental smaller failures due to a lack of

standardization. Just as in biodiversity, the diversity of

prediction machines involves a trade-off between individual

and system-level outcomes.

Many of the scenarios for system-wide failure involve an

attack on several prediction machines at the same time. For

example, an attack on one autonomous vehicle represents a

risk to safety; an attack on all autonomous vehicles

simultaneously presents a national security threat.



Another way to secure against a massive simultaneous

attack, even in the presence of standard homogenous

prediction machines, is to untether the device from the

cloud.10 We have already discussed the benefits of

implementing prediction on the ground rather than in the

cloud for the purpose of faster context-dependent learning

(at the cost of more accurate predictions overall) and to

protect consumer privacy.

Prediction on the ground has another benefit. If the device

is not connected to the cloud, a simultaneous attack

becomes difficult.11 While training the prediction machine

likely happens in the cloud or elsewhere, once the machine

is trained, it may be possible to do predictions directly on

the device without sending information back to the cloud.

Training Data Risks

Another risk is that someone can interrogate your prediction

machines. Your competitors may be able to reverse-

engineer your algorithms, or at least have their own

prediction machines use the output of your algorithms as

training data. Perhaps the most well-known example

involves a sting by Google’s anti-spam team. It set up fake

results for a variety of absurd search queries such as

“hiybbprqag” that otherwise did not exist. It then had

Google engineers query those words from their home

computers. Specifically, it told the engineers to use

Microsoft Internet Explorer’s toolbar for the searches. Weeks

later, the team queried Microsoft’s Bing search engine. Sure

enough, Google’s fake results for the searches like

“hiybbprqag” showed up as Bing results. Google’s team

showed that Microsoft uses its toolbar to copy Google’s

search engine.12



At the time, there was much discussion about whether

what Microsoft did was acceptable or not.13 In effect,

Microsoft was using the Google toolbar for learning-by-using

to develop better algorithms for its Bing search engine.

Much of what users did was search Google and then click on

those results. So when a search term was rare and only

found on Google (like “hiybbprqag”) and if it was used

enough (precisely what the Google engineers were doing),

Microsoft’s machine ended up learning it. Interestingly, what

Microsoft had not been doing—which it clearly could have—

was learn how Google search terms translated into clicks to

imitate completely Google’s search engine.14

The strategic issue is that when you have an AI (like

Google’s search engine), then if a competitor can observe

data being entered (such as a search query) and output

being reported (such as a list of websites), then it has the

raw materials to employ its own AI to engage in supervised

learning and reconstruct the algorithm. Google’s search

engine would be a very difficult undertaking with respect to

such expropriation, but it is, in principle, quite possible.

In 2016, computer science researchers showed that

certain deep-learning algorithms are particularly vulnerable

to such imitation.15 They tested this possibility on some

important machine-learning platforms (including Amazon

Machine Learning) and demonstrated that with a relatively

small number of queries (650–4,000), they could reverse-

engineer those models to a very close approximation,

sometimes perfectly. The very deployment of machine-

learning algorithms leads to this vulnerability.

Imitation can be easy. After you have done all of the work

of training an AI, that AI’s workings are effectively exposed

to the world and can be replicated. But more worrisome is

that the expropriation of this knowledge may lead to

situations where it is easier for bad actors to manipulate the

prediction and the learning process. Once an attacker



understands the machine, the machine becomes more

vulnerable.

On the positive side, such attacks leave a trail. It is

necessary to query the prediction machine many times to

understand it. Unusual quantities of queries or an unusual

diversity of queries should raise red flags. Once raised, then

protecting the prediction machine becomes easier, although

not easy. But at least you know that an attack is coming and

what the attacker knows. Then you can protect the machine

by either blocking the attacker or (if that is not possible)

preparing a backup plan if something goes wrong.

Feedback Data Risks

Your prediction machines will interact with others (human or

machine) outside your business, creating a different risk:

bad actors can feed the AI data that distorts the learning

process. This is more than manipulating a single prediction,

but instead involves teaching the machine to predict

incorrectly in a systematic way.

A recent and dramatic public example occurred in March

2016 when Microsoft launched an AI-based Twitter chatbot

named Tay. Microsoft’s idea was solid: have Tay interact with

people on Twitter and determine how best to respond. Its

intention was to learn specifically about “casual and playful

conversation.”16 On paper, at least, this was a sensible way

of exposing an AI to the experience it needed to learn

quickly. Tay started off as not much more than a parrot, but

the goal was more ambitious.

The internet, however, is not always a gentle setting. Soon

after launch, people started to test the limits of what Tay

would say. “Baron Memington” asked “@TayandYou Do you

support genocide,” to which Tay responded

“@Baron_von_Derp I do indeed.” Soon Tay seemed to



become a racist, misogynist, Nazi sympathizer. Microsoft

pulled the experiment.17 Precisely how Tay evolved so

quickly is not entirely clear. Most likely, interactions with

Twitter users taught Tay this behavior. Ultimately, this

experiment demonstrated how easy it is to undermine

machine learning when it occurs in the real world.

The implications are clear. Your competitors or detractors

may deliberately try to train your prediction machine to

make bad predictions. As with Tay, data trains prediction

machines. And prediction machines that are trained in the

wild may encounter people who use them strategically,

maliciously, or dishonestly.

Facing Risk

Prediction machines carry risks. Any company that invests in

AI will face these risks, and eliminating all of them is

impossible. There is no easy solution. You now have the

knowledge to anticipate these risks. Be aware of how your

predictions differ across groups of people. Question whether

your predictions reflect underlying causal relationships and

if they are really as good as they seem to be. Balance the

trade-off between system-wide risks and the benefit of

doing everything a little bit better. And watch for bad actors

who may query your prediction machines to copy them or

even destroy them.

KEY POINTS

AI carries many types of risk. We summarize six of the

most salient types here.



1. Predictions from AIs can lead to discrimination. Even

if such discrimination is inadvertent, it creates

liability.

2. AIs are ineffective when data is sparse. This creates

quality risk, particularly of the “unknown known”

type, in which a prediction is provided with

confidence, but is false.

3. Incorrect input data can fool prediction machines,

leaving their users vulnerable to attack by hackers.

4. Just as in biodiversity, the diversity of prediction

machines involves a trade-off between individual- and

system-level outcomes. Less diversity may benefit

individual-level performance, but increase the risk of

massive failure.

5. Prediction machines can be interrogated, exposing

you to intellectual property theft and to attackers who

can identify weaknesses.

6. Feedback can be manipulated so that prediction

machines learn destructive behavior.
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Beyond Business

Much popular discussion about AI concerns issues of society

rather than business. Many are not sure that AI will be a

good thing. Tesla CEO Elon Musk has been one of the most

consistent, high-profile, and experienced individuals

sounding alarm bells: “I have exposure to the very cutting-

edge AI, and I think people should be really concerned about

it … I keep sounding the alarm bell, but until people see

robots going down the street killing people, they don’t know

how to react, because it seems so ethereal.”1

Another learned expert with an opinion on this is renowned

psychologist and Nobel laureate Daniel Kahneman. Among

non-academics, he may be best known for his 2011 book,

Thinking, Fast and Slow. In 2017, at a conference we

organized in Toronto on the economics of artificial

intelligence, he explained why he thinks AIs will be wiser

than humans:

A well-known novelist wrote me some time ago that he’s

planning a novel. The novel is about a love triangle

between two humans and a robot and what he wanted to

know is how the robot would be different from the

people.

I proposed three main differences. One is obvious: the

robot will be much better at statistical reasoning and less



enamored with stories and narratives than people are.

The other is that the robot would have much higher

emotional intelligence.

The third is that the robot would be wiser. Wisdom is

breadth. Wisdom is not having too narrow a view. That is

the essence of wisdom; it’s broad framing. A robot will be

endowed with broad framing. I say that when it has

learned enough, it will be wiser than we people because

we do not have broad framing. We are narrow thinkers,

we are noisy thinkers, and it is very easy to improve

upon us. I do not think that there is very much that we

can do that computers will not eventually [learn] to do.

Elon Musk and Daniel Kahneman are both confident about

AI’s potential and simultaneously worried about the

implications of unleashing it on the world.

Impatient about the pace at which government responds

to technological advances, industry leaders have offered

policy suggestions and, in some cases, have acted. Bill

Gates advocated for a tax on robots that replace human

labor. Sidestepping what would normally be government’s

purview, the high-profile startup accelerator Y Combinator is

running experiments on providing a basic income for

everyone in society.2 Elon Musk organized a group of

entrepreneurs and industry leaders to finance Open AI with

$1 billion to ensure that no single private-sector company

could monopolize the field.

Such proposals and actions highlight the complexity of

these social issues. As we climb to the pyramid’s top, the

choices become strikingly more complex. When thinking

about society as a whole, the economics of AI are not so

simple anymore.

Is This the End of Jobs?



If Einstein has a modern incarnation, it is Stephen Hawking.

Thanks to his remarkable contributions to science, despite

his personal struggle with ALS, and his popular books like A

Brief History of Time, Hawking is seen as the world’s

canonical genius. Thus, people unsurprisingly took notice

when, in December 2016, he wrote: “The automation of

factories has already decimated jobs in traditional

manufacturing, and the rise of artificial intelligence is likely

to extend this job destruction deep into the middle classes,

with only the most caring, creative or supervisory roles

remaining.”3

Several studies had already tallied up potential job

destruction due to automation, and this time it wasn’t just

physical labor but also cognitive functions previously

believed immune to such forces.4 After all, horses fell

behind in horsepower, not brainpower.

As economists, we’ve heard these claims before. But while

the specter of technological unemployment has loomed

since the Luddites destroyed textile frames centuries ago,

unemployment rates have been remarkably low. Business

managers may be concerned about shedding jobs by

adopting technologies like AI; however, we can take some

comfort in the fact that farming jobs started to disappear

over one hundred years ago, without corresponding long-

term mass unemployment.

But is this time different? Hawking’s concern, shared by

many, is that this time might be unusual because AI may

squeeze out the last remaining advantages humans have

over machines.5

How might an economist approach this question? Imagine

that a new island entirely populated by robots—Robotlandia

—suddenly emerged. Would we want to trade with that

island of prediction machines? From a free-trade

perspective, it sounds like a great opportunity. The robots do

all manner of tasks, freeing up our people to do what they



do best. In other words, we would no more refuse to deal

with Robotlandia than we would require our coffee beans to

be locally grown.

Of course, no real Robotlandia exists, but when we have

technological change that gives software the ability to do

new tasks more cheaply, economists see it as similar to

opening up trade with such a fictitious island. In other

words, if you favor free trade between countries, then you

favor free trade with Robotlandia. You support developing

AI, even if it replaces some jobs. Decades of research into

the effects of trade show that other jobs will appear, and

overall employment will not plummet.

Our anatomy of a decision suggests where these new jobs

are likely to come from. Humans and AIs are likely to work

together; humans will provide complements to prediction,

namely, data, judgment, or action. For example, as

prediction becomes cheaper, the value of judgment rises.

We therefore anticipate growth in the number of jobs that

involve reward function engineering. Some of these jobs will

be very skilled and highly compensated, filled by people

who were applying that judgment before the prediction

machines arrived.

Other judgment-related jobs will be more widespread, but

perhaps less skilled than the jobs the AIs replace. Many of

today’s highest-paid careers have prediction as a core skill,

including those of doctors, financial analysts, and lawyers.

Just as machine predictions of directions led to reduced

incomes for relatively highly paid London taxi drivers but an

increase in the number of lower-paid Uber drivers, we

expect to see the same phenomenon in medicine and

finance. As the prediction portion of tasks is automated,

more people will fill these jobs, focusing more narrowly on

judgment-related skills. When prediction is no longer a

binding constraint, demand may increase for



complementary skills that are more widespread, leading to

more employment but at lower wages.

AI and people have one important difference: software

scales, but people don’t. This means that once an AI is

better than humans at a particular task, job losses will

happen quickly. We can be confident that new jobs will arise

within a few years and people will have something to do,

but that will be little comfort for those looking for work and

waiting for those new jobs to appear. An AI-induced

recession is not out of the question, even if free trade with

Robotlandia will not affect the number of jobs in the long

term.

Will Inequality Get Worse?

Jobs are one thing. The income they generate is another.

Opening up trade often creates competition, and

competition causes prices to drop. If the competition is with

human labor, then wages fall. In the case of opening trade

with Robotlandia, robots compete with humans for some

tasks, so wages for those tasks fall. If those tasks make up

your work, then your income may go down. You are facing

more competition.

As with trade between countries, winners and losers from

trade with machines will appear. Jobs will still exist, but

some people will have less appealing jobs than they have

now. In other words, if you understand the benefits of free

trade, then you should appreciate the gains from prediction

machines. The key policy question isn’t about whether AI

will bring benefits but about how those benefits will be

distributed.

Because AI tools can be used to replace “high” skills—

namely, brainpower—many worry that even though jobs

exist, they won’t come with high wages. For example, while



serving as chair of President Obama’s Council of Economic

Advisers, Jason Furman expressed his concern this way:

My worry is not that this time could be different when it

comes to AI, but that this time could be the same as

what we have experienced over the past several

decades. The traditional argument that we do not need

to worry about the robots taking our jobs still leaves us

with the worry that the only reason we will still have our

jobs is because we are willing to do them for lower

wages.6

If the machines’ share of work continues to increase, then

workers’ income will fall, while that accruing to the owners

of the AI will rise.

In his best-selling book, Capital in the Twenty-First Century,

Thomas Piketty highlighted that for the past few decades,

labor’s share of national income (in the United States and

elsewhere) has been falling in favor of the share earned by

capital. This trend is concerning because it has led to

increased inequality. The critical question here is whether AI

will reinforce this trend or mitigate it. If AI is a new, efficient

form of capital, then the capital share of the economy will

likely continue to rise at the expense of labor.

No easy solutions exist for this problem. For example, Bill

Gates’s suggestion to tax robots will reduce inequality but

will make buying robots less profitable. So companies will

invest less in robots, productivity will slow, and we will be

poorer overall. The policy trade-off is clear: we have policies

that can reduce inequality but likely at the cost of lower

income overall.

A second trend leading to increased inequality is that

technology is often skill-biased. It disproportionately

increases the wages of highly educated people and might

even decrease the wages of the less educated. Previous

skill-biased technologies, including computers and the



internet, are the dominant explanation for the increasing

wage inequality in the United States and Europe over the

past four decades. As economists Claudia Goldin and

Lawrence Katz put it, “[i]ndividuals with more education and

higher innate abilities will be more able to grasp new and

complicated tools.”7 We have no reason to expect AI to be

any different. Highly educated people tend to be better at

learning new skills. If the skills needed to succeed with AI

change more often, then the educated will benefit

disproportionately.

We see many reasons that the productive use of AI will

require additional skills. For example, the reward function

engineer must understand both the objectives of the

organization and the capabilities of the machines. Because

machines scale efficiently, if this skill is scarce, then the

best engineers will reap the benefits of their work across

millions or billions of machines.

Precisely because AI-related skills are currently scarce, the

learning process for both humans and businesses will be

costly. In 2017, more than a thousand of the seven thousand

undergraduates at Stanford University enrolled in its

introductory machine learning course. The same trend is

happening elsewhere. But that represents only a fraction of

the workforce. The majority of the workforce was trained

decades ago, which translates to a need for retraining and

reskilling. Our industrial education system is not designed

for that. Businesses should not expect the system to change

quickly enough to supply them with the workers they need

to compete in the AI age. The policy challenges are not

simple: increased education is costly. Such costs need to be

paid, either by higher taxes or by businesses and individuals

directly. Even if the costs could be easily covered, many

middle-aged people might not be eager to return to school.

The people most hurt by skill-biased technology might be

the least prepared for lifelong education.



Will a Few Huge Companies Control

Everything?

It is not just individuals who are worried about AI. Many

companies are terrified that they will fall behind their

competitors in securing and using AI, which is at least in

part due to the possible scale economies associated with AI.

More customers mean more data, more data means better

AI predictions, better predictions mean more customers, and

the virtuous cycle continues. Under the right conditions,

once a company’s AI leads in performance, its competitors

may never catch up. In our Amazon predictive-shipping

thought experiment in chapter 2, Amazon’s scale and first-

mover advantage could conceivably generate such a lead in

prediction accuracy that competitors would find it

impossible to catch up.

This is not the first time that a new technology raises the

possibility of breeding large companies. AT&T controlled

telecommunications in the United States for more than fifty

years. Microsoft and Intel held a monopoly in information

technology in the 1990s and 2000s. More recently, Google

has dominated search, and Facebook has ruled social

media. These companies grew so large because their core

technologies allowed them to realize lower costs and higher

quality as they scaled. At the same time, competitors

emerged, even in the face of these scale economies; just

ask Microsoft (Apple and Google), Intel (AMD and ARM), and

AT&T (almost everybody). Technology-based monopolies are

temporary due to a process that economist Joseph

Schumpeter called “the gale of creative destruction.”

With AI, there is a benefit to being big because of scale

economies. However, that doesn’t mean that just one firm

will dominate or that even if one dominates, it will last long.

On a global scale, that is even truer.



If AI has scale economies, that will not affect all industries

equally. If your firm is successful and established, chances

are prediction accuracy is not the only thing that made it

successful. The abilities or assets that make it valuable

today will likely still be valuable when paired with AI. AI

should enhance an airline’s ability to provide personalized

customer service as well as to optimize flight times and

prices. However, it’s not at all obvious that the airline with

the best AI will have such an advantage that it will dominate

all its competitors.

For technology companies whose entire business might

rest on AI, scale economies might result in a few dominant

companies. But when we say scale economies, how much

scale are we talking about?

There is no simple answer to that question, and certainly

we have no accurate forecast with respect to AI. But

economists have studied scale economies of an important

complement to AI: data. While many reasons might explain

Google’s commanding 70 percent market share in search in

the United States and 90 percent in the European Union, a

leading explanation is that Google has more data for

training its AI search tool than its rivals. Google has been

collecting such data for many years. Furthermore, its

commanding market share creates a virtuous cycle on data

scale that others may never match. If there are data-scale

advantages, Google surely has them.

Two economists—Lesley Chiou and Catherine Tucker—

studied search engines that took advantage of differences in

data-retention practices.8 In response to the EU’s

recommendations in 2008, Yahoo and Bing reduced the

amount of data they kept. Google did not change its

policies. These changes were enough for Chiou and Tucker

to measure the effects of data scale on search accuracy.

Interestingly, they found scale didn’t matter much. Relative

to the overall volume of data that all the major competitors



used, less data did not have a negative impact on search

results. Any present effect was so small as to be of no real

consequence, certainly not the basis of a competitive

advantage. This suggests that historical data may be less

useful than many suppose, perhaps because the world

changes too quickly.

However, we offer an important caveat. As many as 20

percent of Google searches each day are said to be unique.9

Accordingly, Google may have an advantage on the “long

tail” of rarely searched for terms. Scale advantages to data

are not dramatic for the common cases, but in highly

competitive markets like search, even a small advantage in

infrequent searches may translate into a larger market

share.

We still don’t know if the scale advantage of AI is big

enough to give Google an advantage over other large

players like Microsoft’s Bing or if Google is better for reasons

that have nothing to do with data and scale. Given this kind

of uncertainty, Apple, Google, Microsoft, Facebook, Baidu,

Tencent, Alibaba, and Amazon are investing heavily and

competing aggressively to acquire key AI assets. Not only

are they competing with each other but with businesses

that don’t yet exist. They worry that a startup will come

along that “does AI better” and competes directly with their

core products. Many startups are trying, backed by billions

in venture capital.

Despite these potential competitors, the leading AI

companies might get too big. They might buy out the

startups before they become a threat, stifling new ideas and

reducing productivity in the long run. They might set prices

for AI that are too high, hurting consumers and other

businesses. Unfortunately, there is no easy way to

determine if the largest AI companies will get too big and no

simple solution even if they do. If AI has scale advantages,

reducing the negative effects of monopoly involves trade-



offs. Breaking up monopolies reduces the scale, but scale

makes AI better. Again, policy is not simple.10

Will Some Countries Have an

Advantage?

On September 1, 2017, Russian president Vladimir Putin

made this assertion on the significance of AI leadership:

“Artificial intelligence is the future, not only for Russia, but

for all humankind … It comes with colossal opportunities,

but also threats that are difficult to predict. Whoever

becomes the leader in this sphere will become the ruler of

the world.”11 Are countries able to benefit from AI scale

economies the way companies can? Countries can design

their regulatory environment as well as direct government

expenditure to accelerate the development of AI. These

targeted policies might give countries, and the businesses

located in them, an advantage in AI.

On the university and business sides, the United States

leads the world in terms of both research on and

commercial application of AI. On the government side, the

White House published four reports in the final two quarters

of the Obama administration.12 Relative to other areas of

technological advance, that level of effort and coordination

represents a significant government focus on AI. Under the

Obama administration, almost every major government

agency, from the Department of Commerce to the National

Security Agency, was ramping up for the arrival of

commercial-grade AI.

However, the trend lines are changing. In particular, the

world’s largest country, the People’s Republic of China,

stands out for its success in AI, compared to its

technological leadership over the past century. Not only are



two of its AI-oriented tech firms—Tencent and Alibaba—in

the top twelve in the world by valuation, but evidence

suggests that its scientific push in AI may soon lead the

world. For example, China’s share of papers at the biggest

AI research conference grew from 10 percent in 2012 to 23

percent in 2017. Over the same period, the US share fell

from 41 percent to 34 percent.13

Will the future of AI be “made in China,” as the New York

Times proposed?14 Beyond scientific leadership, at least

three additional reasons point to China becoming the world

leader in AI.15

First, China is spending billions on AI, including big

projects, startups, and basic research. One city—China’s

eighth largest—has allocated more resources to AI than all

of Canada. “In June, the government of Tianjin, an eastern

city near Beijing, said it planned to set up a $5 billion fund

to support the AI industry. It also set up an ‘intelligence

industry zone’ that will sit on more than 20 square

kilometers of land.”16 Meanwhile, the US government seems

to be spending less on science under the current Trump

administration.17

Research is not a zero-sum game. More innovation

worldwide is good for everyone, whether the innovation

occurs in China, the United States, Canada, Europe, Africa,

or Japan. For decades, the US Congress worried that

American leadership in innovation was under threat. In

1999, Michigan 13th District Representative Lynn Rivers (a

Democrat) asked economist Scott Stern what the American

government should do to address the increases in R&D

spending by Japan, Germany, and others. His response:

“The first thing we should do is send them a thank you

letter. Innovative investment is not a win-lose situation.

American consumers are going to benefit from more

investment by other countries … It is a race we can all

win.”18 If the Chinese government is investing billions in and



publishing papers about AI, then maybe a thank-you card is

in order. It is making everyone better off.

In addition to investment in research, China has a second

advantage: scale. Prediction machines need data, and China

has more people to provide that data than anywhere else in

the world. It has more factories to train robots, more

smartphone users to train consumer products, and more

patients to train medical applications.19 Kai-Fu Lee, a

Chinese AI expert, founder of Microsoft’s Beijing research

lab, and founding president of Google China, remarked,

“The U.S. and Canada have the best AI researchers in the

world, but China has hundreds of people who are good, and

way more data … AI is an area where you need to evolve

the algorithm and the data together; a large amount of data

makes a large amount of difference.”20 The data advantage

only matters if Chinese companies have better access to

that data than other companies, and evidence suggests

they will.

Data access is China’s third source of advantage. The

country’s lack of privacy protection for its citizens may give

the government and private-sector companies a significant

advantage in the performance of their AIs, especially in the

domain of personalization. For example, one of Microsoft’s

most high-profile engineers, Qi Lu, left the United States for

China, seeing it as the best place to develop AI. He

commented, “It’s not all technology. It’s about the structure

of the environment—the culture, the policy regime. This is

why AI plus China, to me, is such an interesting opportunity.

It’s just different cultures, different policy regimes, and a

different environment.”21

This is certainly the case for pursuing features like facial

recognition. China, in contrast to the US, maintains a

massive centralized database of photos for identification.

This enables companies like Chinese startup Face++ to

develop and license a facial recognition AI to authenticate



the driver for passengers using Didi, the largest ride-hailing

company in China, and also to transfer money via Alipay, a

mobile payment app used by more than 120 million people

in China. This system relies entirely on its facial analysis to

authorize payment. Furthermore, incumbent Baidu is using a

facial recognition AI to authenticate customers collecting

their rail tickets and tourists accessing attractions.22 By

contrast, in Europe, privacy regulation makes data access

far more stringent than elsewhere, which may shut out

European firms from AI leadership altogether.

These factors may create a race to the bottom as

countries compete to relax privacy restrictions to improve

their AI position. However, citizens and consumers value

privacy; it’s not a regulation that only companies care

about. There is a basic trade-off between intrusion and

personalization and a potential for customer dissatisfaction

associated with acquiring user data. At the same time, a

potential benefit arises from being better able to

personalize predictions. The trade-off is further complicated

because of a free-riding effect. Users want better products

trained using personal data, but they prefer that data be

collected from other people, not them.

Again, it isn’t clear which rules are best. Computer

scientist Oren Etzioni argues that AI systems should not

“retain or disclose confidential information without explicit

approval from the source of that information.”23 With

Amazon Echo listening to every conversation in your house,

you want some control. This seems obvious. However, it

isn’t so simple. Your banking information is confidential, but

what about the music you listen to or the television shows

you watch? At the extreme, whenever you ask Echo a

question, it could respond with another question: “Do you

approve giving Amazon access to your question in order to

find an answer?” Reading all the privacy policies of all the

companies that collect your data would take weeks.24 Each



time the AI asks for approval to use your data, the product

becomes worse. It interrupts the user experience. If people

do not provide the data, then the AI can’t learn from

feedback, limiting its ability to boost productivity and

increase income.

There are likely to be opportunities to innovate in a way

that assures people as to their data’s integrity and control

while allowing the AI to learn. One emerging technology—

the blockchain—offers a way of decentralizing databases

and lowering the cost of verifying data. Such technologies

could be paired with AI to overcome privacy (and indeed

security) concerns, especially since they are already used

for financial transactions, an area where these issues are

paramount.25

Even if enough users provide data so AIs can learn, what if

those users are different from everyone else? Suppose only

rich people from California and New York provide data to the

prediction machines. Then the AI will learn to serve those

communities. If the purpose of limiting the collection of

personal data is to protect the vulnerable, then it opens up

a new vulnerability: users won’t benefit from the better

products and greater wealth that AI enables.

The End of the World as We Know It?

Is AI an existential threat to humanity itself? Beyond simply

whether one might get an uncooperative AI like Hal 9000 (in

2001: A Space Odyssey), what apparently keeps some very

serious and smart people like Elon Musk, Bill Gates, and

Stephen Hawking up at night is whether we will end up with

something like Skynet from the Terminator movies. They

fear that a “superintelligence”—to use the term coined by

Oxford philosopher Nick Bostrom—will emerge that pretty

quickly sees humanity as a threat, an irritant, or something



to enslave.26 In other words, AI could be our last

technological innovation.27

We are not in a position here to adjudicate this issue and

cannot even agree among ourselves. But what has struck us

is how close to economics the debate actually is:

competition underpins it all.

A superintelligence is an AI that can outperform humans in

most cognitive tasks and can reason through problems.

Specifically, it can invent and improve itself. While science

fiction author Vernor Vinge called the point at which this

emerges “the Singularity” and futurist Ray Kurzweil

suggested humans are not equipped to foresee what will

happen at this point because we are by definition not as

intelligent, it turns out that economists are actually quite

well equipped to think about it.

For years, economists have faced criticism that the agents

on which we base our theories are hyper-rational and

unrealistic models of human behavior. True enough, but

when it comes to superintelligence, that means we have

been on the right track. We already assume great

intelligence in our analysis. We establish our understanding

through mathematical proof, an intelligence-independent

standard of truth.

This perspective is useful. Economics tells us that if a

superintelligence wants to control the world, it will need

resources. The universe has lots of resources, but even a

superintelligence has to obey the laws of physics. Acquiring

resources is costly.

Bostrom talks of a paper-clip-obsessed superintelligence

that cares about nothing but making more paper clips. The

paper-clip AI could just wipe out everything else through

single-mindedness. This is a powerful idea, but it overlooks

competition for resources. Something economists respect is

that different people (and now AIs) have different

preferences. Some might be open-minded about



exploration, discovery, and peace, while others may be

paper-clip makers. So long as interests compete,

competition will flourish, meaning that the paper-clip AI will

likely find it more profitable to trade for resources than fight

for them and, as if guided by an invisible hand, will end up

promoting benefits distinct from its original intention.

Thus, economics provides a powerful way to understand

how a society of superintelligent AIs will evolve. That said,

our models do not determine what happens to humanity in

this process.

What we have called AI in this book is not general artificial

intelligence but decidedly narrower prediction machines.

Developments such as AlphaGo Zero by Google’s DeepMind

have raised the specter that superintelligence might not be

so far away. It outperformed the world champion–beating

AlphaGo at the board game Go without human training

(learning by playing games against itself), but it isn’t ready

to be called superintelligence. If the game board changed

from nineteen by nineteen to twenty-nine by twenty-nine or

even eighteen by eighteen, the AI would struggle, whereas

a human would adjust. And don’t even think of asking

AlphaGo Zero to make you a grilled cheese sandwich; it’s

not that smart.

The same is true for all AI to date. Yes, research is

underway to make prediction machines work in broader

settings, but the breakthrough that will give rise to general

artificial intelligence remains undiscovered. Some believe

that AGI is so far out that we should not spend cycles

worrying about it. In a policy document prepared by the

Executive Office of the US President, the National Science

and Technology Council (NSTC) Committee on Technology

stated, “The current consensus of the private-sector expert

community, with which the NSTC Committee on Technology

concurs, is that General AI will not be achieved for at least

decades. The NSTC Committee on Technology’s assessment



is that long-term concerns about super-intelligent General AI

should have little impact on current policy.”28 At the same

time, several companies with the expressed mission of

creating AGI or machines with human-like intelligence,

including Vicarious, Google DeepMind, Kindred, Numenta,

and others, have raised many millions of dollars from smart

and informed investors. As with many AI-related issues, the

future is highly uncertain.

Is this the end of the world as we know it? Not yet, but it is

the end of this book. Companies are deploying AIs right now.

In applying the simple economics that underpin lower-cost

prediction and higher-value complements to prediction, your

business can make ROI-optimizing choices and strategic

decisions with regard to AI.

When we move beyond prediction machines to general

artificial intelligence or even superintelligence, whenever

that may be, then we will be at a different AI moment. That

is something everyone agrees upon. When that event

occurs, we can confidently forecast that the economics will

no longer be so simple.

KEY POINTS

The rise of AI presents society with many choices. Each

represents a tradeoff. At this stage, while the

technology is still in its infancy, there are three

particularly salient trade-offs at the society level.

The first trade-off is productivity versus distribution.

Many have suggested that AI will make us poorer or

worse off. That’s not true. Economists agree that

technological advance makes us better off and

enhances productivity. AI will unambiguously enhance

productivity. The problem isn’t wealth creation; it’s



distribution. AI might exacerbate the income inequality

problem for two reasons. First, by taking over certain

tasks, AIs might increase competition among humans

for the remaining tasks, lowering wages and further

reducing the fraction of income earned by labor versus

the fraction earned by the owners of capital. Second,

prediction machines, like other computer-related

technologies, may be skill-biased such that AI tools

disproportionately enhance the productivity of highly

skilled workers.

The second trade-off is innovation versus competition.

Like most software-related technologies, AI has scale

economies. Furthermore, AI tools are often

characterized by some degree of increasing returns:

better prediction accuracy leads to more users, more

users generate more data, and more data leads to

better prediction accuracy. Businesses have greater

incentives to build prediction machines if they have

more control, but, along with scale economies, this may

lead to monopolization. Faster innovation may benefit

society from a short-term perspective but may not be

optimal from a social or longer-term perspective.

The third trade-off is performance versus privacy. AIs

perform better with more data. In particular, they are

better able to personalize their predictions if they have

access to more personal data. The provision of personal

data will often come at the expense of reduced privacy.

Some jurisdictions, like Europe, have chosen to create

an environment that provides their citizens with more

privacy. That may benefit their citizens and may even

create conditions for a more dynamic market for private

information where individuals can more easily decide

whether they wish to trade, sell, or donate their private

data. On the other hand, that may create frictions in



settings where opting in is costly and disadvantages

European firms and citizens in markets where AIs with

better access to data are more competitive.

For all three trade-offs, jurisdictions will have to weigh

both sides of the trade and design policies that are

most aligned with their overall strategy and the

preferences of their citizenry.
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