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1 
The Mighty Question Mark 

SYMBOLS 

ALGEBRA IS just a variety of arithmetic. 
Does that startle you? Do you find it hard to 

believe? Perhaps so, because the way most of us go 
through our schooling, arithmetic seems an "easy" 
subject taught in the lower grades, and algebra is 
a "hard" subject taught in the higher grades. 
What's more, arithmetic deals with good, honest 
numbers, while algebra seems to be made up of all 
sorts of confusing x's and y's. 

But I still say there's practically no difference 
between them and I will try to prove that to you. 

Let's begin by saying that if you had six apples 
and I gave you five more apples, you would have 
eleven apples. If you had six books and I gave you 
five more books, you would have eleven books. 
If you had six dandelions and I gave you five more 
dandelions, you would have eleven dandelions. 

I don't have to go on that way, do I? You can 
see that if you had six of any sort of thing at all 
and I gave you five more of that same thing, you 
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would end with eleven of it altogether. So we can 
forget about the actual object we're dealing with, 
whether apples, books, dandelions, or anything else, 
and just concentrate on the numbers. We can say 
simply that six and five are eleven, or that six plus 
five equals eleven. 

Now people are always dealing with numbers; 
whether in the work they do, in the hobbies they 
pursue, or in the games they play. They must 
always remember, or be able to figure out if they 
don't remember, that six plus five equals eleven, or 
that twenty-six plus fifty-eight equals eighty-four, 
and so on. What's more, they often have to write 
down such arithmetical statements. But the writing 
can get tedious, particularly where the numbers 
grow large and complicated. 

For that reason, ever since the earliest days of 
civilization, people have been trying to figure out 
good short-cuts for writing down numbers. The 
best system ever invented was developed in India 
some time in the 800's. In that system, each 
number from one to nine had its own special mark. 
The marks we use these days in our country are 
1, 2, 3, 4, 5, 6, 7, 8, and 9. In addition, the system 
includes a mark for zero, which we write as 0. 

Any mark written down as a short-cut method 
of representing something is called a "symbol." 
(The very words you are now reading are symbols 
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of the various sounds we make when we speak, and 
the sound we make when we say "horse" is just a 
symbol of the actual creature itself.) 

The marks I have written two paragraphs ago 
are symbols for the first nine numbers and zero, 
and may be called "numerical symbols." The Arabs 
picked them up from the mathematicians of India 
and passed them on to the Europeans in about the 
tenth century. We still call these numerical symbols 
the "Arabic numerals," in consequence. 

All numbers higher than nine can be written by 
using combinations of these numerical symbols 
according to a system which I won't explain here 
because it is so familiar to you.* Thus, the number 
twenty-three is written 23, while seven hundred and 
fifty-two is written 752. 

You can see how handy numerical symbols can 
be. In fact, they are so handy that you would 
never see anyone write: "The total is six thousand 
seven hundred and fifty-two." It would always be 
written, "The total is 6752." A great deal of space 
and effort is saved by writing the numerical symbols 
in place of words, yet you are so accustomed to the 

* Actually, I have explained the number system in a 
book I wrote called Realm of Numbers, published in 
1959 by Houghton Mifflin Company. You don't have 
to read it to understand this book, but you might find 
it useful in explaining some arithmetical points I will 
have to skip over a little quickly here. 
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symbols that you read a sentence containing them 
just as though the words had been spelled out. 

Nor are the numerals the only symbols used in 
everyday affairs. In business, it is so usual to have 
to deal with dollars that a symbol is used to save 
time and space. It is $, which is called the "dollar 
sign." People just read it automatically as though 
it were the word itself so that $7 is always read 
"seven dollars." There is also i for "cents," % for 
"per cent," & for "and," and so on. 

So you see you are completely at home with 
symbols. 

There's no reason why we can't use symbols to 
express almost anything we wish. For instance, in 
the statement six plus five equals eleven, we can 
replace six by 6, five by 5, and eleven by 11, but 
we don't have to stop there. We can have a symbol 
for "plus" and one for "equals." The symbol for 
"plus" is + and the symbol for "equals" is =. 

We therefore write the statement: 6 + 5 = 11. 

FACING THE UNKNOWN 

We are so familiar with these symbols and with 
others, such as — for subtraction, X for multiplica
tion, and / for division that we give them no 
thought. • We learn them early in school and they're 
with us for life. 

But then, later in our schooling, when we pick up 
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new symbols, we are sometimes uneasy about them 
because they seem strange and unnatural, not like 
the ones we learned as small children. Yet why 
shouldn't we learn new symbols to express new 
ideas? And why should we hesitate to treat the 
new symbols as boldly and as fearlessly as we treat 
the old? 

Let me show you what I mean. When we first 
start learning arithmetic, what we need most of all 
is practice, so that we will get used to handling 
numbers. Consequently, we are constantly pre
sented with numerous questions such as: How 
much is two and two? If you take five from eight, 
how much do you have left? 

To write these questions down, it is natural to 
use symbols. Therefore, on your paper or on the 
blackboard will be written 

2 + 2 = 

8 - 5 = 

and you will have to fill in the answers, which, of 
course, are 4 and 3 respectively. 

But there's one symbol missing. What you are 
really saying is: "Two plus two equals what?"; 
"Eight minus five equals what?" 

Well, you have good symbols for "two," "eight," 
"five," "plus," "minus," and "equals," but you 
don't have a symbol for 'Vhat?" Why not have 
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one? Since we are asking a question, we might use 
a question mark for the purpose. Then, we can 
write 

2 + 2 = ? 

8 - 5 = ? 

The ? is a new symbol that you are not used to 
and that might make you uneasy just for that 
reason. However, it is merely a symbol repre
senting something. It represents an "unknown." 
You always know just what 2 means. It always 
stands for "two." In the same way + always 
stands for "plus." The symbol ?, as I've used it 
here, however, can stand for any number. In the 
first case, it stands for 4; in the second case, it 
stands for 3. You can't know what it stands for, 
in any particular case, unless you work out the 
arithmetical problem. 

Of course, in the cases given above, you can see 
the answer at a glance. You can't, though, in more 
complicated problems. In the problem 

? equals a particular number, but you can't tell 
which one until you work out the division. (I won't 
keep you'in suspense because this is not a book of 
problems. In this case, ? stands for 72.) 

But you might wonder if I'm just making some-
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thing out of nothing. Why put in the question 
mark after all? Why not leave the space blank and 
just fill in the answer as, in fact, is usually done? 
Well, the purpose of symbols is to make life simpler. 
The eye tends to skip over a blank space, and you 
have no way of reading a blank space. You want 
to fill the space with a mark of some sort just to 
show that something belongs there, even if you 
don't know exactly what for a moment. 

Suppose, for instance, you had a number of 
apples, but weren't sure exactly how many. How
ever, a friend gave you five apples and, after that 
gift, you counted your apples and found you had 
eight altogether. How many did you have to begin 
with? 

What this boils down to is that some number plus 
five equals eight. You don't know what that "some 
number" is until you think about it a little. The 
"some number" is an unknown. So you can write 

? + 5 = 8 

and read that as, "What number plus five equals 
eight?" If you had tried to do away with symbols 
such as a question mark and just left a blank 
space, you would have had to write 

+ 5 = 8 

and you will admit that that looks funny and is 
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hard to read. So the question mark, you see, comes 
in handy. 

Now would you be surprised to know that we are 
already talking algebra? Well, we are. As soon as 
we begin using a symbol for an unknown quantity, 
we are in the realm of algebra. Most arithmetic 
books, even in the very early grades, start using 
question marks as I have been doing, and they're 
teaching algebra when they do so. 

But this is just arithmetic, you may be thinking. 
Exactly! And that is what I said at the very 

start. Algebra is arithmetic, only broader and 
better, as you will see as you continue reading 
the book. 

It teaches a way of handling symbols that is so 
useful in considering the world about us that all of 
modern science is based on it. Scientists couldn't 
discuss the things that go on about us unless they 
could use symbols. And even after they've done 
that, they couldn't handle the symbols properly 
unless they knew the rules that will be worked out 
in this book. 

INTRODUCING THE LETTER 

Actually, the question mark is not a very good 
symbol for an unknown. It's hard to read because 
we usually come across it at the end of a question 
where we don't read it. And if we force ourselves 
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to read it, the result is a three-syllable phrase: 
"question mark." 

The natural symbol to use would be some letter 
because everyone is familiar with letters and is 
used to reading them. The trouble with that is, 
however, that until Arabic numerals were intro
duced, people used letters as numerical symbols. 
The Roman system was to use V for "five," X for 
"ten," D for "five hundred," and so on. If you 
tried to use letters to represent unknown values as 
well, there would be endless confusion. 

Once the Arabic numerals came in, however, that 
freed the letters for other uses. Even so, it took 
centuries for mathematicians to think of using the 
letters. (Believe it or not, it is very hard to think 
of good symbols. And often the lack of a good 
symbol can delay progress in human thought for 
centuries. A little thing like writing 0 for "zero" 
revolutionized mathematics, for instance.) 

The first person to use letters as symbols for 
unknowns was a French mathematician named 
Francois Vieta (fran-SWAH vee-AY-ta). He did 
this about 1590 and is sometimes called "the father 
of algebra" because of it. 

Of course, there is still the chance of confusing 
letters that stand for unknown quantities with 
letters that form parts of words. For this reason, it 
quickly became customary to use the letters at the 
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end of the alphabet to symbolize unknowns. Those 
letters were least frequently used in ordinary words, 
so there would be least chance for confusion. The 
least-used letter of all is x, so that is used most 
commonly to symbolize an unknown. 

To allow even less chance of confusion, I will 
write x and any other such symbol for an unknown 
in italics throughout this book. Thus, when the 
letter is part of a word it would be "x"; when it is 
a symbol for the unknown it will be x. 

Now, instead of writing "? + 5 = 8," we would 
write "x + 5 = 8." 

Do you see what an improvement this is? First 
of all, x is a familiar symbol, which we are used to 
reading and which can be said in one syllable, "eks." 

Of course, as soon as some people see the x they 
feel frightened. It begins to look like algebra. But 
it's just a symbol doing the same job as the ? that 
is to be found in all elementary arithmetic books. 
It happens to be a "literal symbol" (one consisting 
of a letter) instead of a numerical symbol, but the 
same rules apply to both. If you can handle the 
symbol 4, you can handle the symbol x. 
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Setting Things Equal 

THE IMPORTANCE OF = 

Now THAT we have x, let's find out how 
to handle it. Since I said, at the end of the last 
chapter, that it could be handled in the same way 
ordinary numbers are, let's start with ordinary 
numbers. 

Consider the expression 

3 + 5 = 8 

Notice, first, that it has an "equals sign" in it. 
There are symbols to the left of the "equals sign" 
and symbols to the right of it, and both sets of 
symbols, left and right, represent the same quan
tity. The symbol to the right, 8, represents "eight." 
The symbols to the left, "3 + 5," represent "three 
plus five," and that comes out to "eight" also. 

Whenever you have an "equals sign" with symbols 
on both sides, each set of symbols representing the 
same quantity, you have an "equation." (This 
word comes from a Latin word meaning "to set 
equal.") The word "equation" may make you 
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think of "hard" mathematics, but you can see that 
as soon as the school child works out the simplest 
sum, an equation is involved. 

Of course, in order for a set of symbols to make 
up an equation, they must represent equal quan
tities on both sides of the equals sign. The expres
sion, 4 + 5 = 8, is not a true equation; it is a 
false one. In mathematics, naturally, we try to 
deal with true equations only. 

So let's switch our attention now to an equation 
which has a literal symbol in it, as is the case with 

x + 5 = 8 

The symbol x can represent any number, to be 
sure, but when it is part of an expression containing 
an equals sign, it is only reasonable to want it to 
express only those numbers that make a true equa
tion out of the expression. If, in the expression 
above, we decide to let x represent "five," then we 
can substitute 5 for x and have the expression 
5 + 5 = 8, which is not a true equation. 

No, there is only one number that can be repre
sented by x in the expression if we are to make an 
equation out of it, and that is "three." If we substi
tute 3 for x, we have the expression 3 + 5 = 8, 
which is an equation. No other number substituted 
for x will do. 
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Of course, that is only what x is equal to in this 
particular expression. It may equal something else 
entirely in other expressions. 

If x + 17 = 19, then x = 2; if x + 8 = 13, then 
x = 5, and so on. In each case you must pick the 
one number for x that makes an equation out of 
the expression. 

SOLVING FOR X 

But how do you pick a proper number for x when 
the equation becomes comphcated? It is easy to 
see that x must be equal to 3 in the expression 
x + 5 = 8, because we know at^once and with 
hardly any thought that 3 + 5 = 8. But suppose 
we had the expression x + 1865 = 2491. How do we 
pick the proper value of x in that case? 

We could try different numbers one after the other 
and wait until we happened to hit one that would 
make an equation out of the expression. If we were 
lucky, we might eventually happen to light on the 
number 626. If we substitute it for x, we have 
626 + 1865 = 2491, and behold, this is an equa
tion. Hurrah! We now know that x = 626, and we 
have solved the equation. 

Mathematicians, however, hate to use hit-and-
miss tactics as a method of solving an equation. 
It's too uncertain and takes too long. Besides, 
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there are methods for solving an equation that are 
not hit-and-miss. There are rules for solving equa
tions. * 

The rules tell you how to rearrange an equation so 
that it becomes easier to solve for x. There are 
numerous ways of rearranging an equation, but 
there is one thing you must always be careful of. 
In rearranging an equation, you must always keep 
it a true equation! Whatever you do, you must 
always see to it that the symbols on the left side 
of the equals sign represent the same quantity as 
those on the right side. 

* About 825, some of these rules were first presented 
in a book written by an Arabian mathematician named 
Mohammed ibn Musa al-Khowarizmi. The name of 
his book, in Arabic, is "ilm al-jabr wa'l muqabalah," 
which means, in English, "the science of reduction and 
cancellation." Reduction and cancellation were the 
methods he used to deal with equations, you see. 
Al-Khowarizmi didn't use the symbols we use today, 
but his methods for dealing with equations so 
impressed Europeans when they first obtained trans
lations of his book that the subject of handling equa
tions is still called "algebra," which is a mispronuncia
tion of the second word in the book's title. 
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One way of rearranging an equation without 
making it false is to add the same quantity to both 
sides, or to subtract the same quantity from both 
sides. We can see examples of this clearly if we 
use only numerical symbols. For instance, since 
3 + 5 = 8, then 

3 + 5 - 4 = 8 - 4 
and 

3 + 5 + 7 = 8 + 7 

In the first case, both sides of the equation equal 
four; in the second, both sides equal fifteen. 

Well, anything that applies to numerical symbols 
applies also to literal symbols. (This is the key to 
understanding algebra.) If we say that x + 5 = 8 
is an equation, then x + 5 + 3 = 8 + 3 is also 
an equation, and so is x + 5 — 2 = 8 — 2. 

Now suppose, in this particular case, we sub
tract five from each side of the equation. We begin 
with x + 5 = 8 and, subtracting five from each side, 
we have 

x + 5 - 5 = 8 - 5 

But if we add five to any quantity, then subtract 
five, we are left with the quantity itself. It's like 
taking five steps forward, then five steps backward; 
we end where we started. Thus, 3 + 5 — 5 = 3; 
17 + 5 — 5 = 17, and so on. 
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Consequently, x + 5 - 5 = x, and when we say 
that x + 5 - 5 = 8 — 5, we are actually saying 
x = 8 - 5. 

What we have worked out, then, is this: 

If x + 5 = 8 

then x =8 — 5 

We seem to have rearranged the equation by 
shifting the 5 from the left side to the right side. 
Such a shift is called a "transposition" (from Latin 
words meaning "to put across"), but please be 
very careful to notice how it came about. We 
didn't really move the 5; what we did do was to 
subtract a 5 from both sides of the equation, and 
the effect was as though we had moved the 5. 

Nowadays, mathematicians like to concentrate 
on subtracting equal numbers from (or adding 
equal numbers to) both sides of an equation and let 
what seems to be the transposition take care of 
itself. However, as one gets used to handling equa
tions, it begins to seem a waste of time always to 
add and subtract numbers when the same result 
arises by just shifting a number from one side of the 
equation to the other. I will do this throughout the 
book and I will talk about "transposing" and 
"transposition." I hope you will continue to think 
of such a way of treating equations as nothing more 
than a short cut, and remember that what I am 
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really doing is subtracting equal numbers from (or 
adding equal numbers to) both sides of the equation. 

Notice also that when I transposed the 5 in the 
equation I used above as an example, the plus sign 
changed to a minus sign. This shows one of the 
dangers of shifting numbers without stopping to 
think of what you are really doing. If you merely 
shift a 5, why should the plus sign be affected? But 
if you subtract 5 from both sides of the equation, 
then the plus sign automatically becomes a minus 
sign as the 5 seems to shift. 

What if we had started with the equation 

x - 5 = 8 

We can add 5 to both sides of the equation and keep 
it true, so that x — 5 + 5 = 8 + 5. But since 
x — 5 + 5 = x (if you go backward five steps, then 
forward five steps, you end in the starting place) 
then 

x = 8 + 5 

Again, it is as though we Jiad shifted, or trans
posed, the 5, and again we have changed the sign, 
this time from minus to plus. 

Now addition, represented by the plus sign, and 
subtraction, represented by the minus sign, are 
examples of "operations" performed upon numbers, 
whether represented by numerals or by letters. 
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These operations are constantly used in arithmetic 
and also in algebra, so they may be called "arith
metical operations" or "algebraic operations." We 
are concentrating on algebra in this book, so I will 
speak of them as algebraic operations. 

Addition and subtraction, taken together, are 
examples of "inverse operations," meaning that one 
of them undoes the work of the other. If you add 
five to begin with, you can undo the effect by sub
tracting five afterward. Or if you subtract five to 
begin with, you can undo that by adding five after
ward. We have just had examples of both. 

You can see then that transposition changes an 
operation to its inverse. An addition becomes a sub
traction on transposition, and a subtraction becomes 
an addition. 

Do you see why all this should be helpful? Let's 
go back to the big-number equation I used near the 
beginning of the chapter. It was 

x + 1865 = 2491 

By transposition, the equation becomes 

x = 2491 - 1865 

The expression on the right side of the equation 

« _ ^ _ ^ _ _ m 
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is now ordinary arithmetic. It can be easily worked 
out to 626, so we ean write 

x = 626 

and we have solved for x not hit-and-miss, but by 
the smooth working out of an algebraic rule. In the 
same way, the equation x — 3489 = 72 becomes, by 
transposition, x = 72 + 3489, so that x works out 
to be equal to 3561. 

But how can you be sure you have solved the 
equation? How can you feel certain that you can 
trust the rules of algebra? Whenever you have 
obtained a numerical value for x in however com
plicated an equation and by however complicated 
a method, you should be able to substitute that 
numerical value for x in the original equation with
out making nonsense of it. 

For the equation x — 3489 = 72, I have just 
worked out the value of x to be 3561. Sub
stituting that for x in the equation, we have 
3561 — 3489 = 72. Common arithmetic shows us 
that this is an equation, so our value for x is correct. 
No other numerical value would have made an 
equation out of this expression. 

Now that we have a rule, how is it best to state 
it? I have been using particular numbers. I have 
said that if you begin with x + 5 = 8, you can 
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change that to x = 8 — 5, and if you begin with 
x + 1865 = 2491, you can change that to x = 
2491 — 1865. However, when you put a rule that 
way there is always the danger that you might be 
giving the impression that the rule holds only for 
the particular set of numbers you have used as 
an example. 

One way of trying to avoid that would be to list 
the rule for all possible sets of numbers, but no one 
would be foolish enough to try that. There is an 
endless group of sets of numbers and such a task 
would never be finished. Instead, we can turn to the 
use of symbols again. 

Suppose we let a and b stand for a pair of numbers. 
They might stand for 1 and 2, or for 3 and 5, or for 
75 and 8,358,111 — any pair of numbers at all. 
Then we can say that one rule covering the handling 
of equations is this: 

If x + a = b 

then x = b — a 

And if x — a = b 

then x = b + a 

Now, you see, the rule covers not just particular 
sets of numbers, but any set. We have used general 
symbols, instead of particular numerals. 
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BOTH SIDES OF ZERO 

Have I gone too far now? I have said that a and 
b can stand for any numbers, so suppose I let a 
stand for 8 and b stand for 3. Now the general 
equation x + a = b becomes x + 8 = 3. The rule 
of transposition lets the equation be changed to 
x — 3 — 8, and the question is: What does 3 — 8 
mean? 

The early mathematicians considered expressions 
of the type of 3 — 8 to have no meaning. How can 
you take eight away from three? If you only have 
three apples, how can anyone take eight apples 
from you? What they decided, then, was that an 
equation such as x + 8 = 3 had no solution for x 
and they refused to work with such equations. 

This will not do, however. Mathematicians hate 
to be in a position where they are faced with an 
unknown for which they can find no solution. 
Sooner or later, one of them will work up a system 
which will allow a solution. In this case, the 
mathematician to do so was an Italian named 
Geronimo Cardano (kahr-DAH-no), back about 
1550. f 

The system is simple enough. If you have three 
apples, it is possible for someone to take eight 
apples from you. All that has to happen is for you 
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to give him the three you have and agree to owe 
him five more. You must assume a debt. 

In the same way, if you are at the starting post 
of a race, take three steps forward, then eight steps 
backward, you end up five steps behind the start
ing post. 

All you need is some way of showing numbers that 
are less than zero; that represent a debt; that mark 
a position behind the starting post. Cardano 
pointed this out carefully. Since such numbers are 
come across in the process of subtraction, the minus 
sign is used to distinguish them from ordinary 
numbers. 

Thus 3 - 8 = - 5 . If x = 3 - 8, then x = - 5 . 
Cardano's system produced a reasonable solution 
for x in such cases. 

Numbers with a minus sign, which symbolize 
quantities less than zero, are called "negative 
numbers." The word "negative" comes from a 
Latin word meaning "to deny." That shows how 
reluctantly mathematicians came to use such num
bers even after they realized they had to, unless 
they wanted to leave certain equations unsolved. 
It was as though they were still denying that such 
numbers really existed. 

Ordinary numbers, symbolizing quantities greater 
than zero, are called "positive numbers." When 
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you want to show beyond the shadow of a doubt 
that a number is a positive number and not a 
negative one, you can put a plus sign before it. 
This is done because, in the process of addition, 
only positive numbers ever arise out of positive 
numbers. Instead of writing simply 5, you might 
write + 5 . 

Positive numbers, however, were used for so 
many centuries before negative numbers were 
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accepted — and, what's more, positive numbers are 
still used so much more than are negative numbers 
— that everybody takes the plus sign for granted. 
Whenever you see a number without a sign, you 
can safely assume it is a positive number. This 
means that if you want to use a negative number, 
you must put a minus sign before it, or everyone 
will take it for a positive number. 

There is one drawback to this particular system 
of signs and that is that we are making the same 
sign do two different jobs, which can be confusing. 
The sign + is used to indicate the operation of 
addition, in which case it is properly called the 
"plus sign." It is also used to indicate a number to 
be positive, in which case it should be called the 
"positive sign." In the same way, the minus sign 
should be called the "negative sign" when it is 
used to indicate a negative number. 

One reason why we can get away with letting 
these symbols do double duty is that the positive 
sign (which is used so much more than the negative 
sign) is generally omitted, so that we're not even 
aware of it. It makes us think the plus sign is all 
there is. But let's try to write an equation with the 
positive signs included. 

For instance, the equation x + 3 = 5 should 
really be written 

(+x) + (+3) = (+5) 
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We use the parenthesis to show that the + symbol 
inside it belongs to the number and is a positive 
sign. The parenthesis hugs symbol and number 
together, so to speak. The + symbol between the 
parentheses is a true plus sign and signifies the 
process of addition. 

Let's see how this works out if we use negative 
numbers. Suppose we have the equation 

(+x) + (-3) = (+5) 
Well, when we add a negative number to some
thing, we are adding a debt, so to speak. If I give 
you a three-dollar debt, I am adding that debt to 
your possessions, but that is the same as making 
you poorer by three dollars. I am taking three 
dollars from you. There the equation can also be 
written 

(+x) - (+3) = (+5) 
Very much the same thing happens, if we sub

tract a negative number, as in 

(+x) - (-3) = (+5) 
If I take a three-dollar debt away from you by 
offering to pay it myself, you are automatically 
three dollars richer. It is as though I had given 
you three dollars in cash. So this equation can 
be written 

(+x) + (+3) = (+5) 
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Now let's make this as simple and as familiar in 
appearance as possible by leaving out the positive 
signs and the parentheses that go with them. 
Instead of saying that (+x) + ( — 3) is the same as 
(+x) — (+3), we will say that 

x+ ( - 3 ) = x - 3 

This looks like an equation, but it is more than 
that. An ordinary equation, such as x + 2 = 5, is 
true only for a particular value of x; in this case 
only for x = 3. 

The statement that x + (—3) is the same as 
x — 3, however, holds true for all values of x. No 
matter how much money you have, in other words, 
adding a three-dollar debt is the same as taking 
away three dollars in cash. 

Statements which hold true for all possible values 
of x are called "identities." Often, but not always, 
a special sign is used to indicate an identity, and I 
will make use of it whenever I want to show an 
identity. The "identity sign" consists of three short 
dashes, =, a kind of reinforced equality, so to 
speak. It is read "is the same as" or "is identical 
with." 

So we can write: x + (—3) = x — 3, or x — 
( -3 ) = x + 3. 

To make the rule general, we should avoid using 
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particular numbers. It works for all numbers and 
we should therefore use general symbols, such as 
the letter a, and say 

x + (—a) = x — a 

x — (—a) = x + a 

AVOIDING THE NEGATIVE 

This way of switching from negative to positive 
comes in handy when negative numbers occur in 
equations and must be dealt with. Suppose you had 
the equation x + ( — 3) = 5. You would transpose 
the —3, changing the addition to a subtraction 
(it is the sign of the operation that is changed, not 
the sign of the number) and get x = 5 — (—3). 

This can at once be changed to x = 5 + 3, 
which comes out to 8. 

Or you could tackle the equation before trans
posing. Keeping the rules of signs in mind, you 
could change x + (—3) to i- (+3), which, of 
course, you would write as simply x — 3, so that 
the equation becomes x — 3 = 5. Transposing, you 
would get x = 5 + 3, which again comes to 8. 

You see, if you use algebraic rules properly, the 
value of x will always come out the same, no matter 
what route you take to arrive at that solution. 
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If you work out an equation one way and come out 
with x = 6, then work it out another way and come 
out with x = 8, you can be sure that you have made 
a mistake in handling the rules. 

Sometimes, in working with complicated equa
tions, it is not easy to see where a mistake in 
handling the rules was made. Then it seems as 
though one can use the rules to show something 
that is nonsense; that 1 = 2, for instance. Such 
an apparent contradiction is called a "fallacy," 
from a Latin word meaning "deceive." Profes
sional mathematicians working out new advances 
are particularly anxious to avoid fallacies, but once 
in a while even the best of them may fall victim 
to one. 

The rules governing positive and negative signs 
offer another advantage. They make it possible to 
avoid subtraction altogether by changing all sub
tractions to additions. Instead of ever writing 
x — 3, we can always write x + ( — 3). 

The point in doing this is that some of the rules 
governing addition are not the same as those 
governing subtraction. I can show this by first 
considering operations involving numerical symbols 
only. 

It doesn't matter, does it, in what order 
given numbers are added? Thus, 5 + 3 = 8, and 
3 + 5 = 8. If Joe gives you $5 and Jim gives you 



Setting Things Equal 29 

$3, you don't care which one pays up first; you end 
with $8 total either way. Using general symbols, 
you can say 

a + b = b + a 

But how about subtraction? If 5 — 3 = 2, does 
3 — 5 give you the same quantity? It does not. 
As you now know, 3 — 5 = — 2. The two answers 
are not the same and therefore 

where, as you can probably guess, the symbol 
means "is not identical with."* 

You see, then, that if you're handling only addi
tions, you can relax as far as the order in which the 
symbols are taken is concerned. If you're handling 
subtractions, you have to be careful about the 
order, or you may find yourself coming out with 
the wrong answer. 

This is not likely to happen in ordinary arith
metic, where you would probably never write 
3 — 5 when you mean 5 — 3. However, in compli
cated equations where arrangements and rearrange
ments are constantly being made, it is only too 

* Of course, if o and 6 represented the same number, 
then a — b = b — a, because both expressions would 
equal 0. This, however, is not an important exception. 
It is what mathematicians call "trivial." 
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easy to shift the order of the various symbols with
out noticing, You might then find yourself in the 
middle of a fallacy. 

To avoid trouble, you might eliminate all sub
tractions by changing expressions like a — b to 
a + ( — b). Then the order makes no difference. 
If you write an expression as x — 3, for instance, 
you must never write it as 3 — x. If you write it 
instead as x + (—3), you can write it as ( — 3) + x 
with complete ease of mind. 

This method of changing subtraction to the ad
dition of negative numbers is called "algebraic 
addition" simply because one first comes across it 
in algebra. It is really no different from ordinary 
addition, however, once you have learned to handle 
positive and negative signs. 

Incidentally, when a negative number is the first 
symbol in an expression, it is not necessary to use 
the parenthesis since there is no sign for any oper
ation preceding it, and no chance of confusing the 
negative sign with a minus sign. For that reason, 
x + (—a) is always written with the parenthesis, 
but (—a) + x is usually written as simply — a + x. 



3 
More Old Friends 

A NEW KIND OF SHIFT 

IN THE previous chapter, all I talked about 
were two algebraic operations, addition and sub
traction. Now it is time to pass on to two more, 
multiplication and division. These two operations 
are also old friends, frequently used in ordinary 
arithmetic, and used in exactly the same way 
in algebra. 

To show you how these new operations might 
arise as part of equations, suppose that you buy a 
number of oranges for You don't know exactly 
how many oranges there are in the bag, but you 
know that these particular oranges are apiece. 
Therefore, you know that the number of oranges, 
whatever that number is, multiplied by 4, will give 
the answer 48. If you let the number of oranges 
be represented by x, you can write the equation 

Now we need to solve for x. But how does one 
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go about this where the multiplication sign (X) 
is involved? 

In the previous chapter, remember, I said that 
an equation remains an equation if the same number 
is added to both sides or subtracted from both 
sides. Well, it is also true that an equation remains 
a true equation if both sides are multiplied by the 
same number. For that matter, both sides may 
also be divided by the same number (with the one 
exception that neither side can be divided by zero, 
as I shall explain shortly). Suppose, for instance, 
we divide both sides of the equation just given by 4. 
We can write the result this way, then: 

where -5- is the symbol for division. 
Now if we multiply a number by a particular 

quantity, then divide the product by that same 
quantity, we are back to the original number. 
(If you're in doubt, try it on various numbers.) 
Or, to put it another way, the expression 4 -f- 4 is 
equal to 1, so that is equal to 
Then, since any number, known or unknown, multi
plied by 1, remains unchanged, 

The equation becomes, therefore, 
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A very similar situation works itself out if we 
have an equation involving a division such as 

Suppose we multiply both sides of the equation 
by 4. Then we have 

Dividing by 4, then multiplying the quotient by 4, 
gives us back the original x, of course, so that the 
equation becomes 

Since division undoes the effect of multiplication, 
and vice versa, these two are inverse operations 
and form a pair after the fashion of addition and 
subtraction. 

If you go over what has been done so far in 
this chapter, you will see that, just as in the case 
of addition and subtraction, handling multiplica
tions and divisions involves what seems a shift in 
numbers from one side of the equation to the 
other. This is so like the transposition I mentioned 
in the previous chapter that I will call this shift by 
the same name. This new kind of transposition is 
still a short cut and nothing more. Remember that 
what is really involved is multiplication (or division) 
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by equal numbers on both sides of the equation. 
And again, this new transposition changes an oper
ation into its inverse; multiplication is changed to 
division, and division is changed to multiplication. 

We can make a general rule of this by using 
letter symbols. 

In dealing with division, by the way, mathe
maticians have a special rule that is quite important, 
and I had better tell you about it now. This rule 
absolutely forbids division by zero. Dividing by 
zero makes no sense, you see, for ask yourself what 
I or any number, for that matter, 
divided by zero. That's like asking how many 
zeros must be lumped together in order to reach 5, 
or 10, or any number. It's like asking how many 
times you must put nothing into a pail in order to 
fill it. These are senseless questions, you see, and 
to avoid trouble, they should not even be asked. 

In arithmetic, it is easy not to divide by 0, but in 
algebra, there are dangers. Sometimes a number is 
divided by a combination of literal symbols that 
happens to equal zero without the mathematician 
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noticing. If ordinary rules of algebra are applied 
to such an expression, nonsensical answers are often 
produced. In fact, a very common source of falla
cies is the accidental division by zero somewhere in 
the manipulation of the equations. 

Consequently, when I use an expression such as 
can represent any value at all, as is 

usual with literal symbols. The symbol a, however, 
can only represent any value except zero. This 
must be kept in mind. 

ELIMINATING THE CONFUSION IN SYMBOLS 

Actually, the multiplication and division signs, 
although common in arithmetic, are hardly ever 
used in algebra. For one thing, the multiplication 
sign is very much like an x. This symbol of the 
unknown is not used in ordinary arithmetic, so 
there is no danger of confusion there. In algebra, 
however, where x is used in almost every equation, 
the possibilities of confusion between x and X are 
very good. 

There are other ways in which the operation of 
multiplication is often symbolized. One is by the 
use of a dot. Instead of writing x X 4, we could 
write This is often done in algebra, but hardly 
ever in ordinary arithmetic, for to write 2 • 3 instead 
of 2 X 3 is to raise the possibility of confusion with 
the decimal point. To be sure, the decimal point is 
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written at the bottom of the line, 2.3, while the 
multiplication dot is centered, but if you are 
reading rapidly you are very likely not to notice 
the difference. 

A still greater simplification is that of doing away 
with a symbol for multiplication altogether. Suppose 
you say "four apples." What you really mean is 
"four times one apple." Similarly, you can speak 
of 4 pairs or 4 dozen or 4 anything. 

You could even write or speak of 4 6's. By that 
you would mean 6 and 6 and 6 and 6, and if you 
are interested in the total quantity, that is 4 X 6. 
To speak of 4 6's is therefore much the same as 
speaking of 4 X 6. The difficulty of doing this in 
ordinary arithmetic, however, is that to write 4 
6's is to risk a great chance of confusion with the 
number 46. 

In algebra, however, you can easily write 4 x's to 
indicate There's no danger of confusion 
there. You could even bring the 4 and the x right 
up next to each other without leaving any space 
and still have no confusion; and you can leave out 
the plural (saying "four eks" rather than "four 
ekses"). In other words, can be written 
simply 4x and, in algebra, this is almost always 
done. It will be done from here on, in this book. 

In order to use this very convenient system even 
when only numerals are involved, parentheses can 
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be used. Each number involved in the multiplica
tion is enclosed in a parenthesis showing that it is 
a number all by itself; thus, (4)(6) or (46)(23). The 
numbers are thus kept apart and cannot be 46 in 
the first place or 4623 in the second. Sometimes 
this is made more emphatic by using the multiplica
tion dot and writing but this is not really 
necessary. 

I will indicate the multiplication of numerical 
symbols by means of parentheses in this book 
from now on, in order to avoid the multiplication 
sign. This may seem strange to you at first, but 
you will quickly grow used to it. 

The ordinary division sign in arithmetic also 
allows room for confusion. It is too like the minus 
sign, differing by only two dots which are easily 
overlooked. And if the two dots smudge a little, 
the sign can become similar to the plus sign. 

In algebra, then, it is usual to indicate division 
by drawing the two symbols together, with a line 
between. The line may be either slanting or hori
zontal. The slanting line, /, is sometimes called a 
"shilling mark" because the British use it as a 
symbol for their coin, the shilling. The horizontal 
line, —, used in division may look even more like 
a minus sign than does the ordinary division sign, 
but there are crucial differences. A minus sign lies 
between two numbers, one on its left and one on 



3 8 A L G E B R A 

its right. The horizontal division line separates 
two numbers above and below, and there is actually 
no danger of confusion at all. 

Using this system for symbolizing multiplication 
and division, we can write the general rules for 
handling them in equations as follows: 

If ax = b 

then x = ~ 
a 

And if - = b 
a 

then x = ba 

Compare these with the rules given on page 34 and 
you will see that I have only changed the system of 
indicating the operations and nothing more. 

Let me now explain something about multiplica
tion and division that resembles a point I have 
already made in connection with addition and 
subtraction. 

When you multiply two numbers together, it 
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doesn't matter which number you multiply by which. 
Thus, (6) (8) = 48 and (8) (6) = 48 also. This is a 
general rule that can be written 

It follows then that yet although these 
two expressions have identical values, mathemati
cians always write Ax and never write xA. It isn't 
incorrect to write xA; it just isn't done. You 
might almost think of it as a kind of mathematical 
etiquette, like not using the wrong fork for salad, 
even though you can eat the salad easily with it. 

Whenever mathematicians, or any other group 
of people, in fact, all make use of a particular 
way of doing things when another way might do 
just as well, they are adopting a "convention." 
For instance, any letter, such as q or m or even a 
made-up sign such as ould do to represent an 
unknown quantity, but it is conventional, the world 
over, to use x. 

Such conventions are by no means a sign of 
sheeplike behavior. They are an important con
venience. They make certain that all mathemati
cians everywhere speak the same mathematical 
language. It would be troublesome, time-wasting, 
and a source of confusion to have one mathemati
cian puzzled by the writings of another just because 
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each was using a different convention. They would 
both be right, perhaps, but neither would be clear 
to the other. 

As for division, here, as in the case of subtraction, 
the order of the number does make a difference. 

MANEUVERING FRACTIONS 

We seem to have stumbled into fractions* here, 

for certainly expressions such as look like 

fractions. And, as a matter of fact, they are 
fractions. 

The solution of any equation involving a multi
plication or division is quite likely to introduce a 
fraction. Sometimes such a fraction can be con-

* I am going to assume in this book that you know 
how to handle fractions and decimals in ordinary 
arithmetic. If, by any chance, you feel a little shaky 
or just want to brush up on general principles, you 
could glance through Chapters 4 and 5 of Realm of 
Numbers. 
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verted to an ordinary "whole number" or "integer." 
Thus, earlier in the chapter, we came up against 

the fraction which can be written as the whole 

number 12. This is the exceptional case, however. 
Suppose, instead, that we have the equation 

By transposing, we have 

The fraction cannot be changed into a whole 

number. The best you can do is write it as 

A fraction can also be referred to as a "ratio," 
and it is important to remember that whole numbers 
can also be written as fractions, or ratios. The 

number 12 can be written 

For that reason, whole numbers and fractions, both 
positive and negative, are lumped together as 
"rational numbers," that is, numbers which can be 
expressed as fractions, or ratios. 

Fractions in algebra are handled in the same 
way as in arithmetic. For instance, equations 
involving the addition and subtraction of fractions 
introduce nothing new at all. 
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(It might suddenly occur to you that by the 

algebraic system of denoting multiplication, a num

ber like 3 - might signify 3 multiplied by - . How

ever, it doesn't. In arithmetic, 3 - means 3 plus - , 

and algebra accepts that as too familiar to change. 

To write 3 multiplied by - without using the multi

plication sign, parentheses must be used thus, 

Where literal symbols are used, we need 

not be so careful, since there is nothing in ordinary 

arithmetic for ;o be confused with. That expres

sion means x multiplied by - , but, of course, it is 

always written j x by convention. If you do want always written j x by convention. If you do want 
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to indicate an addition, you write it out in full, 

Now suppose you find yourself involved in the 
multiplication of a fraction. Such a situation might 
arise as follows. You are told that your share of a 

certain sale will amount to of the total. The sale 

is made and you are given $18. From that you can 

calculate what the total sale amounted to. If you 

let the unknown value of the total sale be repre

sented by x, then of that is 18 and you can write the 

equation 

There are several ways of proceeding. First, any 
fraction multiplied by its reciprocal* is equal to 1. 
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equation becomes simply x, and by working out the 
right-hand side in ordinary arithmetic, we find that 
x equals 45. That is the full value of the sale, for 

The general rule for such a situation, then, is that 
a fraction involved in a multiplication, when trans
posed, is converted to its reciprocal, thus: 

It may seem to you that here is a case where a 
multiplication of a fraction is left a multiplication 
of a fraction after transposition, instead of being 
converted to the inverse operation. However, there 
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r 
is an explanation for this. An expression like 

involves both a multiplication and a division since 

it stands for a multiplied by x and then the product 

divided by b. (If you doubt this, check an expres

sion involving numerals, such as ind see if 

the answer isn't obtained by working out 2 multi
plied by 6 and then the product divided by 3.) 
When the fraction is transposed, the multiplication 
becomes a division and the division becomes a 
multiplication. It is because of this double change 
to the inverse that there seems to be no change 
at all. 

This can be made plainer by handling the frac

tion one piece at a time. Since ( e ) x signifies 2 

2x 
multiplied by x divided by 5, it can be written -=-, 

5 

and the equation ( - J x = 18 becomes 
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and then transpose the 2, so that 

Or, if you preferred, you could first transpose the 
2 to give 

(or 45) 

Or perhaps you would like to work with decimals. 

The fractioi is equal to 0.4 in decimals, so you 

can say 

If you multiply both sides of the equation by 10, 
you can get rid of the decimal point since 
is equal to 4. Therefore you have 

4x = 180 

And, by transposing 

The important point here, once again, is that no 
matter what rules you use for handling the equa-



x = (-5)(3) 

and what does that mean as far as the value of x 
is concerned? 

Now (—5) (3) indicates a multiplication of —5 
by 3. It is the equivalent of tripling a five-dollar 
debt. If three people each have a five-dollar debt, 
the total for the group is a fifteen-dollar debt. 
Therefore ( — 5)(3) is equal to —15 and that is the 
value of x in-the equation above. If you had taken 
five debts of three dollars each, you would still have 
ended with a fifteen-dollar debt, so (5) ( — 3) is also 
equal to —15. 

Using letter symbols to make the rule general: 
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This does not use up all the variations that are 
possible. What if both numbers being multiplied 

are negative? For instance, in the equation 

— 5, transposition shows that x = (— 5) (— 3). How 
do you evaluate x now? 

Unfortunately, there is no easy way of seeing the 
meaning of such a multiplication of a negative by 
a negative. It might represent a debt of five dollars 
held by each of —3 people, but what on earth can 
we mean by —3 people? 

Instead of trying that, let's take a closer look at 
the three rules for multiplication of signs I have 
already given you. Notice that when a quantity is 
multiplied by a positive number, the sign of the 
product is the same as the sign of the original 
quantity. If -fa is multiplied by a positive number, 
the sign of the product is +; while if —a is multi
plied by a positive number, the sign of the product 
is —. 

It sounds reasonable to suppose that when a 
quantity is multiplied by a negative number, the 
sign of the product is the reverse of the sign of the 
original quantity. We have one case in the three 
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rules where +o is multiplied by a negative number 
and the sign of the product is —. If that is so, 
then when —a is multiplied by a negative number, 
the sign of the product should be +. This conclu
sion has proven satisfactory to mathematicians, so 
we can say 

The same rule of signs holds in division as in mul
tiplication. This can be shown in several different 
ways, but I shall do so by making use of reciprocals. 

From ordinary arithmetic, we know that -%• = 5 

and that (10) (^j = 5. Notice, tj», that - is the 

reciprocal of 2 (which can be written, remember, 

2\ 



50 A L G E B R A 

In short, you can try any number of such cases 
and you will always find that it doesn't matter 
whether you divide a quantity by a particular 
number or multiply that quantity by the reciprocal 
of that particular number. Either way, you get 
the same answer. Speaking generally: 

This means that just as we can always turn a 
subtraction into an addition by changing the sign 
of the number being subtracted, so we can always 
turn a division into a multiplication by taking the 
reciprocal of the divisor. 

If we have the expression , which involves 

the division of a negative number by a positive 

number, we can change it to which 

involves the multiplication of a negative number 

by a positive number. Since must equal 

— 3 by the rule of signs (negative times a positive 

equals a negative), then must also equal —3. 

Thus, the rule of signs must be the same in 
division as in multiplication. If it were not, we 
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would be stuck with two different answers according 
to the method we used to obtain those answers. 
We might get a +3 if we divided, but a —3 if we 
used the reciprocal rule and then multiplied. 

The rule of signs would then be "inconsistent" 
with the reciprocal rule, and this is a fatal sin in 
mathematics. Mathematicians feel they must be 
"consistent" at all costs. All their rules must fit 
together, and no one rule must contradict any other. 

In the interest of consistency, then, the rule of 
signs in divisions can be expressed thus: 
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Mixing the Operations 

MORE THAN ONE 

So FAR, I have kept my equations as 
simple as I can. I have used no expression with 
more than one plus sign or one minus sign in it. 
There is no rule, though, that makes this necessary. 
I have complete liberty to write an expression such 
as x + 3 + 2 — 72, or one of any length, if I wished. 

Each of the items being added or subtracted in 
such an expression is called a "term." It doesn't 
matter whether the item is a numerical symbol or 
a literal symbol. In the expression I have just 
used, 72, 2, 3, and x are all terms. 

An expression which is made up of a single term 
is called a "monomial." (The prefix "mono-" is 
from the Greek word for "one.") Expressions with 
more than one term are named by the use of prefixes 
representing the particular number (in Greek) of 
terms involved. An expression with two terms, such 
as x + 3, is a "binomial," one such as x + 3 + 2 
is a "trinomial," one such as x + 3 + 2 — 72 is a 
"tetranomial," and so on. It is usual, however, to 
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lump together all expressions containing more than 
one term as "polynomials," where the prefix "poly-" 
comes from the Greek word for "many." 

In ordinary arithmetic, little attention is paid to 
the number of terms in any expression, since by 
adding and subtracting they can all be reduced to 
a single term anyway. Faced with an expression 
like 17 + 5 - 1 6 + 1 2 - 3 , it is the work of a 
moment (thanks to a few years of painful drill in 
the first few grades) to convert it into the single 
term 15. 

In algebra, however, where literal terms are 
involved, matters aren't quite that simple. All is 
not lost, though. For one thing, the numerical 
terms, at least, can be combined into a single 
term. The equation x + 3 + 2 + 5 = 17 + 4 -9 
can be changed without trouble to x + 10 = 12. 

As for literal terms themselves, where more than 
one is involved in a particular expression, some
thing can be done where only one kind of literal 
symbol is involved. If you are faced with x + a, 
to be sure, there is no way of performing the addi
tion until you have decided what quantities x and 
a stand for. If, however, you are faced with x + x, 
you don't have to know what x stands for. 
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64x. For that reason, an equation like this 

works out at once to 

4x = 16 

The terms 2x and and others like them, 
consist of two parts, one numerical and one literal. 
It is customary for mathematicians to refer to the 
numerical part as the "coefficient," a word first 
used for this purpose by no less a person than 
Vieta, the father of algebra. 

Letter symbols can also be considered coefficients, 
so that in the term ax, a is the coefficient. The 
coefficient is always considered as being involved 
with the unknown by way of a multiplication, 
never by way of a division. A term that involves 
a division must be converted to a multiplication 
by the rule of reciprocals before you are safe in 

deciding on the coefficient. For instance should 

be written and then you will see that is the 

coefficient and not 2. 
As a matter of fact, even the expression x can 

be considered as having a coefficient. After all, it 
can be written lx just as a book can be referred 
to as 1 book. The coefficient of x is therefore 1. 
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Where the coefficient is 1, it is generally omitted 
so that you never write 2x — lx = lx, but always 
2x — x = x. But the coefficient is there just the 
same and it shouldn't be forgotten, because we'll 
have occasion to think of it before the book is done. 

But now a thought may occur to you. A term 
like 2x involves an operation, that of multiplication. 
An expression such as 2x + 3 involves two opera
tions, one of multiplication and one of addition. 
It is 2 times x plus 3. 

Does that mean that three terms are involved? 
When I first spoke of terms, I mentioned them as 
items that were being added or subtracted. What 
about items that are being multiplfed or divided? 

To answer these questions will require us to look 
into these algebraic operations a little further. 

WHICH COMES FIRST? 

We have already decided that when two quanti
ties are added, it makes no difference which is added 
to which; in other words, that But 
what if more than two quantities are being added? 
If you try, you will see that in an expression like 
8 + 5 + 3, your answer will be 16, in whatever 
order you take the numbers. 

In fact, you take it for granted that order makes 
no difference in such cases. When you add a long 
column of figures from the top down, you can check 
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the results by adding it a second time from the 
bottom up. You fully expect to get the same result 
either way, provided you make no arithmetical 
mistake, even though you've reversed the order the 
second time. 

If that is so, then the order doesn't matter in the 
case of subtractions either, or where additions and 
subtractions are combined, provided all the sub
tractions are converted to additions by the use of 
negative numbers, according to the method I de
scribed in Chapter 2. Thus, although 
it is nevertheless true that 6 + (—3) = (—3) + 6 . 

You can go through the same thing with multipli
cations and divisions. Try working out expressions 
such as (8) (4) (2) and compare the answer you get 
with that obtained in expressions such as (4) (8) (2), 
(4)(2)(8), (8)(2)(4), (2)(4)(8), and (2)(8)(4). It will 
be 64 in every case. If divisions, or multiplications 
combined with divisions are considered, the same 
thing holds. The order doesn't matter, provided 
the divisions are converted to multiplications by the 
use of reciprocals, according to the method 1 

described in Chapter 3. Thus, although 

The general rule is that the order in which opera
tions are performed does not matter where only 
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additions are involved, or where only multiplica
tions are involved. 

The next question, though, is, What happens if an 
expression contains operations that are not only 
additions and are not only multiplications, but con
tain some of both? 

Let's take the simplest case, an expression that 
involves one multiplication and one addition, and 
let's use only numerical symbols to begin with. 
In order to make things as clear as possible, I will 
temporarily return to the use of the multipli
cation sign. 

The expression we can consider is 5 X 2 + 3. If 
we work out the operations from left to right, we 
find that 5 X 2 is 10, and that 10 + 3 is 13. We 
might want to check that answer by the same 
method we use in checking the addition of columns 
of figures; that is, by working it backward to see if 
we get the same answer. Well, if we work it back
ward, 3 + 2 is 5, and 5 X 5 is 25. 

The answers are not the same, since the expression 
works out to 13 in one direction and 25 in the 
other. There are no arithmetical errors here, but 
we can't allow answers to change just by varying 
the working methods of solving a problem. That 
would be inconsistency. It is important to set up 
some sort of system that will prevent that from 
happening. 
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The system now used (first decided upon about 
1600) is to enclose in parentheses those operations 
that ought to be performed first. The expres
sion 5 X 2 + 3 might be written, for instance, 
(5 X 2) + 3, in which case the multiplication is 
carried out first so that the expression becomes 
10 + 3 (with the parentheses disappearing once the 
operation has been performed) or 13. If, instead, 
the expression is written 5 X (2 + 3), the addition 
is performed first and the expression becomes 
5 X 5, or 25. 

Now there is no inconsistency. Instead of a 
single expression, we have two expressions which, 
thanks to parentheses, can be written differently. 
Each expression has only one answer possible. 

Very complicated expressions, including many 
additions and multiplications, can be handled by 
setting up parentheses within parentheses. Usually 
each set of parentheses is of a different shape for 
the sake of clarity, but all have the same function. 
The convention, then, is to perform the operations 
of the innermost parentheses first and proceed out
ward in order. 

If you have the expression 

the innermost parenthesis contains the expression 
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6 X 5, so that operation is performed first. It works 
out to 30 and, with that parenthesis gone, what 
remains is 

The innermost parenthesis of those remaining 
now contains the expression 4 + 30 — 12. Only 
addition and subtraction are involved and it is no 
great feat to reduce it to 22, so that what is left is 

Now only multiplications are involved, and the 
final value of the entire original expression is 
therefore 8. 

Where only numerical symbols are involved, 
parentheses are easily removed by performing the 
operations within them. In algebra, with its literal 
symbols, parentheses cannot be removed that easily. 
That is why the matter of parentheses is more 
important in algebra than in arithmetic, and why 
you generally don't encounter parentheses in any 
important way until you begin the study of algebra. 

Yet the same system applies to literal symbols 
as to numerical ones. No new complications are 
introduced. Consider the expression 6 X x + 3. 
If you want to perform the multiplication first, 

-



6 0 A L G E B R A 

you write the expression (6 X x) + 3; and if you 
want to perform the addition first, you write it 

As you know well by this time, the multiplication 
sign is generally omitted in algebraic expressions. 
The two expressions just given can be written more 
simply as (6x) + 3 when you want to indicate that 
the multiplication is to be performed first, or as 
6(x + 3) when the addition is to be performed first. 

As usual, though, mathematicians omit symbols 
when they can. In the expression 6JC, the two 
symbols hug each other so closely that it seems 
unnecessary to press them together even more 
closely by means of a parenthesis. The parenthesis 
is assumed and the expression (6x) + 3 is written 
simply 6x + 3; just as +5 is usually written simply 
as 5, and lx is written simply as x. 

This makes it all the more important, however, 
to remember to include the parenthesis thus, 
6(x + 3), when you want the addition performed 
first. If the expression is written simply 6x + 3, 
it is assumed as a matter of course that the paren
thesis goes (invisibly, to be sure) about the 6x. 

The same holds true for division. If you have the 
expression you can write that either 

depending on whether 
you want the division or the subtraction to be 
performed first. The algebraic way of writing these 
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twp expressions should be 

the former case, however, the 6 and the x are again 
so closely hugged that the parenthesis is omitted as 
nonessential and the expression is written simply 

As for the expression , the parenthesis can 

be dropped because the mark is extended to cover 

the entire expression x — 1 in this fashion: 

Now we have our answer as to what constitutes a 
term. Any expression that does not include an oper
ation, such as x or 75, is a term. In addition, any 
expression that includes one or more operations but 
is enclosed in a parenthesis is a term. Thus, x — 1 
is an expression made up of two terms, but (x — 1) 
is made up of but a single term. 

It is important to remember that multiplications 
and divisions are treated as though they are enclosed 
in parentheses even when those parentheses are not 

written in. Thus, 6x is a single term, and 

is a single term. 

TRANSPOSING IN ORDER 

Now we can talk about equations involving both 
multiplication and addition, such as 
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6x + 3 = 21 

Here we are faced with a dilemma. If the equa
tion were merely x + 3 = 21, we would have no 
problem. Transposing would make it x = 21 — 3, 
so that we see at once that x equals 18. 

If, on the other hand, the equation were simply 

6a; = 21, transposition would set x equal to 

But in the equation both multiplica
tion and addition are involved, and so the problem 
arises as to which transposition to make first. If we 
transpose the addition first and the multiplication 
second, then: 

But if we transpose the multiplication first and 
the addition second: 
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Now if the same equation is going to yield us two 
different answers according to the method we use 
to solve it, we are faced with an inconsistency that 
must be removed. One or the other method must 
be forbidden. To decide which method to forbid, 
let's go back to our parentheses. 

Remember that a multiplication in algebra is 
always treated as though it were within parentheses. 
The expression 6x + 3 could be more clearly written 
as (6x) + 3, which means we must get a numerical 
value for 6x before we can add 3 to it. But we can't 
get a numerical value for 6x because we don't 
know what quantity x represents. 

The only thing we can do, then, is to leave the 
expression 6x just as it is and to keep from breaking 
it apart as long as there is an operation of addition 
in the expression. To transpose the 6 would be to 
break it apart, so this can't be done. 

We can make a general rule, then. When one 
side of an equation consists of more than one 
term, we can transpose only complete terms. When, 
however, one side of an equation consists of but a 
single term, portions of that term can be transposed. 

If we look again at the equation 

6x + 3 = 21 

we see that 6x + 3 contains two terms. The figure 
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3 is a whole term by itself and can be transposed. 
The figure 6, on the other hand, is only part of the 
term 6x and cannot be transposed as long as more 
than one term exists. 

Therefore, we transpose the 3. That gives us 
6x = 18. Now 6x is the only term on its side of the 
equation and the 6 can be transposed. The answer 
is that x = 3, and it is the only answer. To work 

the equation so that x is made to be equal to 

breaks the rules of transposition. 
If, on the other hand, we had the equation 

6(x + 3) = 21 

we have the single term 6(x + 3) on the left-hand 
side of the equation. Does that mean we can trans
pose either the 6 or the 3 at will? Well, remember 
that the expression includes a multiplication and 
therefore behaves as though it were written this 
way: [6(x + 3)]. This means, you will recall, that 
the operation inside the innermost parenthesis, 
which, in this case, is x + 3, must be performed 
first. Since this operation cannot be performed first 
because a literal symbol is involved, the alternative 
is to keep it intact the longest. In other words, if 
operations are performed from innermost paren
theses outward, transpositions must be performed 
from outermost parentheses inward. 
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So we transpose the 6 first, that being included 
in the outermost parenthesis, and have 

Now, with only the innermost parenthesis left 
(which, however, is now omitted, because it is 
usual practice to omit parentheses that enclose 
entire expressions), we can transpose the 3: 

By remembering the two rules: 
(1) When more than one term exists, transpose 

only entire terms; 
(2) When a single term exists, perform trans

positions from outermost parentheses inward; 
you will always end up with the only possible solu
tion for the equation. That, in fact, is the purpose 
of the rules, to make sure that only one solution is 
arrived at and to eliminate the possibility of wrong 
turnings and consequent inconsistencies. 

To be sure, it may now seem to you that solving 
equations must become a matter of long brooding 
while you count terms and locate parentheses. 
Actually, believe it or not, this is not so. Once you 
become accustomed to manipulating equations, you 
get the hang of which transpositions come before 

/ 
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which. The whole thing becomes so mechanical and 
automatic that you never give the matter a thought. 

Of course, the only way in which you can arrive 
at such a happy state of affairs is to solve equation 
after equation after equation. Practice makes per
fect in manipulating equations just as in manipu
lating a piano keyboard. 

It is for this reason that school texts in algebra 
bombard the student with hundreds of equations to 
solve. It may be hard for the student to realize 
why there must be an endless drill while he is under
going it, but that is like the finger exercises on the 
piano. Eventually it pays off. 

And, it stands to reason, the better you under
stand what you are doing and why you are doing it, 
the more quickly it will pay off. 
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Backwards, Too! 

BOTH HERE AND THERE 

So FAR, I have had literal symbols in
volved in algebraic operations on only one side of 
an equation. There is no reason why matters should 
be so restricted. Literal symbols could be present 
on both sides. The x's could be both here and 
there, so to speak. 

Here's an example of the type of problem that 
would give you such a double-jointed situation. 
Suppose Jim owns a certain number of books and 
Bill owns twice as many. Jim buys five books to 
add to his supply and Bill buys only one. They end 
up with the same number of books. How many 
did each have to begin with? 

I started with the statement "Jim owns a certain 
number of books," so let's call that "certain num
ber" x. Bill owns twice as many, or 2x. Jim buys 
five books, making his total x + 5; while Bill buys 
one, making his total 2x + 1. They end with the 
same number so 

2x + 1 = x + 5 
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This brings up a question at once. As long as I 
kept literal symbols on one side of the equation 
only, it may have seemed natural to keep that side 
on the left. Now we have literal symbols on both 
sides, so which side ought to be on the left? Might 
I not have written the equation this way? 

x + 5 = 2x + 1 

And if I had, would it make any difference? 

Perhaps this has never occurred to you as some
thing to question. If 3 + 3 = 6, then surely 
6 = 3 + 3. It can make no difference which way we 
write it, can it? Or, if we want to make it a general 
rule, we can say that if a = 6, then b = a. 

This is the sort of thing that is sometimes con
sidered "obvious" or "self-evident." Everyone 
accepts it without question. Such a self-evident 
statement accepted by everybody is called an 
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"axiom." I have used a number of others in this 
book, too. For instance, the statement I introduced 
in Chapter 2, that you can add the same quantity 
to both sides of an equation and still have it an 
equation, is another example of an axiom. This 
could be put into words as "equals added to equals 
are equal." It could also be put into the form of 
general equations, thus: if a = b, then a + c = b + c. 

You may wonder why it is necessary to take any 
special note of axioms if everyone accepts them. 
Oddly enough, until nearly 1900 mathematicians 
were a little careless about the axioms they used, 
but then questions arose as td how much of the 
mathematical system was really justified by logic. 

Men such as the Italian mathematician Giuseppe 
Peano (pay-AH-no) and the German mathematician 
David Hilbert corrected this by carefully listing all 
the axioms they were going to use. They then 
deduced all the rules and statements of algebra 
from those axioms only. Naturally, I don't try to 
do anything of the sort in this book, but you might 
as well know that it can be done. (Furthermore, 
mathematicians began to consider axioms simply as 
the basic beginnings for any system of orderly 
thinking and didn't worry any longer about whether 
they were "obvious" or not. Some axioms, actually, 
are not at all obvious.) 

Now let's go back to the equation 
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2x + 1 = x + 5 

One thing we can do is to transpose the 1 from 
the left-hand side of the equation to the right-hand 
side, exactly as we have been doing all along. But 
suppose that for some reason we wanted to trans
pose the 5 from the right-hand side to the left-hand 
side instead, changing the operation to the inverse, 
so that the equation reads 

2x + 1 - 5 = x 

If you remember how I first showed that trans
position could be allowed in the first place (in 
Chapter 2), you will remember that I did it by 
making use of the axiom "equals added to equals are 
equal." This, of course, means that "equals sub
tracted from equals are equal," since a subtraction 
is only the addition of a negative number. 

We can make use of that axiom here, too. Suppose 
we subtract 5 from each side of the original equa
tion. We have 

2x + l - 5 = x + 5 - 5 

or 

2x + 1 - 5 = x 

The same axiom, you see, that allows transposi
tion from left to right, allows it also from right to 
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left. We can do it frontward, and we can do it 
backward, too! 

There is no doubt, then, that we can maneuver 
the numerical symbols either way and collect them 
all on the left-hand side or on the right-hand side, 
whichever suits our fancy. What about the hteral 
symbols, though? So far in the book, I have not 
transposed a hteral symbol. 

But why not, if I wish? I said very early in the 
book that both hteral and numerical symbols 
represented quantities and that both were subject 
to the same rules and could be treated in the same 
way. If numerical symbols such as 1 or 5 can be 
transposed, then a hteral symbol such as x can be 
transposed and that's that. 

Therefore, in the equation 

2x + 1 = x + 5 

let's transpose the 1 from left to right in the usual 
manner and the x from right to left in the backward 
manner so that we have all the literal symbols on 
the left side and all the numerical symbols on the 
right side, thus: 

2x - x = 5 - 1 

In both cases, the operation was changed to the 
inverse, so that both additions became subtractions. 
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The equation now works out at a glance to 

x = 4 

and that is the solution of our problem. 
What we have decided is that Jim owned 4 books 

and that Bill owned twice as many, or 8. When Jim 
bought 5 more books and Bill bought 1 more book, 
they ended, exactly as the problem stated, with an 
equal number of books, 9 apiece. 

Does it strike you that this is a long and compli
cated way of solving the problem? Not at all. It 
only seems long and complicated because I am 
taking the trouble of explaining each step in detail. 
Once you have the system of algebraic manipulation 
down pat, however, you can go through such equa
tions like a streak. In fact, an equation as simple as 
the one with which I have been working in this 
chapter would be so little trouble to you that you 
could solve it in your head in short order. 

CONSISTENCY AGAIN 

Yet for all that the equation is so simple, I am 
not through extracting the juice from it even now. 
Let's see if reversing the direction of transposition 
might not involve us in an inconsistency after all. 

Here's the equation one more time: 

2x + 1 = x + 5 
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I have just solved for x by transposing in such a 
way as to get all the literal symbols on the left-hand 
side and all the numerical symbols on the right-hand 
side. Is there some reason we are forced to do this? 
Or would matters have gone as well if we had trans
posed all the literal symbols to the right-hand side, 
rather than the left; and all the numerical symbols 
to the left-hand side, rather than the right? 

The straightforward thing is to try it and see if 
we get the same answer when working it backward. 

We therefore transpose the 5 from right to left 
and the 2x from left to right. (The expression 2x 
is a single term, remember, and must be transposed 
intact as long as it forms part of a polynomial.) 
The result is 

1 - 5 = x - 2x 

which works out to 

- 4 - - x 

Now there is room for a little doubt. When we 
had transposed terms in the forward direction, we 
ended with x = 4. When we transposed terms in 
the backward direction, we ended with — 4 = — x. 
Are these different answers? Have we uncovered 
an inconsistency? 

To check that, let's remember that in Chapter 3 
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I said that both sides of an equation could be 
multiplied by the same number without spoiling the 
equation. (This is another axiom, which can be 
expressed as "equals multiplied by equals are 
equal," or, if a = b, then ac = be.) 

Suppose, then, that we take the expression 
—4 = — x and multiply each side of the equation 
by — 1. This would give us 

By following the rule of multiplication of signs, 
this becomes 

4 = x 

And by the axiom which tells us that it doesn't 
affect the equation if we interchange the right and 
left sides, we can say this is equal to 

x = 4 

So you see, we come out with the same answer 
after all, no matter in which direction we make our 
transpositions. From now on, we can certainly 
feel secure in transposing either forward or backward. 

And, incidentally, the trick of multiplying by — 1 
can be used to change all signs on both sides of any 
equation. Using general symbols, we can say: 
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If a + b = c + d 

then —a — b = —c — d 

And if a — b = c — d 

then —a + 6 = —c + d 

Since an expression such as — a + & looks more 
familiar to us if written b — a, the last set of 
expressions might be written: 

If a — b = c — d 

then b — a = d — c 

As I continue to heap up the rules of manipulating 
equations and show how flexible they are, you may 
be getting the idea that they are a wonderfully 
mechanical way of getting the truth out of a 
problem. So they are, but don't expect too much 
out of the situation. We have gone far enough now 
for me to be able to explain that algebraic manipula
tion cannot get any more truth out of an equation 
than is put into it in the first place. 

Suppose that, instead of the equation 2x + 1 = 
x + 5, which we have been pounding from every 
side in this chapter, I were to present you with the 
very similar equation 

x + l = x + 5 
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By transposing, you get 

x — x = 5 — 1 
or 

0 = 4 

which is a nonsensical answer. 
How did that happen? The algebraic manipula

tion was strictly according to rule. Are the rules 
wrong, then? 

Well, look at the equation x + 1 = x + 5. This 
says that if you take a particular number and add 
1 to it, you get a result which is the same as that 
obtained when you add 5 to it. 

But this is nonsensical. Any number must yield 
two different sums if two different quantities are 
added to it. (This can be stated as "unequals added 
to equals are unequals," or, if 
x + b.) 

Therefore x + 1 cannot equal x + 5 for any value 
of x at all, and x + l = 3C + 5 i s a false equation. 
To pretend that it is a true equation and to use 
rules of manipulation that are only intended for true 
equations does us no good. We start with nonsense 
and we end with nonsense. 

Always be sure, then, that you are making sense 
in the first place and the rules of algebra will then 
take care of you. If you're not making sense to 
begin with, then nothing can take care of you, 
algebra least of all. 
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The Matter of Division 

LITERALS IN THE DENOMINATOR 

O F THE FOUR algebraic operations I have 
discussed so far in the book, division certainly 
seems the one hardest to handle. If you begin with 
whole numbers and confine yourself only to addi
tion and multiplication, you always end up with 
whole numbers. If you deal with subtraction, you 
have to add negative numbers to the list, .but they 
are still whole numbers. 

If, however, you subject whole numbers to divi
sion, you more often than not end up with fractions, 
which are harder to handle than whole numbers are. 
And if you try to convert fractions to decimals by 
means of further division, you may find yourself 
with an endless decimal. (Try to divide 10 by 7 
in order to get a decimal value and see for yourself.) 

It is not surprising, then, that algebraic equations 
that involve division are sometimes a touch more 
complex than are those that do not. 

Often, an equation involving division (and always 
remember we can never divide by zero) can be 
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treated in just the same way as were those involving 
multiplication which I described in the previous 
chapter. In the equation 

the j is a single term and is treated as though it 

were enclosed in a parenthesis. We don't break it 
up, therefore, but transpose the 3: 
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It is only then that we can transpose the 4, changing 
the operatidn from division to its inverse, multipli
cation, of course: 

x = (8)(4) (or 32) 

On the other hand, if the equation were 

(x + 3)/4 = 11 

then the entire division, still being taken as enclosed 
in a parenthesis, becomes a parenthesis within a 
parenthesis: 

The rule is that we break up parentheses from 
the outside inward. We break up the outer paren
thesis first, then, by transposing the 4 and leaving 
the inner (x + 3) intact: 

Then, and only then, can we transpose the 3: 

An additional touch of complexity, however, 
arises from the fact that most often the division 
is represented by a horizontal line rather than a 

shilling mark, thus: Here both parentheses 

are omitted, yet the expression must still be treated 

as though it were [(x+3)/4] even though no paren-
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theses are actually visible. You would still have to 
remember to transpose the 4 first, as part of the 
outer parenthesis, and then the 3 as part of the 
inner parenthesis. 

But don't be downhearted. Only sufficient drill 
is required to make it all come second nature so 
that you will never give a thought to omitted 
parentheses. And if you know what you are doing 
to begin with, you will find that you won't even 
need very much practice to achieve this happy 
result. 

A more serious touch of complexity arises from 
the fact that a literal symbol might easily be in the 
denominator of a fraction. This is something we 
haven't considered before, but there is no reason 
why it can't come up. Here is an example:* 

10 

The expression on the left is a parenthesis within 

a parenthesis and we ought, therefore, 

to transpose the 10 first as being part of the outer 

* In this example, you know at once that whatever x 
may be equal to, it cannot be equal to 5. Do you see 
why? If x were equal to 5, then x — 5 would be equal 

to zero, and you would have the expression — . This 

involves division by zero, which is forbidden. 
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parenthesis. So far, though, we have never trans
posed the numerator of a fraction. How ought we 
to go about it? 

One way of managing' would be to convert the 

division into a multiplication. 

sents 10 divided by (x — 5), we can write it instead 
as 10 multiplied by the reciprocal of (x — 5), or 

For this reason we can change the 

original equation to read 

and now we can transpose the 10 in the usual 
manner so that 

1 5 
x - 5 10 

Having successfully transposed the numerator, how
ever, we find we are still left with a fraction on 
the left, and one that contains the literal symbol 
in the denominator even yet. 

An alternative plan of attack would have been to 
transpose the denominator as a whole, parenthesis 
and all. The presence of the inner parenthesis in 

us we can't split up the expression 

the outer parenthesis exists. How-
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so that x is equal to 7, which is the solution of the 
problem. 

Still another method of tackling the equation 
would be to sidestep the problem of the literal 
symbol in the denominator altogether. It is easy to 
put the literal symbol into the numerator by just 
taking the reciprocal of the fraction and thus turn-

10 
ing it upside down. Instead of writing 

we would write 

x - 5 ' 
x — 5 

10 
Ah, but what does that do to the equation? 
Well, let's go back to numerical symbols. If 

what happens if we convert that fraction 
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into its reciprocal You can see that is equal 

to which is the reciprocal of 2. 

In other words (and you* can check this by trying 
other examples), an equation remains intact if you 
take the reciprocal of both sides of the equation. 
In general expressions: 

The equation 

10 
x - 5 

can therefore be converted to 

and by proper transpositions 

and 

The solution is, as before, that x is equal to 7. 
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THE PROBLEM OF FRACTIONS 

This rule of reciprocals, however, exposes the 
beginner to a pitfall into which it is all too easy to 
fall — a very attractive but very deadly trap. 
Suppose you have the equation 

Remembering the rule of reciprocals, you might try 
to take the reciprocals of all the fractions con
cerned, changing the equation to read 2x + Sx = 5, 
which can at once be changed to 5x = 5, and by 

But if you substitute 1 for the x of the original 

equation, you find that 

, which is not a true equation since, in 

What is wrong? 
If you tried by experimenting with different 

equations, you would find that the rule of reciprocals 
works only when the reciprocal of each side of an 
equation is taken as a whole, and not as separate 
parts. In other words if each side of the equation 

THE PROBLEM OF FRACTIONS 

This rule of reciprocals, however, exposes the 
beginner to a pitfall into which it is all too easy to 
fall — a very attractive but very deadly trap. 
Suppose you have the equation 
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is a monomial, the reciprocal of each side of the 
equation can he taken and the equation will stay 
intact. If one or both sides of the equation is a 
polynomial, however, taking the reciprocal of each 
term separately almost inevitably reduces the equa
tion to nonsense. 

Then what if you do have a binomial to deal 
with, as on the left side of the equation 

Clearly, what must be done, if you want to apply 
the rule of reciprocals, is to convert that binomial 
into a monomial, a single term. And that means 
that we are faced with the problem of the addition 
of fractions. 

This subject, fortunately, comes up in ordinary 
arithmetic and is dealt with thoroughly there. The 
same rules developed in arithmetic can be used in 
algebra, so a quick review is all that is needed. 

To begin with, there is no problem in adding 
fractions that have the same denominator. When 
that happens, all we have to do is add numerators 
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In adding fractions with different denominators, 
you must somehow change them into fractions with 
the same denominators or you are stymied. And 
this must be done without changing the value of 
the fractions, of course. 

Now any fraction can be changed in form without 
change in value if the numerator and denominator 
are multiplied by the same number. Thus, if you 

multiply the fraction top and bottom, by 2, you 

end with If you multiply it top and bottom by 3, 

you have ; if you multiply it top and bottom by 

15, you have . The value doesn't change, you 

see, even though the form does, for you know from 

your arithmetic that equals , and that and 

Now let's look at the equation that gave us 
trouble at the beginning of this section: 

If we multiply the denominator of the fraction 

and the denominator of the fraction 
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we end with the same denominator in each case, 6x. 
That is fine, so far, but if we multiply a denominator 
by 2, we must also multiply the numerator of that 
fraction by 2 to keep the value unchanged; and if 
we multiply another denominator by 3, we must 
also multiply the corresponding numerator by 3. 
The equation must therefore be written: 
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That this is the correct answer can be shown if 

we substitute for x in the original equation. 

That would look this way: 
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or 

which is, of course, a true equation, and shows that 
we located the correct solution that time. 

• 



7 
The Ins and Outs of Parentheses 

REMOVING THE PARENTHESES 

I AM SURE that by now you are perfectly 
satisfied that parentheses can be useful in helping 
solve an equation without confusion. Yet there 
are times when parentheses are a positive embarrass
ment. I will give you an example of this. 

Imagine two rectangles of known height, both 
being 5 inches high. However, you don't know the 
widths exactly; all you know is that one rectangle 
is 3 inches wider than the other. You also know 
that the total area of the two rectangles, taken 
together, is 35 square inches. Now the question is: 
What are the widths of the rectangles? 

In order to determine the area of a rectangle, it is 
necessary to multiply the width by the height. In 
other words, a rectangle that is 17 inches wide and 
12 inches high is 17 times 12, or 204 square inches* 
in area. 

* I could stop here and discuss the fact that the length 
and width of a square are measured in inches while the 
area must be measured in square inches, but that 
would take me far from the main subject of the book. 
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With that understood, let's tackle the problem 
and begin by calljng the width of the narrower 
rectangle x inches. The other rectangle, which is 
3 inches wider, would naturally be x + 3 inches 
wide. In each case, the width must be multiplied 
by the height (5 inches) to obtain the area. There
fore the area of the narrower rectangle is 5x square 
inches, while that of the other is 5(x + 3) square 
inches. 

Since the sum of the areas is 35 square inches, 
we can write 

5(x + 3) + 5x = 35 

(We don't have to write "inches" and "square 
inches" in such an equation, because in ordinary 
algebra we are dealing only with the quantities. 
However, we must always keep in mind the correct 
"units of measurement.") 

In an equation such as this, how do we solve for x? 
Our natural impulse is to get x all by itself on one 
side of the equation and all the numerical symbols 
on the other, but how can we do that with the 
parenthesis barring the way? 

We can transpose the 5x and then the 5 and then 

If you are not well acquainted with this sort of thing 
and would like to go into it a bit more when you have 
a chance, you will find it (and other matters involving 
measurement) discussed in my book Realm of Measure 
(Houghton Mifflin, 1960). 
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Now we have an x all by itself on the left-hand 
side of the equation, but alas, we also have a 
literal symbol on the right-hand side. In order to 
get the 5x back on the left, we have to transpose 
first the 3, then the 5, and only then the 5x, and 
we are back where we started. 

No, if we are to get anywhere we must get rid of 
the parenthesis which keeps us from combining the 
x within it and the 5x outside it into a single term. 
How do we do that though? 

Let's take a close look at the term 5(x + 3) and 
ask ourselves what we would do if only numerical 
symbols were involved. Suppose we had the term 
5(2 + 3) instead. Of course, this is no problem 
since 2 + 3 equals 5 so that we can change the 
expression to (5) (5) and come out with an answer 
of 25 at once. 

However, we can't combine x and 3, as we can 
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combine 2 and 3, so we must ask ourselves: How 
can we work out the value of the expression 5(2 + 3) 
if, for some reason, we are forbidden to combine the 
2 and the 3? 

The natural thing to try, I think, is the multi
plication of each number within the parenthesis 
by 5. This gives us (5) (2) or 10, and (5) (3) or 15, 
and come to think of it, 10 + 15 is 25. You can 
try this with any combination of numbers and you 
will find it will work. Thus 6(10 + 5 + 1) is (6) (16) 
or 96. But if you multiply the 6 by each number 
within the parenthesis separately, you have (6) (10) 
or 60, (6) (5) or 30, and (6)(1) or 6; and if you add 
the products, you have 60 + 30 + 6, which also 
comes to 96. 

Using general symbols, we can say that 

a(b + c) = ab + ac 

Certainly, then, this means that we can change 
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I have retained the parenthesis just to show you 
I haven't forgotten it is there, but since only addi
tions are involved and the order of addition doesn't 
matter, we might as well drop it: 

We are now free to add the two x-containing 
terms and to proceed with transpositions: 

If we substitute 2 for x in the original equation, 
we have 

and, as you see, all is well. 
Of the rectangles I spoke of at the beginning of 

the chapter, then, one is 2 inches wide and the other 
(which is 3 inches wider) is 5 inches wide. The area 
of the first is 2 times 5 or 10 square inches; that of 
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the second is 5 times 5 or 25 square inches; so that 
the total area is indeed 35 square inches as the 
problem specified. 

SUBTRACTING AND PARENTHESES 

Now we come to another possible pitfall. In the 
previous section, I removed a parenthesis by stating 
quickly that only additions were involved. Is this 
really justified? Let's try it in an expression using 
numerical symbols only, such as 7 + 4(2 + 6). To 
work out the value we first combine the numbers 
within the parenthesis to give 8 so that the expres
sion reads 7 + (4) (8). Multiplying first, we have 
7 + 32 or 39. 

Let's begin again and remove the parenthesis, so 
that we have 7 + (4)(2) + (4)(6), or 7 + 8 + 24. 
The answer is still 39, you see. 

So far, good; but now let's just make a slight 
change and consider the following expression: 
7 — 4(2 + 6). By combining the numbers within 
the parenthesis first, we have 7 — (4) (8), or 7 — 32, 
or — 25 as the value of the expression. 

However, if we remove the parenthesis exactly as 
before, we have 7 - (4)(2) + (4)(6), or 7 - 8 + 24, 
or +23 . Now we are faced with an inconsistency, 
for there are two answers, —25 and +23 . What 
is wrong? 

Obviously the minus sign has introduced a com-
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plication. Therefore, let's remove it and change it 
to a plus sign. This can be done, for you remember 
that we decided long ago that a — b can be written 
a +(-6) . 

Instead of writing the expression, then, as 
7 - 4(2 + 6), let's write it 7 + (-4)(2 + 6). Now 
do you see what we've done? In removing the 
parentheses we are going to have to multiply each 
number inside the parenthesis not by 4, but by —4, 
and that means a change in signs. 

The expression becomes 7 + ( — 4) (2) + ( — 4) (6), 
or 7 + ( -8 ) + ( -24) . And since a + ( -6) can 
be written a — b, the expression can be written 
7 - 8 - 24, or - 2 5 . 

Now observe carefully. When you began with 
the expression 7 + 4(2 + 6), you ended, after remov
ing the parenthesis, with 7 + 8 + 24. But when 
you began with the expression 7 — 4(2 + 6), you 
ended, after removing the parenthesis, with 7 — 8 — 
24. The signs inside the parenthesis had been 
changed! 

This is true even when a parenthetical expression 
is simply subtracted, with no number visible out
side it, as in the case of 5 — (2 + 3). If you combine 
the numbers inside the parenthesis first, the value 
of the expression is 5 — 5, or 0. If, however, you 
try simply to drop the parenthesis, you have 
5 — 2 + 3, which comes out to 6. Instead, consider 



The Ins and Outs of Parentheses 97 

such an expression as 5 — 1(2 + 3),. which is what 
it really is, since 1 times any expression is equiv
alent to the expression itself. 

This can be written 5 + (-1)(2 + 3), and, 
in removing parentheses, we have 5 + ( —1)(2) + 
( - l ) (3 ) ,o r5 + ( -2 ) + ( -3 ) , or 5 - 2 - 3, which 
comes out to zero, as it should. 

We can set up general rules as follows: 

and so on. 
Generally, this is stated to the effect that when 

a minus sign appears before a parenthesis, all the 
positive signs within it must be changed to negative 
and all the negative signs to positive when the 
parenthesis is removed. The student is drilled 
endlessly to make sure he learns to do this auto
matically. Now that you see why the reversal of 
sign must be made, you should have very little 
trouble remembering to do it — I hope. 

BREAKING UP FRACTIONS 

Of course, don't get the idea that parentheses 
must always be removed at all costs the instant 
you see one. Sometimes, as you know, having 
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them there helps. In fact, there are actually times 
when you can make things simpler for yourself by 
putting parentheses into an equation where none 
existed before. 

To see how that can come about let's begin by 

looking at the fraction 

Since the value of a fraction is not altered if 
both numerator and denominator are divided by 

the same quantity, can be divided, top and 

bottom, by 2, and the fraction is obtained. From 

ordinary arithmetic this has probably become second 
nature to you so that you know at a glance that 

When, by dividing a fraction, top and bottom, 
you reach the smallest possible combination of 
whole numbers which retain the value, that frac
tion has been "reduced to lowest terms." In other 

words, has not been reduced to lowest terms, but 

the equivalent fraction. has. 

Now let's be a little more systematic about 
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reducing fractions to lowest terms. A number may 
be broken into two or more smaller numbers which, 
when multiplied together, give the original number 
as a product. The smaller numbers so obtained are 
called "factors" and when the original number is 
expressed as a product of the smaller numbers it is 
said to be "factored." 

For instance, you can factor 10 by writing it as 
(5) (2). Consequently, 5 and 2 are both factors of 10. 
You can factor 12 as (4)(3), or (2)(6), or (2)(2)(3). 
Sometimes it is even convenient to write 10 as 
(1)(10) or 12 as (1)(12).* 

Suppose now that the numerator and denominator 

of a fraction are both factored and it turns out that 

at least one factor in the numerator is equal to one 

factor in the denominator. For instance, the frac

tion can be written as , If you divide 

* In many cases, a number can only be expressed as 
itself times 1, with no other form of factoring possible. 
For instance, 5 can be written as (5)(1), 13 as (13) (1), 
17 as (17) (1), and in no other way. Such numbers are 
called "prime numbers." In factoring a "composite 
number," one that isn't prime, it is often convenient 
to factor it to prime numbers. For instance, 210 can 
be factored as (10) (21), or as (70) (3), or in any of a 
number of other ways, but if you work it down to 
prime numbers, 210 is equal to (2) (3) (5) (7). It is an 
important theorem in that branch of mathematics 
known as "theory of numbers" that every composite 
number can be broken down to prime factors in only 
one way. 
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than go through this, the student quickly learns that 
all he needs to do is cross out any factor that appears 
both top and bottom. The 7's are "canceled" and 
the result is that the fraction is reduced to lowest 
terms, as you learned to do in arithmetic. 

Of course, it is important to remember that the 
canceling is only a short cut and that what you are 
really doing is dividing the numerator and the 
denominator by equal numbers. Canceling numbers 
wildly can lead to many a pitfall and it will never 
hurt, in doubtful cases, to go back to dividing 
both parts of a fraction to make sure that you are 
doing the right thing. 

When numerator and denominator have no factor 
in common other than 1, nothing can be canceled 
and the fraction is already at its lowest terms. 

There is no opportunity for cancellation here and 
the fraction is at lowest terms. 

Nevertheless, before you can be certain that a 
fraction is at lowest terms, you must be sure you 
have factored the numerator and denominator as 
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far as you can. Suppose you have the fraction 

Since 24 can be factored as (8) (3) and 30 can be 
factored as (6) (5), you could write the equation as 

There would seem to be no factors in 

common — but wait. After all, 8 can be factored as 
(2) (2) (2) and 6 can be factored as (2) (3). Instead of 
writing 24 as (8)(3), let's write it as (2)(2)(2)(3) and 
instead of writing 30 as (6) (5), let's write it as 
(2)(3)(5). Now the fraction can be written as 
(2)(2)(2)(3) 

(2)(3)(5) and we can cancel the 3 and one of the 

2's. The fraction then become With 

no more factors in common, the fraction is in 
lowest terms. 

Now let me warn you against a pitfall. Once a 
student has learned to cancel, he is usually so eager 
to do so that, as often as not, he will do so where 
the rules don't permit it. Remember that cancella
tion involves factors and that factors are themselves 
involved in multiplication. You can break up a 
number into two smaller numbers that will give the 
original number through addition as, for instance, 
13 can be broken up into 7 + 6. However, 7 and 6 
are not factors of 13 and cannot be involved in 
cancellation. 
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Suppose that you are faced with the fraction 

Numerator and denominator, here, have no factors 
in common other than 1 and the fraction is at lowest 
terms. The eager student, however, might break it 

up this way, aid try to cancel 7's in order 

to give the result which is clearly false. Of 

course, the student would see that at once and 
realize something was wrong. Where more compli
cated expressions are involved, he would not see 
the error at once and it might take him quite a 
while to spot it. 

INSERTING THE PARENTHESES 

The rules of factoring and cancellation can be 
applied to literal symbols with hardly a hitch. 

For instance, suppose you have the fraction 

The 10 presents no problem; it can be factored as 
(2) (5). What about the however? How can 
that be factored? Well, can't be written as 

Let's write the fraction, then, as and cancel 

the 2's. The fraction, reduced to lowest terms, is 

therefore 
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But suppose we had started with The 10 can 

still be factored as (2) (5) and the 2x can be factored 

as (2)(x). The fraction can be written as 

the 2's are canceled, and the fraction, in lowest 

terms, 

Naturally, I hope I don't have to explain why the 

fraction ;an't be simplified by cancellation. 

You might write the fraction but that won't 

help you. The 2 in the numerator is not a factor. 

On the other hand, the fraction can be 

written as and the 3 in the numerator is 

a factor, although the 2 is not. The 3's can be 
canceled and the equation can be written in its 

lowest terms as 

Of course, it is easy to see the factors in an ex
pression involving literal symbols when the factors 
happen to be right in the open. You can see that 
the factors of 5s are 5 and x and that the factors 
of are 3 and x + 2, but can you see the 
factors present in an expression like 5x + 15? 
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You will, in a moment. 
Earlier in the chapter, we decided that a(b + c) 

could be written as ab + ac. This procedure works 
in reverse as well. If you start with ab + ac, you 
can write it as a(b + c). 

Let's take a closer look. The expression ab can 
be factored as (a)(6), while ac can be factored as 
(a)(c). What we have done, then, is to find the 
common factor, a, and place it outside a paren
thesis we create for what remains. 

If we go back to we see that 5x can be 
written as (5)(x) and 15 as (5) (3). Since 5 is the 
common factor, we can put it outside a parenthesis 
enclosing the rest and have 5(x + 3). If the paren
thesis is now removed by the rules described at the 
beginning of the chapter, we get 5x + 15 back 
again and consistency is upheld. 

This makes it possible to simplify the fraction 

As it stands, there seems to be nothing to cancel, 
for the numerator is not divided into factors. 
However, if the numerator is written as 
it has been factored, the two factors being 5 and 
x + 3. The denominator can, of course be fac
tored as (5) (4). The fraction can therefore be 

written , the 5's can be canceled and the 
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fraction reduced to lowest terms as 

As I promised at the beginning of the chapter, we 
have actually introduced a parenthesis in order fx> 
simplify an expression. 

It is possible, of course, not to bother putting in 
the parenthesis. Each term in the numerator can 
be factored separately so that the fraction may be 

written Then it is simply neces

sary to cancel the 5 that occurs in all the terms 

above and below to get This method is a 

little quicker for the person who has had enough 
drill at factoring, but it works only if a particular 
factor does indeed occur in all the terms, above and 
below, without exception. If even one term, either 
in the numerator or in the denominator, lacks the 
factor, canceling cannot take place. The beginner 
is very apt to forget this and cancel when he ought 
not to. The safe thing to do is to take the trouble 
to insert the parenthesis and draw out the common 
factor where you can see it plainly and know for 
certain that it is a common factor. Then, in peace 
and security, you may cancel. 

Canceling, by the way, is not restricted to numer
ical symbols alone. Literal symbols can be treated 

in precisely the same way. In the fraction 
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is a factor both above and below and can be canceled 

to yield the simpler fraction Or consider the 

fraction The numerator can be factored as 

and the denominator as The frac

tion can therefore be written as and by-

canceling 7x, it is reduced to lowest terms as 

However, you must always make sure in such cases 
that you are not canceling an expression that hap
pens to equal zero. Remember that cancellation 
is really division and you must not divide by zero. 

CANCELLATION EXTENDED 

The rules of factoring and canceling, which I have 
been using for fractions, will work for equations, 
too. To see why this should be so, consider a 
general equation in which we will call the left side L 
and the right side R. The equation would be 

L = R 

I told you quite early in the book that both sides 
of an equation can be divided by the same quantity 
without spoiling the equation, so let's divide both 
sides by the right side. The equation (provided, of 
course, R is not equal to zero) becomes 
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or 

The two sides of any equation can thus be 
written as the numerator and denominator of a 
fraction equal to one. It is not surprising, then, 
that the rules of factoring and cancellation that 
apply to fractions also apply to equations. 

For a specific example, consider the equation 

By transposing, we get 

We can factor the fraction in order to reduce it to 
lowest terms, thus: 

Instead of doing this, we could factor and cancel 
in the equation itself to begin with. We can write 

This means we can 
write the equation as 

Now we cancel out the common factors, left and 
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right, just as we would do it, top and bottom, in a 
fraction. The equation becomes 

2x = 3 

and, by transposing, 

The same answer is obtained, you see, whether 
you transpose first and factor afterward, as I did 
in the first case, or factor the equation first and 
transpose afterward, as I did in the second. In 
the simple equations I use in this book (just to 
explain the techniques of algebra) there isn't even 
any difference in convenience. In more complicated 
equations, however, it is usually far more convenient 
to factor and cancel as much as possible before you 
do anything in the way of transposition, so it is 
best to get used to factoring first and transposing 
afterward. 

Naturally, you must watch out for the same pit
falls in factoring the expressions that make up 
equations as in factoring fractions. In the equation 

x + 6 = 15 

you might write it thus: 

x + (3)(2) = (3)(5) 
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The equation is still correct, but now you will 
be subjected to the temptation of canceling the 
3's right and left to give yourself the equation 

Then, by transposing, you will decide 
that x is equal to 5 — 2; that is, to 3. But some
thing is wrong, for if you substitute 3 for x in the 
original equation, you have 3 + 6 = 15, which is 
nonsense. 

The mistake was in canceling the 3's, for in the 
expression x + (3) (2), 3 is not a factor of the entire 
expression; it is a factor of one term only. Cancella
tion can only proceed when each side of the equa
tion has a common factor; each side, as a whole. 

When factoring an expression involving more 
than one term, the safest procedure is to bring in 
a parenthesis. Suppose, for instance, we had the 
equation 

10x + 35 = 15 

We could factor each term as follows: 

(5)(2x) + (5)(7) = (5)(3) 

The left side of the equation has two terms with 
the common factor 5. That factor can therefore 
be brought outside a parenthesis that encloses 
the remaining factors so that the equation becomes 
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Now the 5 on the left is indeed a factor of that 
entire side of the equation and not of one term 
only. The 5's can be canceled therefore, left and 
right, and the equation reads 

2x + 7 = 3 

Whether you solve for x in the equation 
35 = 15 or, after factoring and canceling, in the 
equation 2x + 7 = 3, you will come out with the 
same answer. In the first case: 

In the second case: 

In other words, factoring and canceling before 
transposing (when properly done) does not intro
duce inconsistencies. 

< 
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The Final Operations 

SQUARES AND CUBES 

WHAT HAVE WE done with literal symbols 
so far? We have combined them with numerical 
symbols by way of addition (x + 7), subtraction 

(x — 7), multiplication (7x), and division . We 

have even combined them with other literal symbols 
by means of addition subtraction 

and division 

The one combination I haven't used is that of a 
literal symbol multiplied by another literal symbol, 
and it is time to tackle that very situation now. 

Here's how a case of multiplication among literal 
symbols can arise naturally in mathematics. One 
of the most familiar geometrical figures is the square. 
It is a four-sided figure with all the angles right 
angles,* which makes it a kind of rectangle. A 

* A right angle is the angle formed when a perfectly 
horizontal line meets a perfectly vertical one. 

t > 
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square differs from ordinary rectangles, though, in 
that all four of its sides are equal in length. 

To obtain the area of a square, we must multiply 
the length by the height, as in any other rectangle. 
However, since all the sides of a square are equal, 
the length of a square is always equal to its height. 
A square that is 2 inches long is also 2 inches high; 
one that is 5 inches long is also 5 inches high, and 
so on. The area of a square with a side of 2 inches 
is therefore 2 times 2 or 4 square inches. The area 
of a square with a side of 5 inches is 5 times 5 or 
25 square inches, and so on. 

Because of this connection with the square, 4 is 
said to be the square of 2, and 25 is the square of 5. 
In fact, the product of any number multiplied by 
itself is the square of that number. 

Suppose, though, we didn't know the length of 
the side of a particular square. We could set the 
side equal to x and then we would at once have a 
situation where literal symbols must be multiplied, 
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for the area of that square would be x multiplied 
by x, or xx. Naturally, xx would be the square of x, 
so although it might seem natural to read xx as 
"eks eks," it is more common to read it as "eks 
square." 

A similar situation arises in connection with a 
cube, which is a solid figure with all its angles right 
angles and all its edges of equal size. Dice and 
children's blocks are examples of cubes. To obtain 
the volume of a cube you multiply its length by its 
width by its height. Since all the edges are of 
equal size, length, width, and height are all equal. 
A cube with an edge equal to 2 inches has a volume 
of (2)(2)(2), or 8 cubic inches.* If it has an edge 

* I'm sure cubic inches hold no terrors for you. Still, 
if you feel the need for a little freshening on units of 
volume, there is always Realm of Measure to look 
through. 
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equal to 5 inches, it has a volume of (5) (5) (5), or 
125 cubic inches. 

Because of this, 8 is called the cube of 2, while 
125 is the cube of 5. Three equal numbers of any 
sort multiplied together yield a product that is the 
cube of the original number. 

Again, if we don't know the length of the edge 
of a cube, and set that length equal to x, we know 
that the volume is equal to xxx. Naturally, xxx is 
referred to as "eks cube." 

The notions of squares and cubes of a number 
originated with the Greeks, who were particularly 
interested in geometrical figures. There are no 
geometrical figures, however, that can be drawn or 
built to represent situations where four or more 
equal numbers must be multiplied, so there are no 
special names for xxxx or xxxxx. Mathematicians 
simply refer to such expressions as "x to the fourth," 
"x to the fifth," and so on. If I said "x to the 
seventeenth" you would know promptly that I 
meant seventeen x's multiplied together. 

In the early days of algebra, mathematicians 
found they had to get involved frequently with a 
number of x's multiplied together, and they natu
rally looked about for some simple and convenient 
way of symbolizing such a situation. To write out 
a series of x's takes up space and can be confusing. 
If you look at xxxxxxxx, you can't tell at a glance 

i 
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whether you are dealing with x to the seventh, x to 
the eighth, or x to the ninth. You would have to 
stop and count them. 

A convenient shorthand for this sort of thing 
was invented by the French mathematician Rene 
Descartes (re-NAY day-KART), in 1637. He 
showed the number of x's to be multiplied together 
by using a little number placed to the upper right 
of the x. For instance, xx would be written x2 and 
xxx would be written x3. These are still read "x 
square" and "x cube." After that, you would have 
x4, x5, or even x218, for that matter, and these are 
still read "x to the fourth," "x to the fifth," or "x to 
the two hundred and sixteenth." The little number 
in such an expression is called the "exponent." 

HANDLING THE INVOLUTION 

When we consider an expression like x3 or x5, we 
say we are "raising x to a power." This is another 
algebraic operation. 

So far, we have considered addition, subtraction, 
multiplication, and division — the four algebraic 
operations that are commonly used in ordinary 
arithmetic. Raising to a power is a fifth operation, 
and one that is not commonly used in ordinary 
arithmetic. This fifth operation can also be called 
"involution." 

You may wonder if it's fair to call involution a 
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fifth operation. Is it not only a multiplication? 
Isn't x2 just x multiplied by x? 

So it is, but by the same token, multiplication 
can be looked upon as a kind of addition, can't it? 
For instance, 2x, which is an example of multipli
cation, can be looked on as simply x plus x, which 
is certainly an addition. 

One reason multiplication is considered a separate 
operation is that it is handled differently in equa
tions as compared with addition. If we consider 
the equation 2x + 3 = 10, we know that we must 
transpose the 3 before we transpose the 2; that we 
cannot deal with the multiplication until after we 
have dealt with the addition. 

We could write the equation x + x + 3 = 10 
and it would be the same equation, but now it 
would involve only addition. You can now trans
pose any term at will; you can transpose one of the 
x's, separating it from the other. Thus, you could 
change the equation to read x + 3 = 10 — x. (This 
wouldn't do you any good as far as solving for x is 
concerned, but at least it would leave the equation 
consistent with what it was before.) 

It also turns out, then, that involutions must not 
be handled in the same way that multiplications 
are, even though involution can be considered a 
kind of multiplication. That is what makes involu
tion a separate operation. To show what I mean, 
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let's consider a simple expression involving numer
ical symbols only. 

-What is the value of (2)(2)(5)? The answer, you 
can see at once, is 20. It doesn't matter whether 
you first evaluate (2) (2) to get 4 and then evaluate 
(4)(5) to get 20; or do it in another order, (2)(5) 
giving you 10 and (10) (2) giving you 20. The 
answer is the same no matter in what order you 
multiply. 

Suppose, though, you had written not (2) (2) (5) 
but (22)(5). It is the same expression, but now it 
involves an involution. The value of 22 is 4, of 
course, and if that is multiplied by 5, the answer 
is 20. But can you multiply 2 by 5 first and then 
perform the involution? Suppose, just to see what 
would happen, you try to do this. Well, (2) (5) is 
10 and 102 is 100, and now you have an inconsistency. 

To avoid the inconsistency, involutions must be 
performed first, before multiplications are per
formed; just as multiplications are performed before 
additions. 

As an example, let's look at the expression 3x2 

and ask ourselves what it means. Does it mean 

To answer that question, let's remember that I 
have explained that since multiplications must be 
performed before additions, a multiplication is 
always treated as though it were in parentheses. 
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The expression 3x + 2 is always treated as though 
it were (3x) + 2. In the same way, since involu
tion must be performed before multiplication, in an 
expression involving both, it is the involution that 
is treated as though it were within parentheses. 

Therefore, and its meaning is 
No confusion is possible. It is only 

because people have gotten into the habit of leaving 
out the parentheses in expressions like that the 
question arises in the minds of beginners. 

(By now you may be a little impatient with the 
way in which parentheses are left out. Why 
shouldn't they be put in everywhere possible in 
order to avoid confusion? Well, if they were, 
equations would be simply cluttered with paren
theses. And as you yourself got expert in manipu
lating equations, you would get tired of them, and 
start leaving them out yourself.) 
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Suppose, though, you really do want to multiply 
3x by 3x. How would you indicate that? Again, 
the very handy parentheses can be used and the 
multiplication can be written (3x)2. It is easy to see 
now that it is the entire expression within the 
parenthesis that is being squared, just as we earlier 
decided that in the expression 3(x + 2), it is the 
entire portion within the parenthesis that is being 
multiplied. By proper use of parentheses, we can 
change the order in which operations must be 
performed. 

If we write out the expression (3a:)2 as a multiplica
tion, it becomes (3)(x)(3)(x). Here only multiplica
tions are involved and we can arrange the symbols 
any way we choose without altering the over-all 
value. We can therefore write the expression as 
(3)(3)(x)(x), and this we can change back into 
involutional form as (32)(x2). If you'll try the 
same trick on (7x)5, you will find that can be 
written as (7s) (x5). 

In fact, we can write that 

where * is the usual general symbol for an exponent. 
Using this same line of argument, you should 

have no trouble in seeing that (5x)(3x) is equal to 
15x2 and that 30x3 can be factored as (2x)(3x)(5x), 
or even as (2)(3)(5)(x)(x)(x). 
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COMBINING INVOLUTIONS 

What if we are presented with an operation 
involving two involutions. As an example, consider 
the expression (x3)(x2), where one expression con
taining an involution is multiplied by another. 
We can simplify this by substituting multiplication 
for involution. Thus, x3 is xxx and There
fore, (x3)(x2) is (xxx)(xx). Since only multiplications 
are involved, there is no need for parentheses and 
the expression becomes xxxxx or x5. To put it 
briefly, (x3)(x2) = x5. Apparently, we have just 
added the exponents. 

Try other examples and you will find this con
tinues to be so. Exponents are added in all cases 
of this kind. In general, we can write: 

The obvious next step is to divide one expression 

involving an involution by another. Can you cal

culate the value of 

You might quickly suppose that since the multi
plication of involutions involves addition of expo
nents, the division of involutions ought to involve 
the subtraction of exponents. Thus to divide x5 by 
x3 would give the answer x2, since 5 — 3 is equal to 2. 

The expression x5 can be written xxxxx and x3 can 
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be written xxx. Therefore, We can 

cancel three of the x's above and below since each 
x represents a common factor. In this way the 
three x's in the denominator are subtracted from 
the five x's in the numerator and two are left, so 
that the answer is indeed x2. 

In general, then: 

This state of affairs can lead us to some inter
esting conclusions. 

Descartes used exponents only when two or more 
identical symbols were multiplied together. The 
smallest exponent is 2 under those conditions. But 
suppose you wanted to divide x3 by x2? According 

to the rules of subtraction of exponents, equals 

x1, but what does that mean? 

Well, if is written , then two of the x's 

can be canceled above and below and the value of 

the fraction is simply x. Therefore, So we 

have two answers to the same problem, x1 and x, 
depending on which route of solution we use. The 
way to keep consistent is to decide that the two 
answers are really one answer by saying that x1 = x. 
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In a way, this makes sense because, by Descartes' 
rule, x1 should represent a single x multiplied 
together. Even though you can't really multiply an 
x all by itself (it takes two to multiply), you can 
imagine it as just standing there untouched so that 
x1 should equal x. All this would hold true for any 
symbol and so we can say 

a1 = a 

But we can go further. Suppose you were to 
divide x3 by x3? Since any number divided by itself 

equals 1, we can say that However, if we 

use our subtraction-of-exponents rule, we must also 

say that 

Again, the only way to avoid an inconsistency 
is to agree that the two results are the same and 
that x° is equal to 1. We can work out the same 
result if we divided 23 by 23, or 75 by 75. We must 
come to the conclusion that any symbol, whether 
numerical or literal, raised to the zeroth power, 
equals one. We can say, generally: 

Here is an example which shows that consistency 
in mathematics is more important than "common 
sense." You might think that a:0 should represent 

, 
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zero x's multiplied together. That doesn't really 
make sense, but to most people that would sound 
although the answer should be zero. 

But if we let equal zero, we have the incon

sistency that can equal either 1 or 0, depending 

on which rule of division we use. We simply 
cannot allow that, so we make x° equal 1, regardless 
of any "common sense" that tells us differently. 

And we can go further than that, too. Suppose 
we want to divide x3 by x5. Using the subtraction-

of-exponents rule, we have is equal to 

Now what in the world does a negative exponent 
mean? How can you possibly multiply — 2 x's 
together? 

But suppose we write out the expression in a 

fashion that involves only multiplications, thus, 

Now if we cancel three of the x's, top and 

bottom, we are left with 

Again, we have two values for the same expres

sion, and We must, therefore, set one 

equal to the other. If we try this sort of thing with 
other exponents, we would find that x~7 must be 
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Having taken care of the multiplication and 
division of expressions involving involutions, how 
about involuting an involution? That sounds odd, 
but I can explain what I mean in a moment. Suppose 
you wanted to multiply x3 by itself. The result 
would be (x3)(x3) or (a:3)2, which is an example of 
the involution of an involution. 

But by the addition-of-exponents rule, (x3)(x3) is 
equal to x6. Therefore, (x3)2 = x6. In the same 
way (x4)3 is (x4)(x4)(x4) or x12. In the involution of 
involutions, we seem to be multiplying exponents 
and we can say the general rule is 

Thus, the use of exponents simplifies operations. 
Involution of involution becomes multiplication of 
exponents. Multiplication of involutions becomes 
addition of exponents. Division of involutions 
becomes subtraction of exponents.* 

* The use of exponents in this fashion led to the inven
tion of "logarithms" as a way of simplifying calcula
tions. This was achieved about 1600 by a Scottish 

. 
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THE INVERSE OF INVOLUTION 

The algebraic operations, other than involution, 
exist in pairs. Addition has its inverse in sub
traction and multiplication has its inverse in divi
sion. It wouldn't seem right to have involution 
exist by itself and without an inverse. 

What then is the inverse of involution? Well, 
let's see. To multiply a quantity by itself thus, 
(3) (3), is involution, and the product is 9. To 
construct an inverse operation, we need only begin 
with the product and work backward. What num
ber multiplied by itself is 9? The answer, of course, 
is 3. 

Or we might ask: What number, taken five times 
and multiplied together, will give 1024. We can 
try to answer this hit-and-miss. We might try 2 
first, but (2)(2)<2)(2)(2) comes to only 32. In the 
same way, five 3's multiplied together would give 
us 243. However, five 4's multiplied together would 
indeed give us 1024, so our answer is 4. 

(There are methods for working out such prob
lems in better ways than hit-or-miss. In this book, 
I won't deal with that. For the purpose of explain
ing algebra, I need only simple problems of this 

mathematician named John Napier. I have no room 
to talk about logarithms here, but if you are curious 
you will find them explained in Chapter 8 of Realm 
of Numbers. 
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kind — problems so simple you will be able to 
work them out in your head.) 

Mathematicians refer to this inverse of involu
tion, this finding of a value which when multiplied 
by itself a number of times gives a known answer, 
as "evolution." I shall try to use this short term 
whenever possible, but an older and much better-
known name for the operation is "extracting a root." 

This old-fashioned term comes from the Arabic 
mathematicians of the Middle Ages. I suppose 
they looked upon the number 1024 as growing 
out of a series of 4's as a tree grows out of its roots. 
Therefore, 4 is a root of 1024. Then, just as tree 
roots must be extracted from the soil, so 4 must be 
"extracted" from 1024. 

Of course, there are different degrees of roots. 
Since (4)(4) is 16, (4)(4)(4) is 64, and (4)(4)(4)"(4) 
is 256, 4 is a root of 16, 64, and 256, as well as of 
1024. These different situations are distinguished 
in the same way that different powers are dis
tinguished in involution. 

Thus, since 16 is the square of 4, 4 is the square 
root of 16. Again, 64 is the cube of 4, so 4 is the 
cube root of 64; 256 is the fourth power of 4, so 4 
is the fourth root of 256, and so on. 

The operation of evolution is indicated by means 
of a sign called a "radical" (which has nothing to 
do with politics but simply comes from a Latin 
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word, "radix," meaning "root"). The sign looks 
like this: V . It was invented by a German mathe
matician named Christoff Rudolff who used it first 
in a book published in 1525. Before that, the letter 
r (for "radix") was used and it is quite possible 
that 

By 1700, mathematicians came to distinguish one 
kind of root from another by using a little number, 
just as in the case of involution. Thus, the cube 
root is w r i t t e n h e fourth root is written 
the eighth roo and so on. The little number 
is referred to as the "index." 

By using this radical sign, we can show how 
powers and roots are related in a very simple way: 

If an = b 

then 

There is one exception to this general rule of 
indexes, and that involves the square root. It 
should be written if we were to be completely 
logical. However, the square root is used so much 
oftener than all other kinds of roots put together 
that mathematicians save time by taking this 
particular index for granted, just as they usually 

leave out the 1 in expressions such as 

In other words, the sign standing by itself 
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and without an index, is assumed to be the square 
root. This is so common, in fact, that the sign is 
almost never called the radical. It is almost always 
called the "square-root sign." 

Inverse operations always introduce new diffi
culties. It is subtraction, not addition, that intro
duces negative numbers. It is division, not multi
plication, that introduces fractions. 

What new complications will evolution introduce? 
Suppose we take the apparently simple problem of 

finding the square root of 2, or, to use symbols, V2. 
The answer isn't 1 because (1)(1) gives a product of 
1, which is less than the desired quantity, 2. The 
answer isn't 2 either because (2) (2) is 4, which is 
more than the desired quantity. The answer, then, 
must he somewhere between 1 and 2, and if you 
wish you can try various fractions in that range. 

For instance, is almost right since gives 

the produce It is necessary to find a 

fraction then that is just a trifle greater than 

Unfortunately, if you were to keep on trying, 
you would never find the correct fraction. Every 
one you tried would end up just a little' higher than 
2 if multiplied by itself, or a little lower than 2. 



The Final Operations 12 9 

It would never come out exactly 2. Thus, the 

fraction if multiplied by itself would give 

a product of 2.000001237796, which is just a hair 
above 2, but isn't 2 exactly. 

It was the Greeks who first discovered that there 
were numbers, such as the which could not 
be expressed as fractions, and they were quite 
disturbed about it. Such a number is now called 
an "irrational number." Of course, in ordinary 
speech, "irrational" means crazy or mentally un
balanced and perhaps you think this is a good 
name for such numbers. In mathematics, however, 
the name merely means "without a ratio," ratio, you 
may remember, being another word for fraction.* 

Almost all roots, with very few exceptions, are 
irrational. In this book, I will be constantly using 
those few exceptions as material to work with in 
order to keep out of complications. However, don't 
let that give you the wrong idea. Roots and irra
tional numbers go hand in hand just as division 
and fractions do. 

* I could very easily go on talking about irrational 
numbers for many pages, but I won't. If you are 
curious to know more about them, you will find a 
discussion in Realm of Numbers. 
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EXPONENTS GO FRACTIONAL 

In previous cases, we have always managed to 
get rid of inverse operations in one way or another. 
By using negative numbers, we got rid of subtrac
tions, for instance, writing 8 + ( — 7) instead of 
8 — 7. Again, we got rid of division by using 

reciprocals, writing instead of 

It would seem that we ought to be able to get rid 
of evolution as well. 

To do that, let's begin by considering an expres
sion such as where a fractional exponent is 
involved. Do not feel disturbed at this or begin to 
wonder how half an x can be multiplied together. 
Remember that the notion of having exponents tell 
us how many numbers are to be multiplied together 
is too narrow. We've already gone beyond that in 
considering expressions like x° and and made 
sense of those impressions. Why not find out how 
to make sense of as well? 

To begin with, let's multiply by itself. By the 
rule of addition of exponents, is equal to 

which makes it or simply x. 
If we were to ask then: What number multiplied 

by itself gives us we would have to answer 
But in asking what number multiplied by itself 
gives us x, we are asking: What is the square root 
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of So we must say that the square root of x is 

That gives us the meaning of the fractional 
exponent It is another way of symbolizing the 
square root. 

In the same way, we would find that (x*)(x*)(x$) 
is equal to x, so that is the cube root of x, or 

We can make this general by saying 

Now you have all you need to understand what 
is meant by an expression like This can be 
written as and we know that this is the same as 

because by the rule of multiplication of 
exponents, is equal to 

Since the exponent indicates the square root, 
we can write In other words, 
equals and, in general, 

This way of shifting back and forth from indexes 
to exponents can temporarily eliminate evolution 
and make the multiplication of roots simpler. You 
might well be puzzled, for instance, at being asked 
to multiply the square root of x by the cube root 
of x, if all you could do was write it thus: 
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Change the indexes to exponents, however, and 
you have instead and by the rule of addition 
of exponents you have the answer 
which can be written as 

And now you can heave a sigh of relief. There 
will be no new surprises sprung upon you in the 
way of algebraic operations, for there are no more. 
Only three pairs of operations exist in the whole of 
algebra: 

(1) Addition and subtraction 
(2) Multiplication and division 
(3) Involution and evolution 

and you now have them all. 
The next step is the matter of handling equations 

that involve involution and evolution. 
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Equations by Degrees 

A NEW TRANSPOSITION 

SUPPOSE THAT we had a cube with a 
volume of 27 cubic inches and were anxious to know 
the length of the edge. We consider the edge of the 
cube to be x inches long and, since the volume of 
a cube is obtained by raising the length of the edge 
to the third power, we have the equation 

In earlier chapters, we found that the same 
number could be added to or subtracted from both 
sides of an equation; and that the same number 
could be used to multiply both sides or to divide 
into both sides. It isn't hard to suppose that involu
tion and evolution can be added to the list. Both 
sides of the equation can be raised to the same 
power or reduced to the same root without spoiling 
the equation. 

In order to change x3 to x, we need only take the 
cube root of x3. The cube root of which 
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is the same as Xs, which, of course, equals x1 or, 
simply x. 

But if we take the cube root of one side of the 
equation, we must take the cube root of the other, 
too, to keep it an equation. Therefore: 

The left-hand side of the equation is equal to x, 

as we have just decided, and the right-hand side is 

equal to 3, since (3) (3) (3) is equal to 27. The 

equation becomes 

x = 3 

which is the solution. 
Suppose, on the other hand, we have an equation 

like this: 

Now in order to convert to x, we cube 
After all, the cube of the cube root of x is 
which can again be written as or simply x. 

In fact, we can set up the general rule for any 
power or index by this line of argument: 

If we return to our equation, and cube 
both sides, we have 
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or 
x = 64 

Just as in the case of the other operations, we 
are solving equations involving involution and 

, evolution by shifting a symbol from one side of the 
equation to the other. We are shifting the little 
figure that represents the index of an evolution or 
the exponent of an involution. If you look at 
the equations so far in this chapter again, you will 
see that 

In each case, you might say the little 3 has been 
transposed. (Actually, the term "transpose" is con
fined to the operations of addition and subtraction. 
However, I have used it for multiplication and 
division as well and the shift in the case of evolution 
and involution is so similar in some ways, that I 
will even use the word here.) In this case, too, as 
with the other operations, transposition means an 
inversion. Involution becomes evolution as the 
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exponent is converted to an index. And evolution 
becomes involution as the index is converted to an 
exponent. This is plain enough in the samples I 
have just given you. 

The reason this isn't as plain as it should be is 
that almost all the roots used in algebra are square 
roots, and this is the one case where the index is 
omitted. 

If we say, for instance, that 

x2 = 16 

you can see at once by what I have said so far that 

x = Vl6 

but now the little 2 seems to have disappeared in 
the process, and the fact that it has been transposed 
and changed from exponent to index is not notice
able. It would be noticeable if we wrote the square 
root of 16 as as we should logically do — but 
which we don't. 

In the same way, if we start with 

we can convert that to 

x = 82 

and a little 2 seems to have appeared out of nowhere. 
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SOLUTIONS IN PLURAL 

Mathematicians are very conscious of the appear
ance of powers in equations. They make equations 
more difficult to handle. The higher the powers, in 
fact, the more difficult equations are to handle. By 
1600, therefore, mathematicians were classifying 
•equations according to the highest power of the 
unknown that appeared in them. 

Equations are said to be of a certain "degree." 
In a simple equation of the type I have used up to 
this chapter, such as x — 3 = 5, the unknown can 
be written so this is an "equation of the first 
degree." 

In the same way, an equation such as x2 — 9 = 25 
is an "equation of the second degree" because the 
unknown is raised to the second power. In an equa
tion such as x2 + 2x — 9 = 18, where the unknown 
is raised to the second power in one term and to the 
first power in another, it is the higher power that 
counts and the equation is still of the second degree. 

Equations such as x3 — 19 = 8, or 2x3 + Ax2 — 
x = 72, are "equations of the third degree" and 
so on.* 

* Actually, these should be referred to as "polynomial 
equations" of this degree or that, because they involve 
polynomials, whereas some kinds of equations do not. 
However, in this book, I talk about polynomial equa
tions and no other kind, so I won't bother to specify 
all the time. 
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This is the simplest and most logical way of 
classifying equations, but, unfortunately, mathe
maticians have become so familiar with these differ
ent types that they have also given them specialized 
names. Since the specialized names are used more 
often than the simple classification by degree, you 
had better be told what they are. 

An equation of the first degree is called a "linear 
equation" because the graph of such an equation 
is a straight line. (Graphs are, alas, not a subject 
I can cover in this book.) 

An equation of the second degree is called a "quad
ratic equation," from the Latin word "quadrus," 
meaning "square." A quadratic equation is an 
equation involving squares, after all, so that's 
fair enough. 

An equation of the third degree, with even more 
directness for English-speaking people, is called a 
"cubic equation." 

An equation of the fourth degree is called a 
"quartic equation," and one of the fifth degree 
is called a "quintic equation," from the Latin 
words for "four" and "five" respectively. Some
times an equation of the fourth degree is called 
"biquadratic," meaning "two squares" because it 
involves the multiplication of two squares. After 
all, 

Having settled that, then, let's take a close 
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look at the simplest possible quadratic equation: * 

x2 = 1 
By transposing the exponent, we have 

and all we need ask ourselves is what number 
multiplied by itself will give us 1. The answer 
seems laughably simple since we know that (1)(1) 
is equal to 1, so 

x = 1 

But hold on. We haven't been worrying about 
signs. When we say that x2 = 1 and that x = vT, 
what we really mean is that x2 = + 1 , and that 

(The plus sign, remember, is another 
one of the many symbols that mathematicians 
keep omitting.) 

This changes things. If we ask what number 
multiplied by itself will give us + 1 , we are suddenly 
in a quandary. It is true that is equal 
to + 1 , but isn't it also true that ( —1)( —1) is 
equal to +1? Therefore, are not +1 and —1 both 
solutions for x in the equation x2 = 1? 

Does this sound like an inconsistency to you, 

* It might seem to you that x2 = 1 is not a polynomial 
equation because no polynomials are involved. How
ever, by transposing, you have x2 — 1 = 0 and there's 
your polynomial. 
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with two answers for the value of x in one equation? 
You might try to remove this troublesome compli
cation by just deciding on a rule that won't count 
negative numbers as a solution to an equation. 
Mathematicians up into the 1500's actually did 
use such a rule. 

However, they were wrong to do it. Negative 
numbers are so useful that to eliminate them 
merely to avoid a complication is wrong. Besides, 
the rule does no good. There are quadratic equa
tions which give two answers that are both positive. 

For instance, take the equation x2 — 3x = —2. 
Without actually going through the procedure of 
solving for the value of x, I will simply tell you 
that both 1 and 2 are solutions. If you substitute 
1 for x, then x2 is 1, and 3x is 3, and 1 — 3 is indeed 
— 2. If, however, you substitute 2 for x, then x2 is 
4 and 3x is 6, and 4 — 6 is also equal to —2. 

There are other quadratic equations in which two 
solutions exist that are both negative. In the 
equation x2 + 3x = —2, the two solutions for x 
are — 1 and —2. 

By 1600, mathematicians had resigned them
selves to the thought that the rules for quadratic 
equations weren't the same as those for linear 
equations. There could be two different solutions 
for the unknown in a quadratic equation. 

Well, then, are we stuck with an inconsistency? 
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Of course not. An inconsistency results when solv
ing an equation by one method yields one answer, 
and solving it by another yields a second answer. 
Solving a quadratic equation gives two answers at 
the same time. And no matter what different 
methods you use, you get the same two answers. 

To make this quite plain, if I were to ask you the 
name of the largest city in the United States, and 
you answered New York one time and Chicago 
another time, you would be inconsistent. If, how
ever, I asked you the name of the two largest cities 
in the United States and you answered New York 
and Chicago, you would not be inconsistent. You 
would be correct. 

In fact, to return to equations, it was soon dis
covered that the unknown in a cubic equation 
could have three solutions and the unknown in a 
quartic equation could have four solutions. In 1637, 
Rene Descartes, the man who invented exponents, 
decided that the unknown of any equation had a 
number of solutions exactly equal to the degree of 
the equation. This was finally proved completely 
in 1799 by a German mathematician named Carl 
Friedrich Gauss. (His name is pronounced "gows.") 

IMAGINARY NUMBERS 

But if this is so, and the unknown in a cubic 
equation has three solutions, then in the very sim-
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plest cubic equation (in which I will include signs 
this time) 

xa = +1 

there should be three solutions for x. 
Transposing the exponent, we have 

and we need only ask ourselves what number can 
be taken three times and multiplied to give + 1 . 
We can start off instantly by saying that +1 is 
itself a solution since (+1)(+1)(+1) is equal to + 1 . 

But where are the other two solutions? Can one 
of them be - 1 ? Well, ( - 1 ) ( - 1 ) is +1 and mul
tiplying that product by a third —1 gives us 
(+1)(—1), which is equal to — 1. Therefore 
( - 1 ) ( - 1 ) ( - 1 ) is equal to -1 and 
that —1 is not a solution to the cubic equation 
above. 

Nor is there any number, any fraction, or even 
any irrational, either positive or negative, with the 
single exception of + 1 , that is the cube root of + 1 . 

Then what conclusion can we come to but that 
here we have a cubic equation in which the unknown 
has but a single solution? 

Can it be that we have caught great mathema
ticians such as Descartes and Gauss in an error? 
And so quickly and easily? 
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That's a little too good to believe, so let's go 
back a step to the quadratic equation again. Now 
that we're introducing signs, let's try an equation 
of this sort with a negative, like this: 

x2 = - 1 

By transposing the exponent, we have 

and now we must find a number which, multiplied 
by itself, equals — 1. Since both (+1)(+1) and 
( —1)( —1) equal + 1 , we are suddenly left with the 
thought that there is no number which is the square 
root of minus one. Can it be that in an equation 
as simple as x2 = —1, we are faced with no solu
tion at all? 

In 1545, however, Cardano, who, you may remem
ber, introduced negative numbers, decided to invent 
a number which, when multiplied by itself gave 
— 1 as the product. Since this number didn't seem 
to exist in the real world but only in imagination, 
he called this number an "imaginary number." In 
1777, the Swiss mathematician Leonhard Euler 
(Oi-ler) symbolized the square root of — 1 as i (for 
"imaginary"). 

In other words, i is defined as a number which, 
when multiplied by itself, gives — 1. You can write 
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It seems difficult for people to accept i as being a 
number that is just as valid as 1. It doesn't help 
to call i "imaginary" and numbers like +1 or — 1 
"real numbers," but this is what is done to this day. 

There is, in actual fact, nothing imaginary about i. 
It can be dealt with as surely as 1 can be dealt with. 
Thus, you can have two different kinds of i just 
as you can have two different kinds of 1. You can 
have +i and — i. Just as +1 and —1 have the 
same square, + 1 , so +i and — i have the same 
square, —1. 

Thus the square root of —1 has two solutions 
rather than none, the solutions being -f i and — i. 
Often, when an unknown is equal to both the 
positive and negative of a particular number, the 
number is written with a sign made up of both the 
positive and negative, thus ±. This is read "plus 
or minus" so that the number ±1 is read "plus or 
minus one." Using this sign: 

If x2 = - 1 

then x = ±i 

Are you still anxious for some way of visualizing 
what i is and of getting its exact nature clear in 
your mind? Well, remember that at first people 
had this trouble with negative numbers. One way 
of explaining what the mysterious less-than-zero 
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numbers might be was to use directions. Thus, 
might be represented by a point 1 inch east of 

a certain starting position while +2 might be 
represented by a point 2 inches east of the starting 
position, +5 by a point 5 inches east, and so on. 
In that case, negative numbers would be repre
sented by westward positions, and — 1 would be 
represented by a point 1 inch west of the starting 
position. — 

We can follow right along with this and have +i 
and the other positive imaginaries be represented 
by distances to the north and — i and the other 
negative imaginaries represented by distances to 
the south. 
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Imaginaries actually are represented in this way 
and have helped mathematicians tremendously. 
With only real numbers, mathematicians were con
fined to a single east-west line, so to speak. Once 
imaginary numbers were introduced, they could 
wander in all directions — east, west, north, and 
south. It was just like being let out of prison, and 
what is called "higher mathematics" would be 
impossible without imaginary numbers. 

The symbol i is all that is needed in dealing with 
imaginary numbers. You might think, offhand, that 
there would be an unending number of symbols 
required for the unending number of imaginaries. 
For instance, and so on are 
all imaginary, for no real number of any sort will 
give a negative number of any sort as a square. 

To see why i is nevertheless sufficient, let's look 
first at V36, which equals 6. The expression can be 
written V(9)(4), and if this is broken apart into 
the multiplication of two separate roots, thus, 

we can evaluate it as (3) (2), which is 
still equal to 6. Other examples will show that this 
is a general rule and that 

Now we can write which, by 
the rule just cited, can be written as 
which works out to (2)(i), or simply 2i. In the 
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same way, works out to 4i, and 
equals (The value of is an irrational 
number, but a close value is 2.824, so we can say 
that is about equal to 2.824 i.) 

In fact, we can state the general rule that 

and for that reason, the existence of i takes care 
of the square roots of all negative numbers. 

We can now say that the unknown of any quad
ratic equation has two solutions, provided we 
remember that the solutions need not be real 
numbers, but might be imaginaries. 

We can even venture into a quartic equation 
such as 

By transposing the exponent, we have 

and we need to find values for x such that four of 
them multiplied together give + 1 . Two possible 
values for x are +1 and —1, since (+1)(+1)( + 1) 
(+1) = + 1 , and ( - l ) ( - l ) ( - l ) ( _ l ) = + 1 . If 
you're not certain that the latter multiplication is 
correct, think of it this way: [(-1)( -1)][( - 1 ) ( - 1 ) ] . 
The first two — l's multiplied together give +1 as 
the product and so do the last two —l's. The 
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expression therefore becomes (+1)(+1), or + 1 . 
Two more possible values for x are +i and — i. 

In the first place, consider (+ i ) (+ i ) (+ i ) (+ i ) . 
Break that up into pairs as [(+i)(+i)][(+i)(+i)] 
and you see that the product of the first pair is 
— 1, and so is the product of the last pair. The 
expression therefore becomes ( —1)( — 1), which gives 
the desired result of + 1 . By the same reasoning 
( —i)( —i)( —i)( —i) is also equal to + 1 . 

So you see that in the quartic equation x* = + 1 , 
there are indeed four possible solutions for x, these 
being + 1 , — 1, + i , and —i. Imaginary numbers 
are thus essential for finding the proper number of 
solutions. But are they sufficient? 

COMBINING THE REAL AND IMAGINARY 

Let's go back to the cubic equation 

x3 = + 1 

where, so far, we have found only one solution for 
x, that solution being +1 itself. If we allow imag
inary numbers, can it be that +i and — i are the 
second and third solutions? 

What about the expression (+i ) (+i ) (+i )? The 
first two +i ' s , multiplied together, equal —1, so 
the expression becomes ( — l) (+i) which, by the 
law of signs, gives the product — i. Therefore, 
+i is not a solution of the equation. In the same 
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way, you can work out that ( —i)( —i)( —i) yields 
the product — i, so — i is not a solution of the equa
tion either. Where, then, are the second and third 
solutions of the equation x3 = +1? 

To find the answer to that question we must 
realize that most numbers are neither entirely real 
nor entirely imaginary. They're a combination of 
both. Using general symbols, we can say that the 
typical number looks like this: where a is 
a real number and an imaginary number. 

Such numbers, part real and part imaginary, 
were called "complex numbers" by Gauss in 1832. 

Actually, those numbers that are entirely real or 
entirely imaginary can also be considered as exam-
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pies of complex numbers. In the expression a + 6i, 
suppose a is set equal to 0. The expression becomes 
0 + bi, or just By letting b equal any value 
except 0, any imaginary number can be produced. 
All the imaginary numbers, then, are complex 
numbers of the form 0 + bi. 

Suppose, on the other hand, b were set equal to 0, 
in the expression a + bi. The expression becomes 
a + Oi. But Oi is 0, since any number multiplied by 
zero is zero, so that the expression can be written 
a + 0, or simply a. By letting a equal any value 
except 0, any real number can be produced. All the 
real numbers, then, are complex numbers of the 
form a + Oi. 

The solutions of the equation x2 = +1 can be 
given as complex numbers. They are 1 + Oi and 
— 1 + Oi. As for x2 = — 1, the two solutions, as 
complex numbers, are 0 + i and 0 — i. 

But the complex numbers that serve as solutions 
for x in a particular equation do not have to have 
zeros involved every time. A solution can consist 
of a complex number, a + bi, in which neither a nor 
b is zero. And, in fact, that is what happens in the 
cubic equation, x3 = + 1 . The solution which I've 
been calling +1 can be written in complex form as 
1 + Oi. The other two solutions don't involve a 

zero. They are 
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If either of these expressions is cubed, the answer 
is - 1 . * 

It is by using the system of complex numbers 
that it is possible to show that x in any equation 
has a number of solutions exactly equal to the 
degree of the equation. 

Now that this is settled, I will go back to quad
ratic equations and, for a while at least, we can 
forget about equations of a higher degree than two. 

* I'm going to ask you to take my word for this 
because I have no room to go any further into imag-
inaries in this book. However, in Realm of Numbers, 
where I discuss imaginaries a bit more in detail, you 
can find the cube of these expressions worked out 
toward the end of Chapter 9. 
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Factoring the Quadratic 

TACKLING THE SECOND DEGREE 

WE CAN make equations of the second 
degree a little more complicated by adding other 
operations, as in 

3x2 - 8 = 100 

I have already explained that a multiplication 
is treated as though it were enclosed in a paren
thesis. The same is true of involution, only more 
so, so that when multiplication is also present, the 
involution is enclosed in an inner parenthesis. The 
equation could be written, if all parentheses were 
included: 

[3(x2)] - 8 = 100 

Naturally, we must transpose first the 8, then 
the 3, then the 2, working inward through the 
layers of parentheses. The results are: 

3x2 =100 + 8 (or 108) 
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which are the solutions. 
Where parentheses are involved in different 

arrangement, the order of transposition changes 
accordingly. In the equation 

(x + 3)2 - 7 = 42 

which could be written, in full, as 

[(* + 3)2] - 7 = 42 

the 7 is transposed first, but the other operation of 
addition is within an inner parenthesis and can't 
be dealt with until the exponent in the outer paren
thesis is taken care of. So the order of transposition 
is the 7, then the then the 3, thus: 

(x + 3)2 = 42 + 7 (or 49) 

(either + 7 or - 7 ) 

Therefore, either 

. * = 7 - 3 (or 4) 

which is one solution, or 

x = - 7 - 3 (or - 10) 

which is another solution. 
So "far, quadratic equations seem just like ordinary 

linear equations with just the additional complica-
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tion of having three sets of operations to worry 
about instead of two, and of having two solutions 
instead of one. 

The two solutions are each perfectly valid, of 
course. Taking the second case as an example, 
either numerical value determined for x can be 
substituted in the equation 

(x + 3)2 - 7 = 42 

Substituting 4, gives you: 

(4 + 3)2 - 7 = 42 

72 - 7 = 42 

49 - 7 = 42 

which is correct. 
Substituting — 10, gives you: 

( - 1 0 + 3)2 - 7 = 42 

49 - 7 = 42 

which is again correct. 
And yet there is more to the quadratic equation 

than you have seen so far. A quadratic equation, 
remember, might also have a term containing an x 
to the first power, thus: 
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x2 + 5x = 6 

Such an equation can arise very naturally out of 
a problem such as the following: Suppose you had 
a rectangular object with its width 5 feet greater 
than its length and with an area of 6 square feet. 
What is the length and width of the rectangle? 

To begin with, let's set the length equal to x. 
The width, being 5 feet greater than the length, is, 
naturally. Since the area of a rectangle is 
obtained by multiplying the length by the width, 
x(x + 5) is that area, which is given as 6 square feet. 

By the rules concerning the removal of paren
theses, which I gave you earlier in the book, we 
know that x(x + 5) can be written as (x)(x) + 
(x)(5), which comes out to x2 + 5x, and that gives 
us our x2 + 5x = 6. 

We can get a sort of solution for x by transposing 
as follows: 

x2 = 6 - 5x 

but that gets us nowhere, for we have x equal to an 
expression which contains an x, and we can't eval
uate it. In fact, we have jumped from the frying 
pan into the fire, for we have exchanged a power 
for a "root, and the roots are harder to handle. 
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FROM SECOND DEGREE TO FIRST 

A possible way out of the dilemma lies in the 
process of factoring. Factoring, as you recall, is 
a method of breaking up an expression into two 
other expressions which, when multiplied, give you 
the original expression. Thus, 69 can be factored 
into (23) (3), and 5x — 15 can be factored into 
(5)(a; — 3). Factoring generally converts a compli
cated expression into two or more simpler ones and 
there is always the good chance that the simpler 
ones can be handled where the original complicated 
one cannot. 

Naturally, before we can figure out how to factor 
an expression, we must have some ideas about the 
process of multiplication. If we knew the kind of 
multiplications that gave rise to a particular type 
of expression, we would know better how to break 
that expression apart. 

I've already given an example of one multipli
cation that gives rise to a second-degree term, 
when I talked about x(x + 5). That was a multi
plication that raised no problems since we know 
that in such a multiplication, the term outside the 
parenthesis is multiplied by each of the terms in
side and that the products are all added. But 
suppose I had an expression such as (x + 7)(x + 4)? 
How does one multiply that? 
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It might seem logical to go one step further. 
Take each term in one parenthesis and multiply 
it by each term in the other, and then add all the 
products. Would that give the correct answer? 

To see if it does, let's go back to ordinary numer
ical symbols and see what that will tell us. Suppose 
we were trying to multiply 23 by 14. Actually, 
23 is 20 + 3 and 14 is 10 + 4, so (23) (14) can also 
be written (20 + 3) (10 + 4). 

Now let's try multiplication. First, we multiply 
20 by each term in the other parenthesis; (20) (10) 
is 200, and (20) (4) is 80. Doing the same next for 
the 3, (3) (10) is 30, and (3) (4) is 12. If we add 
all four "partial products" we have 200 + 80 + 
30 + 12, or 322. Multiply 23 by 14 your own way 
and see if that isn't the answer you get. 

Of course, you may say that this isn't the way 
you multiply, but actually it is. You have been 
taught a quick mechanical rule of multiplying 
numbers, but if you study it carefully you will find 
that what you are really doing is exactly what I 
have just done. 

We can write the multiplication of 23 and 14 
this way: 
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with the arrows pointing out all the different 
multiplications involved. In fact, some people 
think that the crossed arrows in the center are 
what gave rise to the sign X for multiplication. 

Now this same system works when literal sym
bols replace numerical symbols. In the expression 
(x + 7) (a; + 4), we can set up the multiplication 
this way: 

Now how do we add these four partial products? 
There is no use trying to add a term containing x2 

with one containing x or with one containing no 
literal symbol. 

The x2 must remain x2 and, by the same reason
ing, the 28 must remain 28. However, the re
maining two submultiples both contain x. They 
are 4x and Ix and they, at least, can be added to 
give l lx . So we end with the following: 

This means that if you were to come across the 
expression x2 + l l x + 28, you could at once re
place it by (x + l)(x + 4). The quadratic ex-
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pression would be factored, in this way, into two 
expressions, each of which was, by itself, only of 
the first degree. 

Ah, yes, you may be thinking, but how does one 
go about doing that? How can you tell just by 
looking at x2 + l l x + 28 that it can be factored 
into The only reason we know 
about it here is that we did the multiplication first, 
and that's like looking at the answers in the back 
of the book. 

Well, you're right. Factoring is a tricky job and 
sometimes it's a hard job. That's true even in 
arithmetic. You know that 63 can be factored as 
(7) (9), but how do you know that? Only because 
you've multiplied 7 by 9 so many times in your life 

V 
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that 63 = (7) (9) is part of your general stock of 
knowledge. 

But can you factor the number 24,577,761? 
Most people couldn't just by looking at it, any 

more than they could factor a polynomial algebraic 
expression. However, there are some rules to fac
toring. For instance, the digits in 24,577,761 add 
up to 39, which is divisible by 3. This means that 
3 is one factor of 24,577,761 and it can therefore 
be factored as (3) (8,192,587). 

There are rules that can guide you in factoring 
algebraic expressions as well. 

For instance, suppose we multiply two expres
sions, using general symbols instead of numerical 
symbols. We will multiply x + a by x + b. The 
multiplication would look like this: 

The four partial products are x2, ax, bx, and ab. 
The ax and bx can be combined as (a + b)x, so 
that we can state the following: 

This gives us a pattern. The coefficient of the x 
term is a + b, while the term without the x is ab. 
We can combine expressions now without even 
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going to the trouble of multiplying them out. If 
we have the multiplication (x + 17)(x + 5), then 
we see at once that the coefficient of the x term must 
be 17 + 5, or 22, while the term without the x is 
(17) (5) or 85. The product is therefore x2 + 22* 
+ 85. 

To factor a polynomial, we need only work this 
backward; look for two numbers which by addition 
will give the coefficient of the x term, and by multi
plication the numerical term. 

Consider the polynomial x2 + 7x + 12. If you 
consider 7 and 12, it might occur to you that the 
key numbers are 3 and 4, for 3 + 4 is 7, while 
(3) (4) is 12. You can factor the polynomial to 
(x + 3)(x + 4). Multiply those factors and see if 
you don't get the polynomial. 

Or suppose you have the expression x2 — 2x 
— 15. If you think "a while, it may occur to you 
that —5 + 3 is equal to —2, while ( —5)(3) is 
— 15. These, —5 and 3, are the key numbers, then, 
and you can factor the polynomial to (x — 5) and 
(x + 3). 

Of course, for this to work out properly, the first 
term must be x2 and not 3x2 or 5x2 or something 
like that. Where x2 has a coefficient other than 1, 
factoring can still be performed but it becomes a 
trifle more complicated. 

Sometimes you can factor an expression that 
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lacks an x term— one such as x2 — 16, for in
stance. 

To see how that is done, let's multiply general 
symbols again, but with a small difference. This 
time we will multiply x + a by x — a. We set it 
up, thus, substituting x + ( — a) for x — a: 

The four partial products are x2, ax, —ax, and 
—a2. The presence of the — a, you see, makes two 
of the submultiples negative. Now if you add the 
submultiples together, you get x2 + ax — ax — a2. 
The ax and —ax yield zero on addition, so that 
you end with 

(x + a)(x — a) = x2 — a2 

Since that is so, an expression such as x2 — 16 
is easy to factor. It can be written x2 — 42, since 
42 is equal to 16, and from the pattern of the general 
equation I have just given you, you see that x2 

— 42 must factor as (x + 4)(x — 4). Multiply 
those factors and see if you don't get x2 — 16. 

This by no means concludes the rules of factoring. 
For instance, can you imagine what one must do if 
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one has a coefficient to the x2 term? How does one 
factor an expression like 2x2 + 13x + 15? That, 
however, I will leave to you. I have gone as far 
into factoring as I need to for the purposes of this 
book. 

THE USES OF FACTORING 

-Of course, you might be asking yourself how you 
are helped by factoring. What does it do for you 
as far as handling equations is concerned? 

The best way to answer that is to give an example 
of how factoring will change a seemingly compli
cated equation into a simple one. Let's begin with 
the following equation: 

One way to handle it would be to transpose the 
denominator 

remove the parentheses 

bring all the literal symbols to the left and all 
numerical symbols to the right by appropriate 
transposition 
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or 

We can remove the negative sign at the beginning 
by multiplying each side of the equation by — 1 
to get 

We might even try factoring the left-hand side 
of the equation so as to have it read 

but where do we go from there? We are stuck, 
unless we try different values for x, hit-and-miss, 
and see which one will solve the equation. 

Now let's return to the original equation 

and try factoring before we do anything else. 
Consider the numerator of the fraction, x2 + x 
— 20. The coefficient of the x term is +1 (a coef
ficient of 1 is always omitted, of course, but don't 
forget it's really there just the same and that I 
warned you earlier in the book you would have to 
keep it in mind) and the numerical term is —20. 
Now it so happens that when +5 and —4 are 
added, the sum is + 1 , while if they are multiplied, 
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the product is —20. Therefore the numerator can 
be factored as (x + 5)(x — 4). 

As for the denominator, x2 — 25, that can be 
written as x2 — 52 and can therefore be factored as 
(x + 5)(x — 5). Now we can write the equation as 

But the factor x + 5 appears in both the numer
ator and the denominator and can therefore be 
canceled. 

The equation becomes 

and suddenly everything is quite simple. We trans
pose the denominator and proceed according to the 
usual rules: 

which is the solution. 
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Factoring can help in another way, too. Suppose 
you have the following equation: 

x2 - 9x + 18 = 0 

Since —3 and —6 will give —9 when added and 
+ 18 when multiplied, we can factor the expression 
and write the equation this way: 

We can now take advantage of an arithmetical 
fact. Whenever we multiply two factors and find 
an answer of 0, then one factor or the other must 
be equal to 0. If neither factor is 0, then the product 
can never be zero. 

Suppose, then, that x — 3 is equal to 0. By 
transposition, we can see at once that if 

x - 3 = 0 
then 

x = 3 

But it's possible that it is the other factor that 
is 0; in other words, that 

x - 6 = 0 
and 

x = 6 

Which, then, is the correct answer? Is x equal 
to 3 or to 6? There is no reason to suppose that 
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one factor has more chance to be 0 than the other 
factor, so both answers are equally right. This 
shouldn't bother us, since the equation is one of 
the second degree and should have two solutions 
anyway. We can check (just to make sure) by 
trying both solutions in the original equation, 
x2 - 9x + 18 = 0. 

First we try the 3, so that the equation becomes 
32 - (9) (3) + 18, or 9 - 27 + 18, which does in
deed come out to be 0, so that 3 is a proper solution. 

Next the 6 is substituted for x and the equation 
becomes 62 - (9) (6) + 18, which is 36 - 54 + 18, 
which also comes out to 0, so that 6 is another 
proper solution. 

Naturally, we can only take advantage of this 
device when we can set the product of two factors 
equal to zero, and to do that, we must begin by 
getting a zero on the right-hand side of the equation. 

For instance, earlier in the chapter I spoke of a 
rectangular object with a width 5 feet greater than 
its length and with an area of 6 square feet. The 
equation involved was: 

x2 + 5x = 6 

At the time, we could go no further with the 
equation, but now suppose we transpose the 6 to 
the left in order to leave the very desirable zero on 
the right. The equation would read: 
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x2 + 5x - 6 = 0 

Since the two numbers 6 and — 1 give a sum of 5 

when added and a product of — 6 when multiplied, 

the expression on the left can be factored and the 

equation written 

(x + 6)(x - 1) = 0 

and our two solutions for x are —6 and 1, these 

being obtained by setting each factor equal to zero. 

The meaning of the solution 1 is clear. The 

rectangular object has a length of 1 foot. I ts width, 

which is 5 feet greater than its length, is therefore 

6 feet, and its area is (1)(6) or 6 square feet, as 

stated in the problem. 

But what about the solution —6? Can we say 

the length is —6 feet, and the width, which is 5 

feet greater, is —1 feet? The area would be ( — 6) 

( —1) or still 6 square feet, but what is the meaning 

of a negative length? The Greeks threw out nega

tive solutions to such equations, feeling certain 

there was no meaning to a negative length. 

However, we can arrange a meaning by sup

posing measurements made in one direction to be 

positive and in the other direction, negative. In 

that case, the two solutions actually apply to the 

same object placed in two different fashions. 
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Solving the General 

THE FIRST DEGREE 

THERE IS something unsatisfactory about 
solving quadratic equations by factoring. After all, 
some equations cannot be factored very easily. 
Isn't there a way of solving any quadratic equation, 
without worrying about factors? 

To show you what I mean, let's not consider 
specific equations, but general equations. For 
instance, here is the "general equation of the first 
degree," one which uses parameters instead of 
numbers so that it can represent any such equation: 

ax + b = 0 

By allowing a and b to take on any particular 
values, any particular equation can* be represented 
by this expression. If a is set equal to 2 and b to 3, 
the equation becomes 2x + 3 = 0. Subtractions 
are not excluded because of the plus sign in the 
general equation, for if a is set equal to 2 and b to 
— 3, the equation becomes 2x + ( — 3) = 0, or 
2x - 3 = 0. 
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Even such an equation as can be 
expressed in the general form. By removing the 
parenthesis and transposing, we have: 

9(x + 4) = 25 

9x + 36 = 25 

9x + 36 - 25 = 0 

9x + 11 = 0 

Therefore, the equation 9(x + 4) = 25 can be 
put into the general form of ax + b = 0 with a 
equal to 9 and 6 to 11. 

To solve the general equation of the first degree 
is easy: 

ax + b = 0 

ax = —b 

This means that if you have any equation in the 
first degree, you need only put it into the general 
form and you can obtain the value of x at once. 
You don't have to worry about transposing, simpli
fying, or factoring any further. Ail you have to 
know are the coeificients, the values of a and b. 

Thus, in the equation the value of 
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with no further ado. If it had been 

the answer would be 

As you see, the value of a; in the general equation 
of the first degree can be any imaginable integer or 
fraction, if the values of a and b are set at the 
appropriate whole-number values. If you make up 

a fraction at random, say then that is the 

value of x in the equation 
We can put this in another way by saying that 

in the general equation ax + 6 = 0, where a and b 
are any integers, positive or negative, the value of 
x can be any rational number. It can never be an 
irrational number, however, for the answer is bound 
to come out a definite fraction. 

You may wonder what happens if the values of a 
and b are not integers. Suppose they are fractions. 
If so, those fractions can always be converted into 
integers. Thus, in the equation 

suppose you multiply both sides of the equation by 
the product of the denominators of the two frac
tions; (22) (5) or 110. We then have 
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Removing parentheses in the usual way and remem
bering that (0)(110) (or zero times any number, in 
fact) is 0, we have 

Thus, this equation with fractional coefficients is 
converted to one with integral coefficients and the 

solution of x is Any equation in any degree 

can be converted from fractional coefficients to 
integral coefficients, so we need only consider the 
latter case. 

Suppose, though, that a and b were not rational 
numbers at all (that is, not fractions) but were 
irrationals, as in the equation The 

value of x would then be and it would itself be 

irrational. However, if we consider only general 
polynomial equations with rational coefficients, then 
we can say that the value of x in an equation of 
the first degree can be any rational number, but 
cannot be an irrational number. 
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THE SECOND DEGREE 

Having gone through all this, which is pretty 
straightforward, we are ready to ask how we might 
handle the general equation of the second degree. 
How could we solve for x by just knowing the coeffi
cients and arranging them according to some set 
formula? 

The general equation may be written ax2 + bx + 
c = 0, where a, b, and c can be any integers or, in 
fact, any rational numbers. The symbols 6 and c 
can even be zero. If b is zero, then the equation 
becomes ax2 + c = 0; if c is zero, the equation 
becomes ax2 + bx = 0; and if both 6 and c are 
zero, the equation becomes ax2 = 0. All these forms 
are still second-degree equations. 

However, a cannot be allowed to equal zero, for 
that would convert the equation to the form bx + 
c = 0. In a general equation of any degree, the 
coefficient of the term to the highest power must 
not equal zero or the equation is reduced in degree 
Even in the first-degree equation ax + b = 0, b may 
be set equal to zero, but a must not. In the latter 
case, the equation would become simply 6 = 0, 
which is no longer a first-degree equation. 

The difficulty of solving the general equation of 
the second degree rests with the fact that it cannot 
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be factored. What we must do then is to convert 
it into a form that can be factored. 

First, the rules I gave for factoring in the previous 
chapter always involved a quadratic equation con
taining a simple x2. Let's see if we can't arrange 
that much to begin with. To do that, let's divide 
both sides of the equation by a, thus: 

As far as the left-hand side of the equation is con
cerned, we know from ordinary arithmetic that 

can be written (Try it and see if 

the answer isn't 3 in both cases, and if, in other 
cases of the same sort, you don't get the same 
answer either way.) 

We can therefore write the equation, thus: 

In the fraction we can cancel the a's. The 

fraction can be written and, as for the 

right-hand side of the equation, is, of course, 0. 

Now the equation can be written: 
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We have the simple x2 in this form of the general 
equation of the second degree, but we still can't 
factor it. We need two quantities which when 
added will give the coefficient of the x term 

(which is -J and when multiplied will give the 

numerical term according to the rules 

I gave in the previous chapter. There is no obvious 
way in which this can be done, however. 

Why not, then, remove the term and substitute 

something else which will be easier to handle. To 

remove the - term is easy. We need only transpose, 

thus: 

The question then arises, What do we substitute 
for it? Well, the simplest way of finding two values 
that will add up to a given quantity is to take half 
the quantity and add it to itself. In other words, 
4 is equal to 2 plus 2, 76 to 38 plus 38, and so on. 
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So we have two values, which when 

added give the coefficient of the x term. What will 
those same two values give when multiplied? The 
answer is: 

We have to add that to the left-hand side of the 
equation and, in order to do that, we have to add it 
to the right-hand side also, so that the equation 
becomes 

Now, for just a moment, let's concentrate on the 

right-hand side of the equation. Suppose we multi

ply the fraction top and bottom, by the 

quantity 4a. That gives us which doesn't 

change the value of the fraction, but which gives 
it the same denominator as the second fraction 
on the right-hand side. The right-hand side of the 
equation now becomes 

or 
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Our general equation can therefore be written 

It is time, now, to look at the left-hand side of 
the equation. We have arranged it in such a way 

as to have two values, and , which when 

added give the coefficient of the x term, and 

when multiplied give which represents the 

term without an unknown. This means, according 
to the rules of the previous chapter, that the left-
hand side of the equation can be factored as 

Now the equa

tion becomes 
(b2 - 4ac) 

We can transpose the exponent, and that will 
give us 

As you see, forming the square root makes it neces
sary to insert a plus-or-minus sign. 

As for the right-hand side, can 
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the numerator can't be worked out, but the square 
root of the denominator can be, since (2a) (2a) 
equals 4a2. C o n s e q u e n t l y i s equal to 2a. 

The equation can now be written 

By transposition we have 

Since the two fractions have the same denom
inator, we can combine them and have the equation 
read, at last: 

This is the general solution for x in any second-
degree equation, expressed in terms of the coeffi
cients undergoing various algebraic operations. To 
solve any quadratic equation, it is only necessary 
to put it into its general form and substitute the 
coefficients into the above formula for x. 

In the equation 17x2 — 2x — 5 = 0, for instance, 
a = 17, b = — 2, and c = — 5. Let's substitute 
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Notice first that there are two answers since 
there is a plus-or-minus sign involved. It is one 
answer if the plus is used and a second if the minus 
is used: 

Notice also that is an irrational number. 
You see, then, that it is possible, in equations of 
the second degree, to obtain a value of x that is 
irrational, even though the coefficients of the equa
tion are rational. In practical problems involving 
such solutions, an approximate answer can be 
found by taking the value of the irrational number 
to as many decimal places as necessary. (Fortu-
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nately, such values can be worked out, or even just 
looked up in tables.) 

The value of V86, for instance, is approximately 
9.32576. The two answers, therefore, are approxi
mately 0.6074 and -0.4309. 

Of course, it is possible to have rational solutions 
to a quadratic equation also. 

In the equation x2 + 5x + 6 = 0, a is equal to 1, 
6 to 5, and c to 6. Substitute these values in the 
general formula and you have: 

Here, you see, the square root disappears, for 
VT is equal to 1. The two solutions are therefore: 

or 

which, to be sure, are solutions we might have 
gotten directly by factoring. 
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HIGHER DEGREES 

General solutions for equations of the first and 
second degree were known before the rise of algebra 
in the 1500's. At that time, therefore, mathe
maticians interested themselves in the possibility 
of a solution for the general equation of the third 
degree in terms of algebraic manipulations of the 
coefficients. 

I won't go into the nature of the general solu
tion, but it was discovered, and the discovery 
involves a certain well-known story. 

It was in 1530, that an Italian mathematician 
named Nicolo Fontana succeeded, at last, in dis
covering the general solution. (Fontana had a 
speech imperfection and he received the nickname 

- Tartaglia (tahr-TAH-lyuh) — the Italian word for 
"stammerer" — as a result. The use of the nick
name was so widespread that today he is hardly 
ever referred to as anything but Nicolo Tartaglia.) 

In those days, mathematicians sometimes kept 
their discoveries secret, much as industries to
day may keep their production methods secret. 
Tartaglia won great fame by being able to solve 
problems which involved cubic equations and which 
no one else could solve. Undoubtedly, he enjoyed 
his position as a mathematical wonder-worker. 

Other mathematicians naturally kept begging 
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Tartaglia to reveal the secret. Finally, Tartaglia 
succumbed to the pressure and, in 1545, revealed 
the solution to Geronimo Cardano, the mathe
matician who introduced negative numbers and 
imaginary numbers. He insisted that Cardano 
swear to keep the matter secret. 

Once Cardano had the solution, however, he 
promptly published it and said it was his own. 
Poor Tartaglia had to begin a long fight to keep the 
credit for himself and, ever since, mathematicians 
have been arguing as to who should get credit for 
the discovery. 

Nowadays, you see, we consider it quite wrong 
for any scientist to keep a discovery secret. We 
feel he must publish it and let all other scientists 
know about it; that only so can science and knowl
edge progress. In fact, the scientific world gives 
credit for the discovery of any fact or phenomenon 
or theory to the man who first publishes it. If 
someone else makes the same discovery earlier but 
keeps it secret, he loses the credit. 

According to this way of thinking, Tartaglia was 
wrong to keep his solution a secret and Cardano was 
right to publish, and rightfully deserves the credit. 
However, in the 1500's this was not the common 
viewpoint, and we should make allowance for the 
fact that it wasn't considered wrong at the time 
to keep scientific secrets. 
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Besides, even if Cardano was right, as a mathe
matician, to publish the solution, he was wrong, as 
a human being, to claim it was his own and not to 
give Tartaglia credit for thinking of it first. How
ever, as it happens, although Cardano was a great 
mathematician, he was also a great scoundrel in 
many ways. 

At about the same time, Cardano tried to work 
out a solution for the general equation of the fourth 
degree. He couldn't manage that and passed the 
problem on to a young man named Ludovico 
Ferrari, who was a student of his. Ferrari promptly 
solved it. 

Naturally mathematicians felt that, after that, 
only patience and hard work were necessary to 
work out the solution for the general equation of 
any degree, but when they took up the general 
equation of the fifth degree, they found themselves 
in trouble. Nothing seemed to work. For nearly 
three hundred years, they tried everything they 
could think of and for nearly three hundred years 
they failed. Even Euler (the man who first used 
i for the square root of minus one), one of the 
greatest mathematicians of all time, tackled the 
fifth degree and failed. 

Then, in 1824, a young Norwegian mathemati
cian, Niels Henrik Abel (who was only 22 at the 
time, and who was to die only five years later), was 
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able to prove that the general equation of the fifth 
degree was insoluble: It could not be solved in 
terms of its coefficients by means of algebraic oper
ations. There were other ways of doing it, but not 
by algebra. 

It turned out that no equation of degree higher 
than the fourth could be solved in this way. In 
1846, a brilliant young French mathematician, 
Evariste Galois (ay-vah-REEST ga-LWAH), who 
was tragically killed in a duel at the age of only 21, 
found a new and more advanced mathematics, the 
"theory of groups," that could handle equations of 
high degree, but that is not for this book, of course. 

BEYOND THE DEGREES 

If we take a general equation of any degree, then 
any value which can serve as a solution for x is 
called an "algebraic number." 

For instance, I have already said that for the 
general equation of the first degree any rational 
number, positive or negative, can serve as a solu
tion. Even zero can serve as a solution for x, in 
the equation ax — 0. All rational numbers are 
therefore algebraic numbers. 

For the general equation of the second degree, 
any rational number can serve as a solution. So 
also can certain irrational numbers. Thus, the 
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square root of any rational number can serve as 
a solution. 

For the general equation of the third degree, 
rational numbers, square roots, and cube roots will 
serve as solutions. The fourth degree will add 
fourth roots to the list, the fifth degree will add 
fifth roots, and so on. 

In the end, the list of algebraic numbers includes 
all rational numbers and all irrational numbers that 
are roots (in any degree) of rational numbers. 

But does this include all numbers? Are there 
irrational numbers which are not the roots, in one 
degree or another, of some rational number? 

In 1844, a French mathematician named Joseph 
Liouville (lyoo-VEEL) was able to show that such 
irrational numbers did exist, but he wasn't able to 
show that some particular number was an example. 
It wasn't until 1873 that another French mathe
matician, Charles Hermite (ehr-MEET), turned 
the trick. 

He showed that a certain quantity, much used in 
higher mathematics and usually symbolized as e, 
was an irrational number that was not the root, 
in any degree, of any rational number. (Hermite 
also solved the general equation of the fifth degree 
by nonalgebraic methods.) 

The approximate value of e is 2.7182818284590-
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452353602874 . . . Modern computers have worked 
out the value to 60,000 places. The quantity e 
was the first nonalgebraic number to be discovered 
and is an example of a "transcendental number" 
(from Latin words meaning to "climb beyond," 
because these existed beyond the long list of alge
braic numbers).* 

Another interesting quantity is the one usually 
represented by mathematicians as which is the 
Greek letter "pi." This quantity represents the 
ratio of the circumference of a circle to its diameter. 
If the length of the diameter of a circle is multi
plied by the length of the circumference is 
found. The approximate value of is 3.1415926535-
8979323846264338327950288419716939937510 . . . 
and modern computers have worked out its value 
to ten thousand places. 

In 1882, the German mathematician Ferdinand 
Lindemann, using Hermite's methods, proved that 

was transcendental. It is now known that almost 
all logarithms are transcendental; that almost all 
"trigonometric functions" such as the sine of an 

* The importance of e rests in the fact that it is 
essential in the calculation of two sets of values of 
great importance in mathematical computations and 
relationships. These are logarithms (see Realm of 
Numbers) and the ratios of the sides of right triangles 
("trigonometric functions"). Almost all logarithms 
and trigonometric functions are irrational, and those 
that are, are also transcendental. 
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angle (matters taken up in that branch of mathe
matics called "trigonometry") are transcendental; 
that any number raised to an irrational power, such 
as is transcendental. 

In fact, there are far more transcendental num
bers than there are algebraic numbers. Although 
there are more algebraic numbers than anyone can 
possibly count, it remains true, even so, that almost 
all numbers are transcendental.* 

* One way of putting this is that while the set of all 
algebraic numbers is infinite, the set can be repre
sented by the lowest transfinite number. The set of 
all transcendental numbers is also infinite, but can be 
represented by a higher transfinite number. If you 
are curious about this, I go into some detail in this 
matter in the last chapter of Realm of Numbers. 
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Two at Once 

EQUATIONS WITHOUT SOLUTIONS 

So FAR, we have never considered a problem 
or equation in which more than one quantity was 
unknown. And yet it is possible to have more than 
one unknown. 

Here's a case. Suppose you are told that the 
perimeter of a certain rectangle is equal to 200 
inches (the perimeter being the sum of the lengths 
of all four sides). The question is: What are the 
lengths of the four sides? 

To begin with, let's place the length of one side 
of the rectangle equal to x. The side opposite to 
that must also equal x (for it is one of the properties 
of the rectangle that opposite sides are equal in 
length). Together these two opposite sides are 2x 
in length. 

Now what about the other pair of opposite sides? 
Has one any idea of what their length is? 

I'm afraid not, at least not in actual numerical 
values. They are as unknown as the first pair and 
must also be given a literal symbol representing an 
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unknown. It would be confusing to use x because 
that is already in use in this problem. It is cus
tomary, however, to use y as a second unknown. 
The other pair of sides can therefore each be set 
equal to y in length, giving a total of 2y. 

Now we can say that 

2x + 2y = 200 

We can try to solve this equation for x and hope for 
the best, and we can begin by factoring: 

2(x + y) = 2(100) 

If we divide each side of the equation by 2, then 

x + y = 100 

Then, by transposing, 

x = 100 - y 

There's our value of x, but what good is it? 
* Since we don't know the value of y, we can't con

vert our value for x into a numerical value. Of 
course, if we knew that y was equal to 1 inch, then 
x would be equal to 100 — 1 or 99 inches. Of if we 
had some way of telling that y was equal to 7 inches, 
x would be equal to 100 — 7 or 93 inches. Or if 
y were equal to 84.329 inches, then x would be 
equal to 100 - 84.329 or 15.671 inches. 

Each pair of values would satisfy the equation. 
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2(99) + 2(1) = 200 

2(93) + 2(7) = 200 

2(15.671) + 2(84.329) = 200 

You could make up any number of other pairs 
that would satisfy the equation, too. This doesn't 
mean, of course, that any two numbers at all would 
do. Once you pick a value for y, there is then only 
one value possible for x. Or if you start by picking 
a value for x, only one value remains possible for y. 

Another warning, too. You can't pick a value 
for either x or y that is 100 or over without having 
certain practical difficulties. If you let y equal 100, 
then x equals 100 — 100 or 0. You don't have a 
rectangle at all, then, but just a straight line. Or 
if you decide to let y equal 200, then x equals 100 
— 200 or —100 and you have to decide what you 
mean by a rectangle with a side equal to a negative 
number in length. 

Despite practical difficulties, however, such sets 
of values do satisfy the equation mathematically: 

2(0) + 2(100) - 200 

2(-100) +2(200) = 200 

But then even if you decide to limit the values of 
x and y to the range of numbers greater than 0 
and less than 100, there are still an endless number 
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of pairs that you can choose which would satisfy 
the equation. And there would be no reason for 
you ever to think that one pair of values was any 
more correct as a solution than any other pair. 
You could not possibly pick among those endless 
numbers of pairs and for that reason an equation 
such as 2x + 2y = 200 is called an "indeterminate 
equation." 

INTEGERS ONLY 

You might think that an equation without a 
definite solution would be dull indeed and that 
mathematicians would turn away from it with nose 
in air. Not so. Actually, such equations have 
fascinated mathematicians greatly. 

One of the first to interest himself in such in
determinate equations was a Greek mathematician 
called Diophantus, who lived about A.D. 275 in the 
city of Alexandria, Egypt. He was particularly in
terested in equations where the solutions could only 
be integers. Here is an example of a problem lead
ing to such an equation. 

Suppose there are 8 students in a class, some boys 
and some girls. How many boys are there and how 
many girls? If we set the number of boys equal ta 
x and the number of girls to y, then we have the 
equation 

x + y = 8 
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Now we can only let x and y equal certain values. 

We can't have either x or y equal to 

because we can't have an irrational quantity of 
children or even a fractional quantity. Further
more, we can't have either x or y equal to zero, 
because we have said that there are both boys and 
girls in the class. Nor can we let either be equal to 8, 
since then the other would be equal to 0, or to more 
than 8, for then the other would be equal to some 
negative number, and we don't want a negative 
number of children either. 

For this reason, there are only a very limited 
number of possible solutions to the equation. If 
x = 1, then y = 7; if x = 2, then y = 6, and so on. 
In fact, there are only 7 sets of possible answers: 
1 boy and 7 girls, 2 boys and 6 girls, 3 boys and 5 
girls, 4 boys and 4 girls, 5 boys and 3 girls, 6 boys 
and 2 girls, and 7 boys and 1 girl. 

Even though the number of answers is limited, 
the equation is still indeterminate because we have 
no way of telling which of the seven pairs of numbers 
is the correct answer, because there is no one correct 
answer. All are equally correct. 

An indeterminate equation to which the solutions 
must be expressed as whole numbers only is called 
a "Diophantine equation" in honor of the old Greek 
mathematician. 
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Some Diophantine equations have great fame in 
the history of mathematics. 

For instance, the Greeks were very much in
terested in the right triangle (a three-sided figure 
in which one of the angles is a right angle). A 
Greek mathematician named Pythagoras, who lived 
about 530 B.C., was able to show that the sum of the 
squares of the lengths of the two sides making up 
the right angle of the right triangle was equal to the 
square of the length of the side opposite the right 
angle (called the "hypotenuse"). In his honor, this 
mathematical fact is often called the "Pythagorean 
theorem." 

We can express this algebraically, by letting the 
length of one side equal x, of the second equal y, 
and of the hypotenuse equal (what else?) z. The 
equation becomes 

x2 + y2 = z2 

Since we have three unknowns in a single equa
tion, we have an infinite number of possible solu
tions. Pick any values you choose for any two of 
the unknowns and you can work out a value for the 
third. If you decide to let both x and y equal 1, 
then z2 equals l2 plus l2 or 2, and z is consequently 
equal to V2\ Or if you decide to let x equal 2 and 
y equal 13, then z2 equals 22 plus 132 or 173, and z 
equals VI73. 
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Here are two sets of three numbers, then — 1, 1, 
and — that satisfy the Pythagorean 

equation. You can find any number of additional 
sets with hardly any effort. 

But suppose you are interested only in solutions 
where x, y, and z are all whole numbers, so that the 
equation becomes Diophantine. 

You might wonder first if any such all-integer 
solutions exist. Well, suppose you set x equal to 3 
and y equal to 4. Then z2 is equal to 32 plus 42 or 
25, and z is equal to V25 or 5. There you have a 
set of integers — 3, 4, and 5 — which serve as a 
solution to the equation. 

There are other such solutions, too. For instance 
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52 + 122 = 132, so that 5, 12, and 13 are a solution. 
In fact, there turn out to be an endless number of 
such all-integer solutions to the equation. Math
ematicians have worked out rules for finding such 
solutions and in doing so have learned a great deal 
about the handling of whole numbers. 

In the early 1600's, there lived a French math
ematician named Pierre de Fermat (fehr-MAH), 
who studied the behavior of integers so thoroughly 
that he founded a branch of mathematics dealing 
with integers and called "the theory of numbers." 

Fermat had a habit of scrawling in the margins 
of books he was reading and one time he wrote that 
he had discovered an interesting fact about equa
tions of the type 

where n can equal any whole number. (The Pythag
orean equation is the special variety of this group 
in which n equals 2.) 

Fermat wrote that he had found that whenever 
n was greater than 2 in such an equation, there 
were no solutions that consisted of integers only. 
In other words, you could add the squares of two 
whole numbers and end with the square of another 
whole number as in 32 + 42 = 52, but you couldn't 
add the cubes of two whole numbers and ever end 
with the cube of another whole number, or add the 



196 A L G E B R A 

fourth powers of two whole numbers and ever end 
with the fourth power of another whole number, and 
so on. 

Fermat wrote in the book that he had a beautiful 
and simple proof of this, but that the margin was 
too small to contain it. He never did write the 
proof (or, if he did, no one has ever found it) and 
what is called "Fermat's Last Theorem" has never 
been proved to this day. 

But mathematicians searched for it. Fermat was 
such a brilliant worker that they couldn't believe he 
had made a mistake. Surely the proof existed. 
Every great mathematician had a try at it. Prizes 
were offered. It seems to be true — but no one has 
ever found the proof to this day. 

Probably Fermat was mistaken in thinking he had 
a proof, but we can never be sure. 

If only the margin of the book had been a little 
bigger. 

ADDING TO THE INFORMATION 

What makes for an indeterminate equation is 
lack of information. If we are told that the boys 
and girls in a class total 8, then all we can say is that 
x + y = 8 and there is no clear solution. But sup
pose our information is increased. Suppose we are 
also told that there are three times as many girls as 
boys. If we have decided to let x equal the number 
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of boys and y the number of girls, then we can say 
that y = 3x. 

So our information now enables us to set up two 
equations, each in two unknowns: 

x + y = 8 

y = 3x 

These are called "simultaneous equations," because 
the same values of x and y must simultaneously 
satisfy both equations. 

Since y = 3x, we can naturally substitute 3x for 
y wherever y occurs. In particular, we can sub
stitute 3x for y in the first equation and get 

x + 3x = 8 

Suddenly, we have an equation with only one un
known, and a very simple equation at that, which 
works out to: 

4x = 8 

8 
X = 4 

x = 2 ^ ^ ^ 

The number of boys is 2, and we can now sub
stitute 2 for x wherever that occurs. We can do it 
in the equation y = 3x, which becomes y = 3(2) 
or 6. Our final solution then is that there are 2 boys 
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and 6 girls in the class. The sum is indeed 8 and 
there are indeed three times as many girls as boys. 

The same principle works in more complicated 
situations. Suppose we have two equations as 

second equation and get: 

5(7 + 3y) 

Now we can substitute for x in the 

Let's solve for x in the first equation: 
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I hope the reasons for each step have been clear 
to you so far. Now let's remove fractions, just as 
we would in arithmetic by multiplying each side 
of the equation by 7: 

Now that we know that y = 7, we can go back 
to either of the original equations and substitute 
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Or, if we prefer to use the second equation: 

Either way, the sole answer we get is that x is 
equal to 4 and y is equal to 7, and if both values are 
substituted in either equation, you will find that 
they are valid solutions. 

What's more, if we had solved for x in the second 
equation and substituted its value in the first, or if 
we had solved for y in either equation and sub
stituted its value in the other, we would have ended 
with the same solution; x is 4 and y is 7. (You 
might try it for yourself and see.) 
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We now have two different expressions for y. If 
we are to avoid inconsistency, we must assume that 
the two different expressions have the same value, 
so we can set them equal to each other: 

Now we have a single equation Jmth one un
known. We can begin by clearing fractions in the 
usual arithmetical way of multiplying both frac-

^ ^ ^ 1 

In fact, we could proceed by solving both equa
tions for either x or y; let's say for y. In the first 
case: 
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And, of course, if we substitute 4 for x in either 
of the original equations, we find that v turns out 
to be equal to 7. 

AND STILL ANOTHER WAY 

There is still one more device we can apply to our 
two unknowns in two equations. To understand 
this new device, let's begin by considering two very 
simple general equations: a = b and c = d. 

We know that a particular value can be added to 
both sides of an equation or subtracted from both 
sides without making the equation false. So far 
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I have always added or subtracted the same ex
pression on both sides, but that is really not neces
sary. I can add (or subtract) different expressions 
provided they have the same value. In other words 
I can add 5 to one side of the equation and 17 — 12 
to the other side. 

Well, then, if c = d, I can add c to one side of an 
equation and d to the other without making the 
equation false. To put it in symbols: 

and so on. 
Now we can go back to our two equations: 

By the general rule I have just discussed, I can add 
the left-hand side of the second equation to the 
left-hand side of the first, and the right-Hand side 
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of the second equation to the right-hand side of the 
first. I get: 

You may well ask what I have accomplished and 
the answer is nothing. But wouldn't it have been 
nice if in adding I could have gotten rid of either 
x or v. If we could arrange the y term in one 
equation to equal 0 when added to the y term in the 
other, we could do just that. And here's how. 

Suppose I multiply the first equation by 2, both 
right and left, as I can without spoiling the equa
tion. I get: 

Then, suppose I multiply the second equation, 
left and right, by 3: 

As you see by this arrangement I have managed 
to have a — 6y in one equation and a +6y in the 
other. Now, if I add the two equations, these two 
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terms add up to zero and there is no longer a y term 
in the equation: 

and, by substitution, y will equal 7 again. 
By a number of different devices, then, it is al

ways possible to take two equations, each contain
ing two unknowns, and make of them one equation 
containing one unknown. One important point to 
remember, however, is that the second equation 
must be independent of the first; that is, it must 
really add new information. 

If one equation can be converted into the second 
by adding the same value-to both sides, or by sub
tracting, multiplying, dividing, raising to a power, 
or taking a root on both sides equally, they are 
really the same equation. No new informatiob is 
added by the second. 

To take a simple case, suppose you had: 
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You could convert the first equation to the second 
by simply multiplying each side by 2; or you could 
convert the second equation to the first by dividing 
left and right by 2. They are therefore the same 
equation. If you ignore that and decide to go ahead 
anyway and see what happens, you can solve the 
first equation for x and find that x = 2 + y. 

Next substitute 2 + y for x in the second equa
tion: 

2(2 + y) - 2y = 4 

4 + 2y - 2y = 4 

The terms containing y add up to zero and you 
have left only that 

4 = 4 

which is certainly true but doesn't help you much 
in determining the value of x and y. This is an 
example of "arguing in a circle." 

Naturally, if you have three unknowns, you need 
three independent equations. Equations 1 and 2 
can be combined to eliminate one of the unknowns 
and equations 1 and 3 (or 2 £|id 3) can be combined 
to eliminate that same unknown. That gives you 
two equations with two unknowns, from which 
point you can proceed in the manner I have just 
given you. 

In the same way, numerical values for four un-
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knowns can be found if four independent equations 
exist; five unknowns if five independent equations 
exist, and so on. The process quickly gets tedious, 
to be sure, and special techniques must be used, 
but the mere number of unknowns should never be 
frightening in principle — so long as you have 
enough information to work with. 
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Putting Algebra to Work 

GALILEO ROLLS BALLS 

IT MAY BE that, as you read this book, the 
thought occurs to you: But what good is all this? 

I'm sure you know in your heart that mathe
matics is really very useful, but as you try to follow 
all the ways in which equations must be dealt 
with, you may still get a little impatient. Is algebra 
really worth all the trouble it takes to learn it? 

Of course, it can come in handy in solving prob
lems that come up in everyday life. For instance, 
suppose you have $10 to spend but intend to shop 
at a store where all sales are at 15 per cent discount 
from the list price. If you have a catalog giving 
you only the list prices, what is the cost of the most 
expensive item you can buy? 

You might, if you wished, just take some prices 
at random and subtract 15 per cent until you 
found one that gave you a discount price of $10. 
That would be clumsy, however. Why not tell 
yourself instead that with a 15 per cent discount, 

you are paying 85 per cent or of the list price, 
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so that : r ^ of some unknown value which you will 
call x is $10. The equation is: 

§ ^ = 10 
100 

and you ought to be able to solve it easily according 
to the principles discussed in this book: 

_ (10X100) 65 
X 85 85 

To the nearest penny, this comes out $11.77. 
If you check this, you will find that a 15 per cent 
discount of $11.77 is, to the nearest penny, $1.77, 
leaving you a net price of $10.00. 

Or suppose someone is following a recipe which 
is designed to make 4 helpings of a particular dish, 
while what is needed is 7 helpings. The cook will 
naturally want to increase all quantities of ingredi
ents in proportion. In real life, this is usually done 
by guess, which is why cooking sometimes turns 
out badly even though a recipe is before your eyes. 

Why not use algebra? If you are required to add 
1 = teaspoons of flavoring in the original recipe, you 
can say, "Four is to seven as one and a half is to 
something I don't know yet." One way of writing 
this statement mathematically is:  4:7: : 1.5: x, which 
puts it in the mo for "ratios."



210 A L G E B R A 

However, when I mentioned fractions on page 41, 
I said they could be considered as ratios, so the 
equation can also be written as 

and the equation can be solved as follows: 

Naturally, you are not going to add flavoring to 
the nearest thousandth of a teaspoon, but you can 

try to add just a trifle over 2 - teaspoons, which 

will be far better than just making a wild guess. 
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Of course, these are little things and you might 
feel that algebra isn't very important if it is used 
only in calculating prices and adjusting recipes. 

But that is not all it is used for. The main use of 
algebra arises in connection with the attempts of 
scientists to understand the universe. Let's see how 
it can be used in that connection, and how a few 
symbols can help achieve the most astonishing 
accomplishments. I'll begin at the beginning. 

The ancient Greek philosophers were very inter
ested in the shapes and forms of objects, so they 
developed geometry to great heights. They were 
not interested in actually measuring and weighing 
and so they did not develop algebra. 

The result was that their notions were a little 
fuzzy. For instance, the greatest of the Greek 
philosophers, Aristotle, was .interested in the way 
bodies moved when left to themselves. He was 
content, however, to say that solid and liquid 
bodies moved downward, spontaneously, toward the 
center of the earth, while air and fire moved, spon
taneously, upward away from the center of the 
earth. Moreover, he stated that heavy objects 
moved downward (or fell) more quickly than light 
objects, so that a stone fell more rapidly than a 
leaf, for instance. 

He did not think to try to measure how quickly a 
stone fell, or whether it fell at different speeds at the 
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beginning of its fall as opposed to the end of its fall. 
Toward the dawn of modern times, things began 

to change. The Italian artist Leonardo da Vinci, 
near the end of the 1400's, suspected that falling 
objects increased their rate of movement as they 
fell. But it wasn't till a century later, toward the 
end of the 1500's, that the Italian scientist Galileo 
Galilei (usually known by his first name only) 
actually set out to measure the rate of fall. 

To do this wasn't easy, because Galileo had no 
clocks to work with. To keep time, he had to use 
his pulse, or he had to measure the weight of water 
pouring out of a small hole at the bottom of a 
water-filled bucket. This wasn't good enough to 
measure the short time-intervals involved in study
ing objects falling freely as a result of the action of 
gravity. What he did then was to roll balls down 
gently sloping tracks. 

In this way, balls rolled more slowly than they 
would if they were falling freely. The pull of 
gravity was, so to speak, diluted, and Galileo's 
crude time measurements were good enough. 

In such experiments, Galileo I found that the 
velocity with which a ball moved'down an inclined 
plane was directly proportional to the time it 
moved. (I won't bother describing how he measured 
velocities, since that is not what we are interested 
in here.) 
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Thus, it might be that the ball, after starting 
from a standing position at the top of the tracks, 
would be moving 3 feet per second at the end of one 
second. At the end of twice the time (2 seconds), 
it would be moving at twice the velocity (6 feet 
per second). At the end of four times the time 
(4 seconds), it would be moving at 4 times the 
velocity (12 feet per second), and so on. 

As you see, in order to work out the velocity, it is 
only necessary to multiply the time during which 
the ball has been rolling by some fixed number. 
In the case I have just described, the fixed number 
or "constant" is 3, so that you can decide at once 
that after 37.5 seconds the ball would be moving 
at the velocity of (37.5) (3) or 112.5 feet per second. 

To express this generally, we can let the time 
during which the ball has been rolling be symbolized 
as t. (It is often customary in experiments of this 
sort to symbolize different quantities by initial 
letters.) The velocity, therefore, is symbolized as 
v and the constant as k (which has the sound of the 
initial letter c, anyway). 

The equation Galileo could write to represent his 
discovery about moving bodies was 

v = kt 

Now k had a constant value in one particular 
experiment, but Galileo found that this value 
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would shift if he changed the slant of his tracks. 
As the track was made to slant more gently, the 
value of k declined, and if the track was made 
steeper, its value increased. 

Clearly, the value of k would be highest if the 
track was as steep as it could get — if it were 
perfectly vertical. The ball would then be falling 
freely under the pull of gravity, and the constant 
could then be symbolized as g (for gravity). The 
equation of motion for a freely falling body is, then, 

v = gt 

From the experiments with inclined planes, 
Galileo could calculate the value of g (not by ordi
nary algebra, to be sure, but by another branch of 
mathematics called trigonometry) and this turned 
out to be equal to 32, so that the equation becomes 

v = 32t 

This means that if a body is held motionless 
above the surface of the earth and is then dropped 
and allowed to fall freely, it would be moving at 
the end of one second at the rale of 32 feet per 
second; at the end of two seconds, 64 feet per 
second; at the end of three seconds, 96 feet per 
second; and so on. 

Galileo also found by experiment that the same 
equation of motion held for all bodies rolling or 
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falling downward under the pull of gravity — all 
bodies, however heavy or light. There was a second 
force, the resistance of air, which counteracted the 
pull of gravity, but which was very weak so that it 
showed a noticeable effect only on very light bodies 
that offered a large surface to the air — feathers, 
leaves, pieces of paper, and so on. These fell 
slowly and that was what had deluded Aristotle into 
thinking the force of gravity was different on 
different bodies. 

Galileo also measured the distance covered by a 
body rolling down an inclined plane. Naturally, 
since its velocity was increasing, it covered more 
ground each second than it did the second before. 
In fact, Galileo found by experiment tjiat the total 
distance was directly proportional to the square of 
the time. In 3 seconds it covered (3) (3) or 9 times 
the distance it covered in 1 second. In 17 seconds, 
it covered (17) (17) or 289 times the distance it 
covered in 1 second, and so on. 

The equation worked out by Galileo for the dis
tance, d, covered by a freely falling body was 

Since g is equal to 32, this equation works out to 

d = 16t2 

This means that, after 1 second, a freely falling 
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body covers a distance of (16)(1)(1) or 16 feet; 
after 2 seconds, it covers a distance of (16) (2) (2) or 
64 feet; after 7 seconds, a distance of (16) (7) (7) or 
784 feet, and so on. 

In this way, Galileo was able to express the 
saps behavior of moving bodies by mealis of algebraic 

equations. This meant that the benavior could be 
described in sharper, clearer fashion than by words 
alone. Furthermore, by making use of equations, 
problems involving falling bodies could be solved by 
making use of the algebraic techniques that mathe-
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maticians had been working out during the pre
vious century. 

The study of moving bodies moved ahead swiftly 
as a result and the whole world of scholarship was 
treated to the spectacle of how knowledge increased 
once mathematics and mathematical techniques 
were applied to natural phenomena. As a result, 
algebra (and, eventually, higher mathematics, too) 
came to seem essential to science and, in fact, 
the birth of modern science is dated with Galileo's 
experiments on rolling bodies. 

NEWTON DEDUCES GRAVITATION 

The equations used in expressing experimental 
observations can be used to deduce important 
generalizations about the universe. 

For instance, suppose Galileo's inclined plane 
were made to slope as gently as possible; in other 
words, suppose it were to be perfectly horizontal. 
In that case, k would equal 0. (You could find this 
out by direct experiment with a horizontal plane, 
or calculate it, by means of trigonometry, from 
experiments with planes that are not horizontal.) 
The equation of motion on a horizontal surface is, 
therefore: 

v = Ot 
or 

o = 0 
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This means that a ball resting on a horizontal 
surface remains motionless. 

Now suppose that a ball were moving at a fixed 
velocity, which we can represent as V, and were 
then to start rolling down an inclined plane. Its 
velocity would increase according to the equation 
we had already used, but at every point, there 
would be added, to that changing velocity, the 
fixed velocity with which it had started. In other 
words, 

v = kt+V 

But suppose the inclined plane were horizontal 
so that k equaled zero. The motion of a ball that 
had started with a fixed velocity would then be, 
according to the equation, 

v = 0t+V 
or 

v = V 

In other words, a body moving at a fixed velocity 
under conditions in which gravity or some other 
force could not act upon it, would continue to 
move at that fixed velocity. There is no term 
involving t in the equation so there is no change 
in velocity with time. 

The scientist who expressed this clearly for the 
first time was the English mathematician Isaac 
Newton, who was born in 1642, the year Galileo died. 
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Newton said that every object at rest remains 
at rest unless acted on by an outside force such as 
gravity, and every body in motion continues to 
move at a constant velocity in a straight line unless 
acted on by an outside force, such as gravity. 

This is the "First Law of Motion" or the "prin
ciple of inertia." 

None of the ancient philosophers had stumbled 
on this truth. They thought that a body in motion 
tended to come to rest spontaneously, unless some 
continuing force kept it in motion. The reason they 
thought this was that actual phenomena are com
plicated. Rolling balls seem to come spontaneously 
to rest, if set rolling on a level surface, because of 
the action of outside forces such as air resistance 
and friction. 

Even Newton, perhaps the greatest thinker of all 
time, might not have seen the First Law of Motion 
if he could do no more than watch the behavior of 
objects actually moving on the surface of the earth. 
His principle arose out of a consideration of Galileo's 
equations, which were deliberately simplified by 
ignoring the action of air resistance and friction. 

It has often proven to be the case since Newton's 
time, too, that the use of equations has succeeded 
in simplifying natural phenomena to the point where 
an underlying pattern could be seen. 

Newton worked out two other laws of motion, 
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in similar fashion, and these are called the "Three 
Laws of Motion." 

In the century between 1550 and 1650, great new 
astronomical discoveries had been made. The Polish 
astronomer Nicolaus Copernicus maintained that 
the sun was the center of the solar system, and that 
the earth was not. (Most of the old Greek philos
ophers, including Aristotle, had insisted the earth 
was central.) Then, the German astronomer Johann 
Kepler showed that the planets, including Earth, 
moved about the sun in ellipses and not in circles, 
as previous astronomers had thought. 

The question then arose as to just why planets 
should be moving about the sun in ellipses and at 
varying velocities according to their distance 
from the sun. (Kepler also worked out what these 
velocities must be.) Both Kepler and Galileo felt 
there must be some force attracting the planets to 
the sun, but neither was quite able to make out 
just how that force worked. 

Newton realized that, in outer space, there was 
nothing to create friction or resistance as planets 
moved, and that the Laws of Motion would there
fore work perfectly. He manipulated the equations 
representing those laws in such a way as to show 
that the force between any two bodies in the uni
verse was directly proportional to the amount of 
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matter (or "mass") in one body multiplied by the 
mass of the other. 

Furthermore, this force as it moved away from 
a particular body could be imagined as stretching 
out in a gigantic sphere that grew continually 
larger and larger. The force would have to stretch 
out over the surface of that sphere and get weaker 
as it had more area to cover. 

How did the area of a sphere vary with its size? 

area = 256« 

multiplying radius by 4 multiplies area by 16 

multiplying radius by 8 multiplies area by 64 

\ 
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Well, the area of a sphere (A) varied according to 
the square of the radius (r), which is the distance 
from the center to the surface of the sphere. The 
exact formula is 

where T is the quantity I referred to at the end of 
Chapter 11. 

Since the area of the sphere increased according 
to the square of the distance from center to surface, 
Newton decided that the strength of the gravi
tational attraction between two bodies must weaken 
as the square of the distance from one to the other. 

He was now ready to put his thoughts about the 
force of gravity into the form of an equation and 
here it is: 

where F symbolizes the force of gravity, mi the 
mass of one body, m2 the mass of the other body, 
and d the distance between them (center to center), 
while G is a constant called the *'gravitational 
constant." I 

Now let's see how the equation works. Suppose 
you double the mass of one of the bodies; instead of 
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, which can be written . The new 

expression is just twice as large as the old, which 
means that doubling the mass of one of the bodies 
doubles the gravitational force. If you double the 

mass of both bodies, you have or 

, or four times the gravitational force. 

Suppose you triple the distance between the 

bodies. The expression becomes 

or , showing that the force is now only 

what it was, or, in other words, has weakened 

ninefold. It has weakened, you see, as the square 
of the distance, which has increased only threefold. 

CAVENDISH WEIGHS THE EARTH 

Newton's equation was found to explain, quite 
exactly, the motion of all the bodies in the solar 
system. This impressed the scholars of the 1700's 
so much that all of them tried to imitate Newton 
in making great generalizations from small begin
nings, and to solve all problems by reasoning. The 
century is, in fact, referred to as the "Age of Reason." 

In the 1800's Newton's equation gained still 
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more fame, when it was found to apply even to 
distant double stars, circling each other, trillions 
upon trillions of miles from Earth. Then, when a 
newly discovered planet, Uranus, was found not 
quite to obey Newton's equation, astronomers de
duced the existence of a still undiscovered planet 
whose attraction pulled Uranus out of line. That 
undiscovered planet was searched for and found at 
once — thanks to the manipulations of algebraic 
equations. 

Let me give you an example of the sort of thing 
Newton's equation can do. 

Suppose you were holding a stone at the lip of 
the Grand Canyon and let go. It would start 
falling. At the end of each second (ignoring air 
resistance) it would be falling 32 feet per second 
more quickly than at the end of the previous 
second. This increase of speed (or "acceleration") 
is considered, according to Newton's Second Law of 
Motion, to be equal to the force of Earth's gravita
tional pull upon the stone. 

Most scientists don't like to use feet to measure 
length, but prefer to utilize the metric system* 
and to measure length in "centimeters." A centi-

* The metric system is discussed in considerable detail 
in Realm of Measure. 

file:///aetric
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2 
meter is equal to about - of an inch and gravita-

o 
tional acceleration comes to 980 centimeters per 
second each second. Thus F, in Newton's equation, 
can be set equal to 980. \ 

Next, suppose the stone we are holding weighs 
exactly 1 gram. (A gram is a measure of weight in 
the metric system and is about ^ of an ounce.) 

Its distance from the center of the earth is about 
3959 miles or 637,100,000 centimeters. 

If we substitute 980 for F, 1 for mu and 637,100,-
000 for d in Newton's equation, we have: 

« 

Now it would be exciting if we could solve for 
m2, which represents the mass of the earth, but all 
we can say, by transposing, is that 

and we don't know the value of G, which is the 
gravitational constant. Newton didn't know, and 
no one after him, for a century, knew. 
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In 1798, however, an English scientist named 
Henry Cavendish tried an experiment. This is 
what he did. He suspended a light rod by a wire 
to its center. At each end of the rod was a light 
lead ball. The rod could twist freely about the 
wire and a light force applied to the balls would 
produce such a twist. Cavendish calculated how 
large a force would produce how large a twist by 
actual experiment. 

Now he brought two large balls near the two 
light balls, on opposite sides. The force of gravity 
between the large balls and the light ones twisted 
the wire. From the amount of twist, Cavendish 
could calculate the amount of gravitational force (F). 
He knew the masses of his various balls 
and the distance between them, center to center (d). 

Let's take simple values just to show how things 
worked out, and suppose the heavy balls (m2) 
weighed 1000 grams, and the light ones (mi) 
weighed 1 gram; that they were at a distance (d) 
10 centimeters apart, and that Cavendish calculated 
the gravitational force between them to be equal 
to 0.000000667 — a very small force, as you see. 

Substituting in Newton's equatio\ we have ~ 



Putting Algebra to Work 2 2 7 

Therefore, by ordinary arithmetic, 
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Does this impress you with the usefulness of 
algebra? 

If it does, look deeper. The real importance of 
algebra, and of mathematics in general, is not that 
it has enabled man to solve this problem or that, 
but that it has given man a new outlook on the 
universe. 

From the time of Galileo onward, mathematics 
has encouraged man to look at the universe with 
the continual question: "Exactly how much?" 

In doing so, it brought into existence the mighty 
structure of science, and that structure itself is 
far more important than any fact or group of facts 
that merely make up part of the structure. 
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parentheses and, 92 ff. 
polynomials and, 156 ff. 
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Negative number, 22 ff. 

division and, 47 ff. 
multiplication and, 47 ff. 
parentheses and, 95 ff. 

Newton, Isaac, 217 ff. 
Numerical symbols, 3 

Operation, 17 
order of, 55 ff., 116 ff. 

Parentheses, 24 ff., 58 ff. 
insertion of, 104 ff. 
removal of, 90 ff. 

Peano, Giuseppe, 69 
Pi (»•), 186 
Polynomial, 53 

factoring of, 158 ff. 
multiplication of, 156 ff. 

Polynomial equation, 137 
Positive number, 22 
Power, raising to a, 115 
Prime number, 99 
Pythagoras, 193 
Pythagorean theorem, 193 

Quadratic equation, 138 
general solution of, 173 ff. 
solutions for, 152 ff. 

Quartic equation, 138, 147 
Quintic equation, 138 

Radical, 126 
Ratio, 41, 209, 210 
Rational number, 41 
Real number, 144 
Reciprocal, 43, 49, 82 ff. 
Right angle, 111 
Root, extracting a, 126 
Rudolff, Christoff, 127 

Shilling mark, 37 
Simultaneous equations, 

197 ff. 
Solutions, number of, 140 ff. 
Square, 111 
Square root, 126 
Square root sign, 127 
Subtraction, 15 ff. 
Symbol, 2, 35 ff. 

letters as, 9 
roots and, 127 

V 
Tartaglia, Nicolo, 181 
Term, 52 
Tetranomial, 52 
Theory of numbers, 99, 195 
Transcendental number, 186 
Transposition, 16, 33, 133 ff. 

direction of, 70 ff. 
order of, 61 ff. 

Trinomial, 52 

.Unknown, 6 

yieta, Frangois, 9, 54 

Whole number, 41 

Zero, dividing by, 34 
exponential use of, 122 
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