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Introduction

As we trace the development of man over the ages, it

seems in many respects a tale of glory and victory; of the

develop ment of the brain; of the discovery of fire; of the

building of cities and of civilizations; of the triumph of

reason; of the fimng of the Earth and of the reaching out to

sea and space.

But increasing knowledge leads not to conquest only, but

to utter defeat as well, for one learns not only of new po

tentialities, but also of new limitations. An explorer may

discover a new continent, but he may also stumble over the

world’s end.

And it is so with mankind. We are distinguished from all

other living species by our power over the inanimate

universe; and we are distinguished from them also by our

abject defeat by the inanimate universe, for we alone have

learned of defeat.

Consider that no other species (as far as we know) can

possess our concept of time. An animal may remember, but

surely it can have no notion of “past” and certainly not of

“future.”

No non-human creature lives in anything but the present

moment. No non-human creature can foresee the inevita

bility of its own death. Only man is mortal, in the sense that

only man is aware that he is mortal.

Robert Bums said it better in his poem To a Mouve.

He addresses the mouse, after turning up its nest with

his plough, apologizing to it for the disaster he has brought

upon it, and reminding it fatalistically that “The- best-laid

schemes o’ mice and men / Gang aft a-gley.”

But then, in a final soul-chilling stanza (too often lost in

the glare of the much more famous penultimate stanza



about mice and men), he gets to the real nub of the poem

and says:

“Still thou art blest compar’d wi’ me!

“The present only toucheth thee:

“But oh, I backward cast my e’e

“On prospects drear!

“An’ forward tho’ I canna see,

“I guess an’ fear!”

Somewhere, then, in the progress of evolution from

mouse to man, a primitive hominid first caught and grasped

at the notion that someday he would die. Every living crea

ture died at last, our proto-philosopher could not help but

notice, and the great realization somehow dawned upon

him that he himself would do so, too. If death must come to

all life, it must come to himself as well, and ahead of him he

saw world’s end.

We talk often about the discovery of fire, which marked

man off from all the rest of creation. Yet the discovery of

death’, is surely just as unique and may have been just as

driving a force in man’s upward climb.

The details of both discoveries are lost forever in the

shrouded and impenetrable fog of pre-history, but they

appear in myths. The discovery of fire is celebrated most

famously in the Greek myth of Prometheus, who stole fire

from the Sun for the poor, shivering race of man.

And the discovery of death is celebrated most famously

in the Hebrew myth of the Garden of Eden, where man first

dwelt in the immortality that came of the ignorance of time.

But man gained knowledge, or, if you prefer, he ate of the

fruit of the tree of knowledge of good and evil.

And with knowledge, death entered the world, in the

sense that man knew he must die. In biblical terms, this

awareness of death is described as resulting from divine

revelation. In the ‘solemn speech in which He apprises

Adam of the punishment for disobedience, God tells him

(Gen. 3:19): for dust thou art, and unto dust shalt thou



return.”

But man struggles onward under the terrible weight of

Adam’s curse, and I cannot help but wonder how much

of man’s accomplishment traces directly back to his en

deavor to neutralize the horrifying awareness of inevitable

death. He may transfer the consciousness of existence from

himself to his family and find immortali,ty after all in the

fact that though his own spark of life snuffs out, an allied

spark continues in the children that issued out of his body.

How much of tribal society is based on this?

Or he may decide that the true life is not of the body

which is, indeed, mortal and must suffer death; but of the

spirit which lives forever. And how much of philosophy and

religion and the highest aspirations of man’s faculties

arises from this striving to deny Adam’s curse?

Yet what of a society in which the notion of family and of

spirit weakens; a society in which the material world of the

senses gradually fills the consciousness from horizon to

horizon? The nearest approach-to such a society in man’s

history is probably our own. How, then, has the modern

West, which has deprived itself of the classical escapes,

re acted to the inevitability of death?

Is it entirely a coincidence that of all cultures, that of

the present-day West is the most time-conscious? That it

has spent more of its energies in studying time, measuring

time, cutting time up into ever-tinier segments with ever

greater accuracy?

Is it entirely a coincidence that the most materialistic

subdivision of our most materialistic culture, the twentieth

century American, is never seen anywhere without, his

wristwatch? At no time, apparently, dare he be unaware of

the sweep of the second hand and of the ticks that mark off

the inexorable running out of the sands of his life.

So it is that the opening essays in this collection deal

directly with man’s attempt to measure time. The notion of

time creeps into a number of the other essays as well; in a



discussion of units which turn out always to include the

“second”; in a discussion of catalysts which squeeze more

action into less time. For really, time is a subject that

cannot be entirely excluded from any; corner of science.

When man faces death directly, then, he studies time, for

it is by accurately handling time that he can measure other

phenomena and find a route through science. And through

science, perhaps, may come a truly materialistic defeat of

Adam’s curse.

For my final essay in this book takes up the inevitability

of death, and the conclusion is that though all men are

mortal, they are not nearly as mortal as they ought to be.

Why not? That is the chink in death’s armor. Why does

man live as surprisingly long as he does? If we can some

day find the answer to that, we may find the answer to

much more.

Immortality?

Who knows, but-maybe!



Part I

Of Time And Space



1. The Days Of Our Years

A group of us meet for an occasional evening of, talk and

nonsense, followed by coffee and doughnuts and one of the

group scored a coup by persuading a well-known

entertainer to attend the session. The well-known enter

tainer made one condition, however. He was not to enter

tain, or even be asked to entertain. This was agreed to.

Now there arose a problem. If the meeting were left

to,its own devices, someone was sure to begin badgering

the entertainer. Consequently, other entertainment had to

be supplied, so one of the boys turned to me and said,

“Say, you know what?” l,knew what and I objected at

once. I said, “How can

I stand up there and talk with everyone staring at this

other fellow in the audience and wishing he were up there

instead? You’d be throwing me to the wolves!”

But they all smiled very toothily and told me about the

wonderful talks I give. (Somehow everyone quickly dis

covers the fact that I soften into putty as soon as the flat

tery is turned on.) In no time at all, I agreed to be thrown

to the wolves. Surprisingly, it worked, which speaks highly

for the audience’s intellect-or perhaps their magnanimity.

I As it happened, the meeting was held on “leap day”

and so my topic of conversation was ready-made and the

gist of it went as follows:

I suppose there’s no question but that the earliest unit of

time-telling was the day. It forces itself upon the aware

ness of even the most primitive of humanoids. However, the

day is not convenient for long intervals of time. Even

allowing a primitive Iife-span of @ years, a man would live

some 11,000 days and it is very easy to lose track among all

those days.

Since the Sun governs the day-unit, it seems natural to

turn to the next most prominent heavenly body, the Moon,



for another unit. One offers itself at once, ready-made the

period of the phases. The Moon waxes from nothing to a

full Moon and back to nothing in a definite period of time.

This period of time is called the “month” in English

(clearly from the word “mooif’) or, more specifically, the

“lunar month,” since we have other months,

representing periods of time slightly shorter or slightly

longer than the one that is strictly tied to the phases of the

moon.

The lunar month is roughly equal to 291/2 days. More

exactly, it is equal to 29 days, 12 hours, 44 minutes, 2.8

seconds, or 29.5306 days.

In pre-agricultural times, it may well have been that no,

special significance attached itself to the month, which re

mained only a convenient device for measuring moderately

long periods of time. The life expectancy of primitive man

was probably something like 350 months, which is a much

more convenient figure than that of I 1,000 days.

In fact, there has been speculation that the extended

lifetimes of the patriarchs reported in the fifth chapter of

the Book of Genesis may have arisen out of a confusion of

years with lunar months. For instance, suppose Me

thuselah had lived 969 lunar months. This would be just

about 79 years, a very reasonable figure. However, once

that got twisted to 969 years by later tradition, we gained

the “old as Methuselah” bit.

However, I mention this only in passing, for this idea is

not really taken seriously by any biblical scholars. It is

much more likely that these lifetimes are a hangover from

Babylonian traditions about the times before the Flood.

…But I am off the subject.

It is my feeling that the month gained a new and

enhanced importance with the introduction of agriculture.

An agricultural society was much more closely and pre

cariously tied-to the season amp; than a hunting or herding

society was. Nomads could wander in search of grain or



grass but farmers had to stay where they were and hope

for rain. To increase their chances, farmers had to be cer

tain to sow at a proper time to take advantage of sea sonal

rains and seasonal warmth; and a mistake in the sowing

period might easily spell disaster. What’s more, the

development of agriculture made possible a denser popu

lation, and that intensified the scope of the possible dis

aster.

Man had to pay attention, then, to the cycle of seasons,

and while he was still in the prehistoric stage he must have

noted that those seasons came fall cycle in roughly twelve

months. In other words, if crops were planted at a par

ticular time of the year and all went well, then, ff twelve

months were counted from the first planting and crops

were planted again, all would again go well.

Counting the months can be tricky in a primitive so

ciety, especially when a miscount can be ruinous, so it isn’t

surprising that the count was usually left in the hands of a

specialized caste, the priesthood. The priests could not only

devote their time to accurate counting, but could also use

their experience and skill to propitiate the gods.

After all, the cycle of the seasons was by no, means as

rigid and unvarying as was the cycle of day and night or the

cycle of the phases of the moon. A late frost or a failure of

rain could blast that season’s crops, and since such flaws in

weather were bound to follow any little mista e in ritual (at

least so men often believed), the priestly func tions were of

importance indeed.

It is not surprising then, that the lunar month grew to

have enormous religious significance. There were new

Moon festivals and special priestly proclamations of

each one of them, so that the lunar month came to be

called the “synodic month.”

The cycle of seasons is called the “year” and twelve

lunar months therefore make up a “lunar year.” The use of

lunar years in measuring time is referred to as the use of a



“lunar calendar.” The only important group of people in

modem times, using a strict lunar calendar, are the Moh

ammedans. Each of the Moharmnedan years is made up of

12 months which are, in turn, usually made up of 29 and 30

days in alternation.

Such months average 29.5 days, but the length of the

true lunar month is, as I’ve pointed out, 29.5306 days.

The lunar year built up out of twelve 29.5-day months is

354 days long, whereas twelve lunar months are actually

354.37 days long.

You may say “So what?” but don’t. A true lunar year

should always start on the day of the new Moon. If, how

ever, you start one lunar year on the day of the new Moon

and then simply alternate 29-day and 30-day months, the

third year will start the day before the new Moon, and the

sixth year will start two days before the new Moon. To

properly religious people, this would be unthinkable.

Now it so happens that 30 true lunar years come out to

be almost exactly an even number of days-10,631.016.

Thirty years built up out of 29.5-day months come to

10,620 days-just 1 1 days short of keeping time with the

Moon’ For that reason, the Mohammedans scatter 1 1

days through the 30 years in some fixed pattern which

prevents any individual year from starting as much, as a

full day ahead or behind the new Moon. In each 30-year

cycle there are nineteen 354-day years and eleven 355-day

years, and the calendar remains even with the Moon.

An extra day, inserted in this way to keep the calendar

even with the movements of a heavenly body, is called an

“intercalary day”; a day inserted “between the

calendar,” so to speak.

The lunar year, whether it is 354 or 355 days in length,

does not, however, match the cycle of the seasons. By the

dawn of historic times the Babylonian astronomers had

noted that the Sun moved against the background of stars



(see Chapter 4). This passage was followed with absorp

tion because it grew apparent that a complete circle of the

sky by the Sun matched the complete cycle of the seasons

closely. (This apparent influence of the stars on the sea

sons probably started the Babylonian fad of astrology

which is still with us today.)

The Sun makes its complete cycle about the zodiac in

roughly 365 days, so that the lunar year is’about II days

shorter than the season-cycle, or “solar year.” Three lunar

years fall 33 days, or a little more than a full month be hind

the season-cycle.

This is important. If you use a lunar calendar and start it

so that the first day of the year is planting time, then three

years later you are planting a month too soon, and by the

time a decade has passed you are planting in mid winter.

After 33 years the first day of the year is back where it is

supposed to be, having traveled through the entire solar

year.

This is exactly what happens in the Mohammedan year.

The ninth month of the Mohammedan year is named

Ramadan, and it is especially holy because it was the

month in which Mohammed began to receive the revela

tion of the Koran. In Ramadan, therefore, Moslems ab stain

from food and water during the daylight hours.

But each year, Ramadan falls a bit earlier in the cycle of

the seasons, and at 33-year intervals it is to be found in the

hot season of the year; at this time abstaining from drink is

particularly wearing, and Moslem tempers grow

particularly short.

The Mohammedan years are numbered from the Hegira;

that is, from the date when Mohammed fled from Mecca to

Medina. That event took place in A.D. 622. Ordinarily, you

nught suppose, therefore, that to find the number of the

Mohammedan year, one need only subtract 622 from the

number of the Christian year. This is not quite so, since the

Mohammedan year is shorter than ours. I write this



chapter in A.D. 1964 and it is now 1342 solar years since

the Hegira. However, it is 1384 lunar years since the

Hegira, so that, as I write, the Moslem year is A.H.

1384.

I’ve calculated that the Mohammedan year will catch up

to the Christian year in about nineteen millennia. The year

A.D. 20,874 will also be A.H. 20,874, and the Moslems will

then be able to switch to our year with a minimum of

trouble.

But what can we do about the lunar year in order to

make it keep even with the seasons and the solar year? We

can’t just add II days at the end, for then the next year

would not start with the new Moon and to the ancient

Babylonians, for instance, a new Moon start was

essential.

However, if we start a solar year with the new Moon and

wait, we will find that the twentieth solar year there after

starts once again on the day of the new Moon. You see, 19

solar years contain just about 235 lunar months.

Concentrate on those 235 lunar months. That is equiva

lent to 19 lunar years (made up of 12 lunar months each)

plus 7 lunar months left over. We could, then, if we wanted

to, let the lunar years progress as the Moham medans do,

until 19 such years had passed. At this time the calendar

would be exactly 7 months behind the sea sons, and by

adding 7 months to the 19th year (a 19th year of 19

months-very neat) we could start a new 19 year cycle,

exactly even with both the Moon and the sea sons.

The Babylonians were unwilling, however, to let them

selves fall 7 months behind the seasons. Instead, they

added that 7-month discrepancy through the 19-year cycle,

one month at a time and as nearly evenly as possible. Each

cycle had twelve 12-month years and seven 13-montb

years. The “intercalary month” was added in the 3rd, 6th,

8tb, I lth, 14th, 17th, and 19th year of each cycle, so that



the year was never more than about 20 days behind or

ahead of the Sun.

Such a calendar, based on the lunar months, but gim

micked so as to keep up with the Sun, is a “lunar-solar

calendar.”

The Babylonian lunar-solar calendar was popular in

ancient times since it adjusted the seasons while

preserving the sanctity of the Moon. The Hebrews and

Greeks both adopted this calendar and, in fact, it is still the

basis for the Jewish calendar today. The individual dates in

the

Jewish calendar are allowed to fall slightly behind the

Sun until the intercalary month is added, when they

suddenly shoot slightly ahead of the Sun. That is why

holidays like

Passover and Yom Kippur occur on different days of the

civil calendar (kept strictly even with the Sun) each year.

These holidays occur on the same day of the year each

year in the Jewish calendar.

The early Christians continued to use the Jewish calen

dar for three centuries, and established the dayof Easter on

that basis. As the centuries passed, matters grew some

what complicated, for the Romans (who were becoming

Christian in swelling numbers) were no longer used to a

lunar-solar calendar and were puzzled at the erratic jump

ing about of Easter. Some formula had to be found by which

the correct date for Easter could be calculated in advance,

using the Roman calendar.

It was decided at the Council of Nicaea, in A.D. 325 (by

which time Rome had become officially Christian), that

Easter was to fall on the Sunday after the first full Moon

after the vernal equinox, the date of the vernal equinox

being established as March 21. However, the full Moon

referred to is not the actual full Moon, but a fic titious one

called the “Paschal Full Moon” (“Paschal” being derived

from Pesach, which is the Hebrew word for Passover). The



date of the Paschal Full Moon is calcu lated according to a

formula involving Golden Numbers and Dominical Letters,

which I won’t go into.

The result is that Easter still jumps about the days of the

civil year and can fall as early as March 22 and as late as

April 25. Many other church holidays are tied to Easter and

likewise move about from year to year.

Moreover, all Christians have not always agreed on the

exact formula by which the date of Easter was to be cal

culated. Disagreement on this detail was one of the reasons

for the schism between the Catholic Church of the West

and the Orthodox Church of the East. In the early Middle

Ages there was a strong Celtic Church which had its

own formula.

Our own calendar is inherited from Egypt, where sea

sons were unimportant. The one great event of the year

was the Nile flood, and this took place (on the average)

every 365 days. From a very early date, certainly as early

as 2781 B.C., the Moon was abandoned and a “solar calen

19 dar,” adapted to a constant-length 365-day year, was

adopted.

The solar calendar kept to the tradition of 12 months,

however. As the year was of constant length, the months

were of constant length, too-30 days each. This meant that

the new Moon could fall on any day of the month, but the

Egyptians didn’t care. (A month not based on the Moon is a

“calendar month.”)

Of course 12 months of 30 days each add up only to 360

days, so at the end of each 12-month cycle, 5 addi tional

days were added and treated as holidays.

The solar year, however, is not exactly 365 days long.

There are several kinds of solar years, differing slightly

in length, but the one upon which the seasons depend is

the “tropical year,” and this is about 3651/4 days long.

This means that each year, the Egyptian 365-day year

falls 1/4 day behind the Sun. As time went on the Nile flood



occurred later and later in the year, until finally it had

made a complete circuit of the year. In 1460 tropical years,

in other words, there would be 1461 Egyptian years.

This period of 1461 Egyptian yea’rs was called the

“Sothic cycle,” from Sothis, the Egyptian name for the star

Sirius. If, at the beginning of one Sothic cycle, Sirius rose

with the Sun on the first day of the Egyptian year, it would

rise later and later during each succeeding year until

finally, 1461 Egyptian years later, a new cycle would begin

as Sothis rose with the Sun on New Year’s Day once more.

The Greeks bad learned about that extra quarter day as

early as 380 B.C., when Eudoxus of Cnidus made the

discovery. In 239 B.c. Ptolemy Euergetes, the Macedonian

king of Egypt, tried to adjust the Egyptian calendar to take

that quarttr day into account, but the ultra-conserva tive

Egyptians would have none of such a radical innova tion.

Meanwhile, the Roman Republic had a lunar-solar

calendar, one in which an intercalary month was added

every once in a while. The priestly officials in charge were

elected politicians, however, and were by no means as con

20 scientious as those in the East. The Roman priests

added a month or not according to whether they wanted a

long year (when the other annually elected officials in

power were of their own party) or a short one (when they

were not). By 46 B.C., the Roman calendar was 80 days

behind the Sun.

Julius Caesar was in power then and decided to put an

end to this nonsense. He had just returned from Egypt

where he had observed the convenience and simplicity of a

solar year, and imported an Egyptian astronomer, Sosig

enes, to help him. Together, they let 46 B.C. continue for

445 days so that it was later known as “The Year of Con

fusion.” However, this brought the calendar even with the

Sun so that 46 B.C. was the last year of confusion.

With 45 B.C. the Romans adopted a modified Egyptian

calendar in which the five extra days at the end of the year



were distributed throughout the year, giving us our months

of uneven length. Ideally, we should have seven 30-day

months and five 31-day months. Unfortunately, the Ro mans

considered February an unlucky month and short ened it,

so that we ended with a silly arrangement of seven 31-day

months, four 30-day months, and one 28-day month.

In order to take care of that extra 1/4 day, Caesar and

Sosigenes established every fourth year with a length of

366 days. (Under the numbering of the years of the Chris

tian era, every year divisible by 4 has the intercalary day

-  set as February 29. Since 1964 divided by 4 is 491,

without a remainder, there is a February 29 in 1964.)

This is the “Julian year,” after Julius Caesar’ At the

Council of Nicaea, the Christian Church adopted the Julian

calendar. Christmas was finally accepted as a Church

holiday after the Council of Nicaea, and given a date in the

Julian year. It does not, therefore, bounce about from year

to year as Easter does.

The 365-day year is just 52 weeks and I day long. This

means that if February 6, for instance, is on a Sunday in

one year, it is on a Monday the next year, on a Tuesday the

year after, and so on. If there were only 365-day years, then

any given date would move through the days of the week in

steady progression. If a 366-day year is involved, however,

that year is 52 weeks and 2 days long, and if February 6 is

on Tuesday that year, it is on Thursday the year after. The

day has leaped over Wednesday. It is for that reason that

the 366-day year is called “leap yearip and February 29 is

“leap day.”

All would have been well if the tropical year were really

exactly 365.25 days long; but it isn’t. The tropical year is

365 days, 5 hours, 48 minutes, 46 seconds, or 365.24220

days long. The Julian year is, on the average, 11 minutes 14

seconds, or 0.0078 days, too long.

This may not seem much, but it means that the Julian

year gains a full day on the tropical year in 128 years. As



the Julian year gains, the vernal equinox, falling behind,

comes earlier and earlier in the year. At the Council of

Nicaea in A.D. 325, the vernal equinox was on March 21.

By A.D. 453 it was on March 20, by A.D. 581 on March

19, and so on. By A.D. 1263, in the lifetime of Roger Bacon,

the Julian year had gained eight days on the Sun and the

vernal equinox was on March 13.

Still not fatal, but the Church looked forward to an

indefinite future and Easter was tied to a vernal equinox at

March 21. If this were allowed to go on, Easter would come

to be celebrated in midsummer, while Christmas would ed e

into the spring. In 1263, therefore, Roger Bacon wrote a

letter to Pope Urban IV explaining the situation. The

Church, however, took over three centuries to consider the

matter.

By 1582 the Julian calendar had gained two more days

and the vernal equinox was falling on March I 1. Pope

Gregory XIII finally took action. First, he dropped ten days,

changing October 5, 1582 to October 15, 1582. That

brought the calendar even with the Sun and the vernal

equinox in 1583 fell on March 21 as the Council of Nicaea

had decided it should.

The next step was to prevent the calendar from getting

out of step again. Since the Julian year gains a full day

every 128 years, it gains three full days in 384 years or, to

approximate slightly, three full days in four centuries.

That means that every 400 years, three leap years

(accord ing to the Julian system) ought to be omitted..

Consider the century years-1500, 1600, 1700, and so on.

In the Julian year, all century years are divisible by 4 and

are therefore leap years. Every 400 years there are 4 such

century years, so why not keep 3 of them ordinary years,

and allow onl one of them (the one that is divisible by 400)

to be a leap year? This arrangement will match the year

more closely to the Sun and give us the “Gre ‘gorian

calendar.”



To summarize: Every 400 years, the Julian calendar

allows 100 leap years for a total of 146,100 days. In that

same 400 years, the Gregorian calendar allows only 97 leap

years for a total of 146,097 days. Compare these lengths

with that of 400 tropical years, which comes to 146,096.88.

Whereas, in that stretch of time, the Julian year had gained

3.12 days on the Sun, the Gregorian year had gained only

0.12 days.

Still, 0.12 days is nearly 3 hours, and this means that in

3400 years the Gregorian calendar will have gained a full

day on the Sun. Around A.D. 5000 we will have to consider

dropping out one extra leap year., But the Church had

waited a little too long to take action. Had it done the job a

century earlier, all western Europe would have changed

calendars without trouble.

By A.D. 1582, however, much of northern Europe bad

turned Protestant. These nations would far sooner remain

out of step with the Sun in accordance with the dictates of

the pagan Caesar, than consent to be corrected by the

Pope. Therefore they kept the Julian year.

The year 1600 introduced no crisis. It was a century

year but one that was divisible by 400. Therefore, it was a

leap year by both the Julian and Gregorian calendars.

But 1700 was a different matter. The Julian calendar had

it as a leap year and the Gregorian di ‘d not. By March 1,

1700, the Julian calendar was going to be an additional day

ahead of the Sun (eleven days altogether). Denmark, the

Netherlands, and Protestant Germany gave in and adopted

the Gregorian calendar.

Great Britain and the American colonies held out until

1752 before giving in. Because of the additional day gained

in 1700, they had to drop eleven days and changed

September 2, 1752 to September 13, 1752. There were

riots all over England as a result, for many people came

quickly to the conclusion that they had suddenly been made

eleven days older by legislation.



“Give us back our eleven days!” they cried in despair.

(A more rational objection was the fact that although the

third quarter of 1752 was short eleven days, landlords

calmly charged a full quarter’s rent.)

As a result of this, it turns out that Washington was not

born on “Washington’s birthday.” He was born on Febru ary

22, 1732 on the Gregorian calendar, to be sure, but the

date recorded in the family Bible had to be the Julian date,

February 11, 1732. When the changeover took place,

Washington-a remarkably sensible man changed the date of

his birthday and thus preserved the actual day.

The Eastern Orthodox nations of Europe were more

stubborn than the Protestant nations. The years 1800 and

1900 went by. Both were leap years by the Julian calendar,

but not by the Gregorian calendar. By 1900, then, the Julian

vernal equinox was on March 8 and the Julian calendar was

13 days ahead of the Sun. It was not until after World War I

that the Soviet Union, for instance, adopted the Gregorian

calendar. (In doing so, the Soviets made a slight

modification of the leap year pattern which made matters

even more accurate. The Soviet calendar will not gain a day

on the Sun until fully 35,000 years pass.)

The Orthodox churches themselves, however, still cling

to the Julian year, which is why the Orthodox Christmas

falls on January 6 on our calendar. It is still December 25 by

their calendar.

In fact, a horrible thought occurs to me I was myself

born at a time when the Julian calendar was still in force in

the-ahem-old country. [Well, the Soviet Union, if you must

know. I came here at the age of 3] Unlike George

Washington, I never changed the birthdate and, as a result,

each year I celebrate my birthday 13 days earlier  than I

should, making myseff 13 days older than I have to be.

And this 13-day older me is in all the records and I can’t

ever change it back.

Give me back my 13 days! Give me back my 13 days!



Give me back…



2. Begin At The Beginning

Each year, another New Year’s Day falls upon us; and

because my birthday follows hard upon New Year’s Day, the

beginning of the year is always a doubled occasion for

great and somber soul-searching on my part.

Perhaps I can make my consciousness of passing time

less poignant by thinking more objectively. For instance,

who says the year starts on New Year’s Day? What is there

about New Year’s Day that is different from any other day?

What makes January I so special?

In fact, when we chop up time into any kind of units,

how do we decide with which unit to start?

For instance, let’s begin at the beginning (as I dearly

love to do) and consider the day itself.

The day is composed of two parts, the daytime* and the

night. Each, separately, has a natural astronomic

beginning. The daytime begins with sunrise; the night be

gins with sunset. (Dawn and twilight encroach upon the

night but that is a mere detail.)

In the latitudes in which most of humanity live’ how

ever, both daytime and night change in length during the

year (one growing longer as the other grows shorter) and

there is, therefore, a certain convenience in using daytime

plus night as a single twenty-four-hour unit of time. The

combination of the two, the day, is of nearly constant

duration.

It is very annoying that “day” means both the sunlit

portion of time and the twenty-four-hour period of daytime

and night together. This is a completely unnecessary

shortcoming of the admirable English language. I

understand that the Greek language contains separate

words for the two entities. I shall use “daytime” for the

sunlit period and “day” for the twenty-four-hour period.

Well, then, should the day start at sunrise or at sunset?



You might argue for the first, since in a primitive society

that is when the workday begins. On the other hand, in that

same society sunset is when the workday ends, and surely

an ending means a new beginning.

Some groups made one decision and some the other.

The Egyptians, for instance, began the day at sunrise,

while the Hebrews began it at sunset.

The latter state of affairs is reflected in the very first

chapter of Genesis in which the days of creation are de

scribed. In Genesis 1:5 it is written- “And the evening and

the morning were the first day.” Evening (that is, night)

comes ahead of morning (that is, daytime) be cause the day

starts at sunset.

This arrangement is maintained in Judaism to this day,

and Jewish holidays still begin “the evening before’ “

Christianity began as an offshoot of Judaism and

remnants of this sunset beginning cling even now to some

non Jewish holidays.

The expression Christmas Eve, if taken literally, is the

evening of December 25, but as we all know it really means

the evening of’Dccember 24-which it would natu rally mean

if Christmas began “the evening before” as a Jewish holiday

would. The same goes for New Year’s Eve.

Another familiar example is All Hallows’ Eve, the eve

ning of the day before All Hallows’ Day, which is given over

to the commemoration of all the “hallows” (or “saints”). All

Hallows’ Day is on November 1, and All Hallows’ Eve is

therefore on the evening of October 31..

Need I tell you that AU Hallows’ Eve is better known by

its familiar contracted form of “Halloween.”

As a matter of fact, though, neither.sunset nor sunrise is

now the beginning of the day. The period from sunrise to

sunrise is slightly more than 24 hours for half the year as

the daytime periods grow shorter, and slightly less than 24

hours for the remaining half of the year as the daytime



periods grow longer. This is also true for the period from

sunset to sunset.

Sunrise and sunset change in opposite directions, either

approaching each other or receding from each other, so

that the middle of daytime (midday) and the middle of night

(midnight) remain fixed at 24-hour intervals throughout the

year. (Actually, there are minor deviations but these can be

ignored.)

One can begin the day at midday and count on a steady

24-hour cycle, but then the working period is split between

two different dates. Far better to start the day at midnight

when all decent people are asleep; and that, in fact, is what

we do.

Astronomers, who are among the indecent minority not

in bed asleep at midnight, long insisted on starting their

day at n-fidday so as not to break up a night’s observation

into two separate-dates. However, the spirit of conformity

was not to be withstood, and in 1925, they accepted the in

convenience of a beginning at midnight in order to get into

step with the rest of the world.

All the units of time that are shorter than a day depend

on the day and offer no problem. You start counting the

hours from the beginning of the day; you start counting the

minutes from the beginning of the hour; and so on.

Of course, when the start of the day changed its posi

tion, that affected the counting of the hours. Originally, the

daytime and the night were each divided into twelve hours,

beginning at, respectively, sunrise and sunset. The hours

changed length with the change in length of daytime and

night so that in June (in the northern hemisphere) the

daytime was made up of twelve long hours and the night of

twelve short hours, while in December the situation was

reversed.

This manner of counting the hours still survives in the

Catholic Church as “canonical hours.” Thus, ” prime”

(“one”) is the term for 6 A.M. “Tierce” (“three”) is 9 A.M.,



“sext” (“six”) is 12 A.M., and “none” (“nine”) is 3 P.M.

Notice that “none” is located in the middle of the afternoon

when the day is warmest. The warmest part of the day

might well be felt to be the middle of the day, and the

word’was somehow switched to the astronomic midday so

that we call 12 A.M. “nOon.IY

This older method of counting the hours also plays a

part in one of the parables of Jesus (Matt. 20:1-16), in

which laborers are hired at various times of the day, up to

and including “the eleventh hour.” The eleventh hour

referred to in the parable is one hour before sunset’when’

the working day ends. For that reason, “the eleventh hour”

has come to mean the last moment in which something can

be done. ‘ne force of the expression is lost on us, how ever,

for we think of the eleventh hour as being either 11 A.M. or

11 P.m., and 11 A.M. is too early in the day to begin to feel

panicky, while II P.m. is too late-we ought to be asleep by

then.

The week originated in the Babylonian calendar where

one day out of seven was devoted to rest. (The rationale

was that it was an unlucky day.)

The Jews, captive in Babylon in the sixth century B.C.,

picked up the notion and established it on a religious basis,

making it a day of happiness rather than of ill fortune. They

explained its beginnings in Genesis 2:2 where, after the

work of the six days of creation-“on the seventh day God

ended his work wbich’he had made; and he rested on the

seventh day.”

To “those societies which accept the Bible as a book of

special significance, the Jewish “sabbatb” (from the

Hebrew word for “rest”) is thus defined as the seventh, and

last, day of the week. This day is the one marked Saturday

on our calendars., and Sunday, therefore, is the first day of

a new week. All our calendars arrange the days in seven

colunins with Sunday first and Saturday seventh.



The early Christians began to attach special significance

to the first day of the week. For one thing, it was the

“Lord’s day” since the Resurrection had taken place on a

Sunday. Then, too, as time went on and Christians began to

think of themselves as something more than a Jewish sect,

it became important to them to have distinct rituals of their

own. In Christian societies, therefore, Sunday, and not

Saturday, became the day of rest. (Of course, in our modem

effete times, Saturday and Sunday are both days of rest,

and are lumped together as the “weekend,” a period

celebrated by automobile accidents.)

The fact that the work week begins on Monday causes a

great many people to think of that as the first day of the

week, and leads to the following children’s puzzle (which I

mention only because it trapped me neatly the first time I

heard it).

You ask your victim to pronounce t-o, t-o-o, and t-w-o,

one at a time, thinking deeply between questions. In each

case he says (wondering what’s up) “tooooo.”

Then you say, “Now pronounce the second day of the

week” and his face clears up, for he thinks he sees the trap.

He is sure you are hoping he will say “toooosday” like a

lowbrow. With exaggerated precision, therefore, he says

“tyoosday.”

At which you look gently puzzled and say, “Isn’t that

strange? I always pronounce it Monday.”

The month, being tied to the Moon, began, in ancient

times, at a fixed phase. In theory, any phase will do. The

month can start at each full Moon, or each first quarter,

and so on. Actually, the most logical Way is to begin each

month with the new Moon-that is, on that evening when the

first sliver of the growing crescent makes itself visible

immediately after sunset. To any logical primitive, a new

Moon is clearly being created at that time and the month.

should start then.



Nowadays, however, the month is freed of the Moon and

is tied to the year, which is in turn based on the Sun.

In our calendar, in ordinary years, the first month begins

on the first day of the year, the second month on the 32nd

day of the year, the third month on the 60th day of the year,

the fourth month on the 91st day of the year, and so on-

quite regardless of the phases of the Moon. (In a leap year,

all the months from the third onward start a day late

because of the existence of February 29.

But that brings us to the year. When does that begin and

why?

Primitive agricultural societies must have been first

aware of the year as a succession of seasons. Spring,

summer, autumn, and winter were the morning, midday,

evening and night of the year and, as in the case of the day,

there seemed two equally qualified candidates for the post

of beginning.

The beginning of the work year is the time of spring,

when warmth returns to the earth and planting can begin.

Should that not also be the beginning of the year in

general? On the other hand, autumn marks the end of the

work year, with the harvest (it is to be devoutly hoped)

safely in hand. With the work year ended, ought-not the

new year begin?

With the development of astronomy, the beginning of the

spring season was associated with the vernal equinox (see

Chapter 4) which, on our calendar, falls on March 20, while

the beginning of autumn is associated with the autumnal

equinox which falls, half a year later, on September 23.

Some societies chose one equinox as the beginning and

some the other. Among the Hebrews, both equinoxes came

to be associated with a New Year’s Day. One of these fell on

the first day of the month of-Nisan (which comes at about

the vernal equinox). In the middle of that month comes the

feast of Passover, which is thus tied to the vernal equinox.



Since, according to the Gospels, Jesus’ Crucifixion and

Resurrection occurred during the Passover season (the Last

Supper was a Passover seder), Good Friday and Easter are

also tied to the vernal equinox (see Chap ter I).

The Hebrews also celebrated a New Year’s Day on the

first two days of Tishri (which falls at about the autumnal

equinox), and this became the more important of the two

occasions. It is celebrated by Jews today as “Rosh

Hashonah” (“head of the year”), the familiarly known

“Jewish New Year.”

A much later example of. a New Year’s Day in con

nection with the autumnal equinox came in connection with

the French Revolution. On September 22, 1792, the French

monarchy was abolished and a republic pro 31 claimed The

Revolutionary idealists felt that since a new epoch in

human history had begun, a new calendar was needed.

They made September 22 the New Year’s Day and

established a new list of months. The first month was

Vend6miare, so that September 22 became Vend6 miare 1. .

For thirteen years, Vend6miare I continued to be the

official New Yeaes Day of the French Government, but the

calendar never caught on outside France or,even among

the people inside France. In 1806 Napoleon gave up the

struggle and officially reinstated the old calendar.

There are two important solar events in addition to the

equinoxes. After the vernal equinox, the noonday Sun con

tinues to rise higher and higher until it reaches a maximum

height on June 21, which is the summer solstice (see

Chapter 4), and this day, in consequence, has the longest

daytime period of the year.

The height of the noonday Sun declines thereafter until

it reaches the position of the autumnal equinox. It then

continues to decline farther and farther fill it reaches a

minimum height on December 21, the winter solstice and

the shortest daytime period of the year.



The summer solstice is not of much significance. “Mid

summer Day” falls at about the summer solstice (die tradi

tional English day is June 24). This is a time for gaiety and

carefree joy, even folly. Shakespeare’s A Midsummer

Night’s Dream is an example of a play devoted to the kind

of not-to-be-taken-seriously fun of the season, and the

phrase “midsummer madness” may have arisen similarly.

The winter solstice is a much more serious affair. The

Sun is declining from day to day, and to a primitive so ciety,

not sure of the invariability of astronomical laws, it might

well appear that this time, the Sun will continue its decline

and disappear forever so that spring will never come again

and all life will die.

Therefore, as the Sun’s decline slowed from day to day

and came to a halt and began to turn on December 21,

there must have been great relief and joy which, in the end,

became ritualized into a great religious festival, marked by

gaiety and licentiousness.

The best-known examples of this are the several days of

holiday among the Romans at this season of the year. The

holiday was in honor of Saturn (an ancient Italian god of

agriculture) and was therefore called the “Satumalia.” It

was a time of feasting and of giving of presents; of good

will to men, even to the point where slaves were given

temporary freedom while their masters waited upon them.

There was also a lot of drinking at Satumalia parties.

In fact, the word “saturnalian” has come to mean dis

solute, or characterized by unrestrained merriinent.

There is logic, then, in beginning the year at the winter

solstice which marks, so to speak, the birth of a new Sun,

as the first appearance of a crescent after sunset marks the

birth of a new Moon. Something like this may have been in

Julius Caesar’s mind when he reorganized the Roman

calendar and made it solar rather than lunar (see Chap ter

I).



The Romans had, traditionally, begun their year on

March 15 (the “Ides of March”), which was intended to fall

upon the vernal equinox originally but which, thanks to the

sloppy way in which the Romans maintained their calendar,

eventually moved far out of synchronization with the

equinox. Caesar adjusted matters and moved the beg ning

of the year to January 1 instead, placing it nearly at the

winter solstice.

This habit of beginning the year on or about the winter

solstice did not become universal, however. In England

(and the American colonies) March 25, intended to repre

sent the vernal equinox, remainedthe official beginning of

the year until 1752. It was only then that the January I

beginning was adopted.

The beginning of a new Sun reflects itself in modem

times in another way, too. In the days of the Roman Em

pire, the rising power of Christianity found its most dan

gerous competitor in Nfithraism, a cult that was Persian in

origin and was devoted to sun worship. The ritual cen tered

about the mythological character of NEthras, who

represented the Sun, and whose birth was celebrated on

December 25-about the time of the winter solstice. This

was a good time for a holiday, anyway, for the Romans were

used to celebrating the SatumaEa at that time of year.

Eventually, though, Christianity stole Mithraic thunder

by establishing the birth of Jesus on December 25 (there is

no biblical authority for this), so that the period of the

winter solstice has come to mark the birth of both the Son

and the Sun. There are some present-day moralists (of

whom I am one) who find something unpleasantly remi

niscent of the Roman Satumalia in the modem secular

celebration of Christmas.

But where do the years begin? It is certainly convenient

to number the years, but where do we start the numbers?

In ancient times, when the sense of history was not

highly developed, it was sufficient to begin numbering the



years with the accession of the local king or ruler. The

number ing would begin over again with each new kin.

Where a city has an annually chosen magistrate, the year

might not be numbered at all, but merely identified by the

name of the magistrate for that year. Athens named its

years by its archons.

When the Bible dates things at all, it does it in this

manner. For instance, in II Kings 16:1, it is written: “In the

seventeenth year of Pekah the son of Remallah, Ahaz the

son of Jotham king of Judah began to reign.” (Pekah was

the contemporary king of Israel.)

And in Luke 2:2, the time of the taxing, during which

Jesus was born, is dated only as follows: “And this taxing

was first made when Cyrenius was governor of Syria.”

Unless you have accurate lists of kings and magistrates

and know just how many years each was in power and how

to relate the list of one region with that of another, you are

in trouble, and it is for that reason that so many ancient

dates are uncertain even (as I shall soon explain) a date as

important as that of the birth of Jesus.

A much better system would be to pick some important

date in the past (preferably one far enough in the past so

that you don’t have to deal with negative-numbered years

before that time) and number the years in progres sion

thereafter, without ever starting over.

The Greeks made use of the Olympian Games for that

purpose. This was celebrated every four years so that a

four-year cycle was an “Olympiad.” The Olympiads were

numbered progressively, and the year itself was the Ist,

2nd, 3rd or 4th year of a particular Olympiad.

This is needlessly complicated, however, and in the time

following Alexander the Great something better was in

troduced into the Greek world. The ancient East was being

fought over by Alexander’s generals, and one of them,

Seleucus, defeated another at Gaza. By this victory Seleu

cus was confirmed in his rule over a vast section of Asia.



He determined to number the years from that battle,

which took place in the Ist year of the 117th Olympiad.

That year became Year 1 of the “Seleucid Era,” and later

years continued in succession as 2, 3, 4, 5, and so on.

Nothing more elaborate than that.

The Seleucid Era was of unusual importance because Se

leucus and his descendants ruled over Judea, which there

fore adopted the system. Even after the Jews broke free o If

the Seleucids under the leadership of the Maccabees, they

continued to use the Seleucid Era in dating their com

mercial transactions over the length and breadth of the

ancient world. Those commercial records can be tied in

with various local year-dating systems, so that many of

them could be accurately synchronized as a result.

The most important year-dating system of the ancient

world, however, was that of the “Roman Era.” This began

with the year in which Rome was founded. According to

tradition, this was the 4th Year of the 6th Olympiad, which

came to be considered as I A.U.C. (The abbrevia tion

“A.U.C.” stands for “Anno Urbis Conditae”; that is, “The

Year of the Founding of the City.”)

Using the Roman Era, the Battle of Zama, in which

Hannibal was defeated, was fought in 553 A.U.C., while

Julius Caesar was assassinated in 710 A.U.C., and so on.

This system gradually spread over the ancient world, as

Rome waxed supreme, and lasted well into early medieval

times.

The early Christians, anxious to show that biblical

records antedated those of Greece and Rome, strove to

begin counting at a date earlier than that of either the

founding of Rome or the beginning of the Olympian Games.

A Church historian, Eusebius of Caesarea, who lived about

1050 A.U.C., calculated that the Patriarch, Abraham, bad

been born 1263 years before the founding of Rome.

Therefore he adopted that year as his Year 1, so that 1050

A.u.c. became 2313, Era of Abraham.



Once the Bible was thoroughly established as the book

of the western world, it was possible to carry matters to

their logical extreme and date the years from the creation

of the world. The medieval Jews calculated that the crea

tion of the world had taken place 3007 years before the

founding of Rome, while various Christian calculators

chose years varying from 3251 to 4755 years before the

founding of Rome. These are the various “Mundane Eras”

(“Eras of the World”). The Jewish Mundane Era is used

today in the Jewish calendar, so that in September 1964,

the Jewish year 5725 began.

The Mundane Eras have one important factor in their

favor. They start early enough so that there are very few, if

any, dates in recorded history that have to be given

negative numbers. This is, not true of the Roman Era, for

instance. The founding of the Olympian Games, the Trojan

War, the reign of David, the building of the Pyramids, all

came before the foundin of Rome and have to be given

negative year numbers.

The Romans wouldn’t have cared, of course, for none of

the ancients were very chronology conscious, but modem

historians would. In fact, modem historians are even worse

off than they would have been if the Roman Era had been

retained.

About 1288 A.U.c., a Syrian monk named Dionysius

Exiguus, working from biblical data and secular records,

calculated that Jesus must have been born in 754 A.U.C.

This seemed a good time to use as a beginning for

counting the years, and in the time of Charlemagne (two

and a half centuries after Dionysius) this notion won out.

The year 754 A.U.c. became A.1). I (standing for Anno

Domini, meaning “the year of the Lord”). By this new

“Christian Era,” the founding of Rome took place in 753

B.C. (“before Christ”). The first year of the first Olvmt)iad

was in 776 B.C., the first year of the Seleucid Era was in

312 Bc., and so on.



This is the system used today, and means that all or

ancient history from Sumer to Augustus must be dated in

negative numbers, and we must forever remember that

Caesar was assassinated in 44 B.C. and that the next year

is number 43 and not 45.

Worse still, Dionysius was wrong in his calculations.

Matthew 2: 1 clearly states that “Jesus was born in

Bethle hem of Judea in the days of Herod the king.” This

Herod is the so-called Herod the Great, who was born

about 681 A.u.c., and was made king of Judea by Mark

Antony in 714 A.u.c. He died (and this is known as certainly

as any ancient date is known) in 750 A.U.c., and therefore

Jesus could not have been born any later than 750 A.U.C.

But 750 A.U.c., according to the system of Dio’nysius

Exiguus, is 4 B.C., and therefore you constantly find in lists

of dates that Jesus was born in 4 B.C.; that is, four years

before the birth of Jesus.

In fact, there is no reason to be sure that Jesus was born

in the very year that Herod died. In Matthew 2:16, it is

written that Herod, in an attempt to kill Jesus, ordered all

male children of two years and under to be slain. This verse

can be interpreted as indicating that Jesus may have been

at least two years old while Herod was still alive, and might

therefore have been born as early as 6 B.C. Indeed, some

estimates have placed the birth of Jesus as early as 17 B.C. 

Which forces me to admit sadly that although I lo begin

at the beginning, I can’t always be sure where beginning is.



3. Ghost Lines In The Sky

My son is bearing, with strained patience, the quasi-hu

morous changes being rung upon his last name by his

grade,school classmates. My explanation to him that the

name “Asimov,” properly pronounced, has a noble reso

nance like the distant clash of sword on shield in the age of

chivalry, leaves him unmoved. The hostile look in his eyes

tells me quite plainly that he considers it my duty as a

father to change my name to “Smith” forthwith.

Of course, I sympathize with him, for in my time, 1, too,

have been victimized in this fashion. The ordinary

misspellings of the uninformed I lay to one side. However,

there was one time…

It was when I was in the Army and working out my stint

in basic training. One of the courses to which we were

exposed was map-reading, which had the great advantage

of being better than drilling and hiking. And then, like a

bolt of lightning, the sergeant in charge pronounced the

fatal word “azimuth” and all faces turned toward me.

I stared back at those stalwart soldier-boys in horror, for

I realized that behind every pair of beady little eyes, a

small brain had suddenly discovered a source of infinite

fun.

You’re right. For what seemed months, I was Isaac

Azimuth to every comic on the post, and every soldier on

the post considered himself a comic. But, as I told myself

(paraphrasing a great American poet), “This is the army,

Mr. Azimuth.”

Somehow, I survived.

And, as fitting revenge, what better than to tell all you

inoffensive Gentle Readers, in full and leisurely detail,

exactly what azimuth is? 

It all starts with direction. The first, most primitive, and

most useful way of indicating direction is to point. “They



went that-a-way.” Or, you can make use of some land mark

known to one and all, “Let’s head them off at the gulch.

This is all right if you are concerned with a small sec

tion of the Earth’s surface; one with which you and your

friends are intimately familiar. Once the horizons widen,

however, there is a search for methods of giving directions

that do not depend in any way on local terrain, but are the

same everywhere on the Earth.

An obvious method is to make use of the direction of the

rising Sun and that of the setting Sun. (These direc tions

change from day to day, but you can take the average over

the period of a year.) These are opposite directions, of

course, which we call “east” and “west.” Another pair of

opposites can be set up perpendicular to these and be

called “north” and “south.”

If, at any place, north, east, south, and west are deter

mined (and this could be done accurately enough, even in

prehistoric times, by careful observations of the Sun) there

is nothing, in principle, to prevent still finer directions from

being established. We can have northeast, north northeast,

northeast by north, and so on.

With a compass you can accept directions of this sort,

follow them for specified distances or via specified land

marks, and go wherever you are told to go. Furthermore, if

you want to map the Earth, you can start at some point,

travel a known distance in a known direction to another

point, and locate that point (to scale) on the map. You can

then do the same for a third point, and a fourth, and a fifth,

and so on. In principle the entire surface of the planet can

be laid out in this manner, as accurately as you wish, upon

a globe.

However, the fact that a thing can be done “in prin

ciple” is cold comfort if it is unbearably tedious and would

take a million men a million years. Besides, the compass

was unknown to western man until the thirteenth century,



and the Greek geographers, in trying to map the world, had

to use other dodges.

One method was to note the position of the Sun at mid

day; that is at the moment just halfway between sunrise

and sunset. On any particular day there will be some spots

on Earth where the Sun will be directly overhead at mid

day. The ancient Greeks knew this to be true of southern

Egypt in late June, for instance. In Europe, however, the

sun at midday always fell short of the overhead point.

This could easily be explained once it was realized that

the Earth was a sphere. It could furthermore be shown,

without difficulty that all points on Earth at which the Sun,

on some particular day, fell equally short of the overhead

point at midday, were on a single east-west line. Such a line

could be drawn on the map and used as a reference for the

location of other points. The first to do so was a Greek

geographer named Dicaearchus, who lived about 300 B.c.

and was one of Aristotle s pupils.

Such a line is called a line of “latitude,” from a Latin

word meaning broad or wide, for when making use of the

usual convention of putting north at the top of a map, the

east-west lines run in the direction of its width.

Naturally, a number of different lines of latitude can be

determined. All run east-west and all circle the sphere of

the Earth at constant distances from each other, and so are

parallel. They are therefore referred to as “parallels of

latitude.”

The nearer the parallels of latitude to either pole, the

smaller the circles they make. (If you have a globe, look at

it and see.) The longest parallel is equidistant from the

poles and makes the largest circle, taking in the maximum

girth of the Earth. Since it divides the Earth into two equal

halves, north and south, it is called the “equator” (from a

Latin word meaning “equalizer”).

If the Earth were cut through at the equator, the section

would pass through the center of the Earth. That makes the



equator a “great circle.” Every sphere has an infinite

number of great circles, but the equator is the only parallel

of latitude that is one of them.

It early became customary to measure off the parallels

of latitude in degrees. There are 360 degrees, by coilven 40

tion, into which the full circumference of a sphere can be

divided. If you travel from the equator to the North Pole,

you cover a quarter of the Earth’s circumference and

therefore pass over 90 degrees. Consequently, the parallels

range from O’ at the equator to 90’ at the North Pole (the

small ‘ representing “degrees”). .If you continue to move

around the Earth past the North Pole so as to travel toward

the equator again, you must pass the parallels of latitude

(each of which encircles the Earth east-west) in reverse

order, traveling from 90’ back to O’ at the equator (but at a

point directly opposite that of the equatorial beginning).

Past the equator, you move across a second set of parallels

circling the southern half of the globe, up to 90’ at the

South Pole and then back to O’, finally at the starting point

on the equator.

To differentiate the O’ to 90’ stretch from equator to

North Pole and the similar stretch from equator to South

Pole, we speak of “north latitude” and “south latitude.”

Thus, Philadelphia, Pennsylvania is on the 400 north

latitude parallel, while Valdivia, Chile is on the 40’ south

latitude parallel.

Parallels of latitude, though excellent as references

about which to build a map, cannot by themselves be used

to locate points on the Earth’s surface. To say that Quito,

Ecuador is on the equator merely tells you that it is some

where along a circle 25,000 miles in circumference.

For accurate location one needs a gridwork of lines-a set

of north-sbuth lines as well as east-west ones. These north-

south lines, running up and down the conventionally

oriented map (longways) would naturally be called “longi

tude.”



Whenever it is midday upon some spot of the Earth it is

midday at all spots on the same north-south line, as one can

easily show if the Earth is considered to be a rotating

sphere. The north-south line is therefore a “meridian” (a

corruption of a Latin word for “midday”), and we speak of

“meridians of longitude.”

Each meridian extends due north and south, reaching

the North Pole at one extreme and the South Pole at the

other. All the meridians therefore converge at both poles

and are spaced most widely apart at the equator, for all the

world like the boundary lines of the segments of a

tangerine. If one imagines the Earth sliced in two along any

meridian, the slice always cuts through the Earth’s center,

so that all meridians are great circles, and each stretches

around the world a distance of approximately 25,000 miles.

By 200 B.C. maps being prepared by Greeks were

marked off with both longitude and latitude. However,

making the gridwork accurate was another thing. Latitude

was all right. That merely required the determination of the

average height of the midday sun or, better yet, the

average height of the North Star. Such determinations

could not be made as accurately in ancient Greek times as

in modem times, but they could be made precisely enough

to produce reasonably accurate results.

Longitude was another matter. For that you needed the

time of day. You had to be able to compare the time at

which the Sun, or better still, another star (the sun is a

star) was directly above the local meridian, as compared

with the time it was directly,above another meridian. If a

star passed over the meridian of Athens in Greece at a

certain time, and over the meridian of Messina in Sicily 32

minutes later, then Messina was 8 degrees of longitude

west of Athens. To determine such matters, accurate time

pieces were necessary; timepieces that could be relied on

to maintain synchronization to within fractions of a minute



over long periods while separated by long distance; and to

remain in synchronization with the Earth’s rotation, too.

In ancient times, such timepieces simply did not exist

and therefore even the best of the ancient geographers

managed to get their meridians tangled up. Eratosthenes of

Cyrene, who flourished at Alexandria in 200 B.c., thought

that the meridian that passed through Alexandria also

passed through Byzantium (the modern city of Istanbul,

Turkey). That meridian actually passes about 70 miles east

of Istanbul. Such discrepancies tended to increase in areas

farther removed from home base.

Of course, once the circumference of the earth is known

(and Eratosthenes himself calculated it), it is possible to

calculate the east-west distance between degrees of longi

tude. For instance, at the equator, one degree of longitude

is equal to about 69.5 miles, while at a latitude of 40’

(either north or south of the equator), it is only about 53.2

miles, and so on. However, accurate measurements of

distance over mountainous territory or, worse yet, over

stretches -of open ocean, are quite difficult.

In early modem times, when European nations first

began to make long ocean voyages, this became a horrible

problem. Sea captains never knew certainly where they

were, and making port was a matter of praying as well as

sailing. In 1598 Spain, then still a major seagoing nation,

offered a reward for anyone who would devise a timepiece

that could be used on board ship, but the reward went

begging.

In 1656 the I)rutch astronomer Christian Huygens in

vented the pendulum clock-the first accurate timepiece.

It could be used only on land, however. The pitching, roll

ing, and yawing of a ship put the pendulum off its feed at

once.

Great Britain was a major maritime nation after 1600,

and in 1675 Charles 11 founded the observatory in Green

wich (then a London suburb, now Part of Greater Lon don)



for the express purpose of carrying through the necessary

astronomical observations that would make the accurate

determination of longitude possible.

But a good timepiece was still needed, and in 1714 the

British Government offered a large fortune (in those days)

of 20,000 pounds for anyone who could devise a good clock

that would work on shipboard.

The problem was tackled by John Harrison, a Yorkshire

mechanics self-trained and gifted with mechanical genius.

Beginning in 1728 he built a series of five clocks, each

better than the one before. Each was so mounted that it

could take the sway of a ship without being affected. Each

was more accurate at sea than other clocks of the time

were on land. One of them was off by less than a minute

after five months at sea. Harrison’s first clocks were per

haps too large and heavy to be completely practical, but

the fifth was no bigger than a large watch.

The British Parliament put on an extraordinary display

of meanness in this connection, for it wore Harrison out in

its continual delays in paying him the money he had earned

and in demanding more and ever more models and tests.

(Possibly this was because Harrison was a provincial

mechanic and not a gentleman scientist of the Royal So

ciety.) However, King George III himself took a personal

interest in the case and backed Harrison, who finally re

ceived his money in 1765, by which time he was over 70

years old.

It is only -in the last two hundred years, then, that the

latitude-longitude gridwork on the earth became really

accurate.

Even after precise longitude determinations became pos

sible, a problem remained. There is no natural reference

base for longitude; nothing like the equator in the case of

latitude. Different nations therefore used different systems,

usually basing “zero longitude” on the meridian passing

through the local capital. The use of different systems was



confusing and the risk was run of rescue operations at sea

being hampered, to say nothing of war maneuvers among

allies being stymied.

To settle matters, the important maritime nations of the

world gathered in Washington, D.C. in 1884 and held the

“Washington Meridian Conference.” The logical de cision

was reached to let the Greenwich observatory serve as

base since Great Britain was at the very height of its

maritime power. The meridian passing through Greenwich

is, therefore, the “prime meridian” and has a longitude of

00.

The degrees of longitude are then marked off to the west

and east as “west longitirde” and “east longitude.”

The two meet again at the opposite side of the world

from the prime meridian. There we have the 180’ meridian

which runs down the middle of the Pacific Ocean.

Every degree of latitude (or longitude) is broken up into

60 minutes (‘), every minute into 60 seconds (“), while the

seconds can be broken up into tenths, hun dredtbs, and so

on. Every point on the earth can be located uniquely by

means of latitude and longitude. For instance, an agreed-

upon reference point within New York City is at 40’ 45′ 06″

north latitude and 73’ 59′ 39″ west longi tude; while Los

Angeles is at 34’ 03′ 15″ north latitude and 118’ 14′ 28″

west longitude.

The North Pole and the South Pole have no longitude,

for all the meridians converge there. The North Pole is

defined by latitude alone, for 90’ north latitude represents

one single point-the North Pole. Similarly, 90’ south lati

tude represents the single point of the South Pole.

It is possible to locate longitude in terms of time rather

than in terms of degrees. The complete day of 24 hours is

spread around the 360’ of longitude. This means that if two

places differ by 15’ in longitude, they also differ by 1 hour

in local time. If it is exactly noon on the prime meridian, it



is 1 P.m. at 15’ east longitude and 1 1 A.M. at 151 west

longitude.

If we decide to call prime meridian 0:00:00 we can

assign west longitude positive time readings and east longi

tude negative time readings. All points on 15’ west longi

tude become +1:00:00 and all points on 15’ east longi tude

become - 1: 00: 00.

Since New York City is at 73’ 59′ 39″ west longitude it is

4 hours 55 minutes 59 seconds earlier than London and can

therefore be located at +4:55:59. Similarly, Los Angeles,

still farther west, is at +8:04:48.

In short, every point on Earth, except for the poles, can

be located by a latitude and a time. The North and South

Poles have latitude only and no local times, since they have

no meridians. This does not mean, of course, that there is

no time at the poles; only that the system for measuring

local times, which works elsewhere on Earth, breaks down

at the poles. Other systems can be used there; one pole

might be assigned Greenwich time, for instance, while the

other is assigned the time of the 180’ meridian.

In the ordinary mapping of the globe, both latitude and

longitude are given in ordinary degrees. However, the time

system for longitude is used to establish local time zones

over the face of the Earth, and the 180’ meridian becomes

the “International Date Line” (slightly bent for

geographical convenience). AU sorts of interesting para

doxes become possible, but that is for another article

another day.

And what about mapping the sky? This concerned

astronomers even before the problem of the mapping of the

Earth, really, for whereas only small portions of the Earth

are visible to any one man at any one time, the entire

expanse of half a sphere is visible overhead The “celestial

sphere” is most easily mapped as an ex tension of the

earthly sphere. If the axis of the Earth is imagined

extended through space until it cuts the celestial sphere,



the intersection would come at the “North Celestial Pole”

and the “South Celestial Pole.” (“Celestial,” by the way, is

from a Latin word for “sky.”)

The celestial sphere seems to rotate east to west about

the Earth’s axis as a reflection of the actual rotation of the

Earth west to east about that axis. Therefore, the North

Celestial Pole and the South Celestial Pole are fixed points

that do not partake in the celestial rotation, just as the

North Pole and the South Pole do not partake in the earthly

rotation.

The near neighborhood of the North Celestial Pole is

marked by a bright star, Polaris, also called the “pole star”

and the “north star,” which is only a degree or so from it

and makes a small circle about it each day. The circle is so

small that the star seems fixed in position day after day,

year after year, and can be used as a,reference point to

determine north, and therefore all other directions.

Its importance to travel in the days before the compass

was incalculable.

The imaginary reference lines on the Earth can all be

transferred by projection to the sky, so that the sky, like the

Earth, can be covered with a gridwork of ghost nes.

There would be the “celestial equator,” making up a

great circle equidistant from the celestial poles; and

“celestial latitude” and “celestial longitude” also.

The celestial latitude is called “declination,” and is

measured in degrees. The northern half of the celestial

sphere (“north celestial latitude”) has its declination given

as a positive value; the southern half (“south celestial

latitude”) as a negative value. Thus, Polaris has a declina

tion of roughly +89’; Pollux one of about +30’; Sirius one of

about -15’; and Acrux (the brightest star of the Southern

Cross) a declination of about -60’.

The celestial longitude is called “right ascension” and

the sky has a prime meridian of its own that is less



arbitrary than the one on Earth, one which could therefore

be set and agreed upon quite early in the game.

I The plane of the Earth’s orbit about the Sun cuts the

celestial sphere in a great circle called the “ecliptic” (see

Chapter 4). The Sun seems to move exactly along the line

of the ecliptic, in other words.

Because the Earth’s axis is tipped to the plane of Earth’s

orbit by 23.5’, the two great circles of the ecliptic and the

celestial equator are angled to one another by that same

23.50. 

The ecliptic crosses the celestial equator at two points.

When the Sun is at either point, the day and night are

equal in length (twelve hours each) all over the Earth.

Those points are therefore the “equinoxes,” from Latin

words meaning “equal nights.”

At one of these points the Sun is moving from negative

to positive declination, and that is the “vernal equinox”

because it occurs on March 20 and marks the beginning of

spring in the Northern Hemisphere, where most of man

kind lives. At the other point the Sun is moving from

positive to negative declination and that is the autumnal

equinox, falling on September 23, the beginning of the

northern autumn.

The point of the vernal equinox falls on a celestial

meridian which is assigned a value of O’ right ascension.

The celestial longitude is then measured eastward only

(either in degrees or in hours) all the way around, until it

returns to itself as 360’ right ascension.

By locating a star through declination and right

ascension one does precisely the same thing as locating a

point on Earth through latitude and longitude.

An odd difference is this, though. The Earth’s prime

meridian is fixed through time, so that a point on the

Earth’s surface does not change its longitude from day to

day. However, the Earth’s axis makes a slow revolution

once in 25,800 years, and because of this the celestial



equator slowly shifts, and the points at which it crosses the

ecliptic move slowly westward.

The vernal equinox moves westward, then, circling the

sky every 25,800 years, so that each year the moment in

time of the vernal equinox comes just a trifle sooner than it

otherwise would, The moment precedes the theoretical

time and the phenomenon is therefore called “the preces

sion of the equinoxes.”

As the vernal equinox moves westward, every point on

the celestial sphere has its right ascension (measured from

that vernal equinox) increase. It moves up about 1/7 of a

second of arc each day, if my calculations are correct.

This system of locating points in the sky is’ealled the

“Equatorial System” because it is based on the location of -

the celestial equator and the celestial poles.

A second system may be established based on the

observer himself. Instead of a “North Celestial Pole” based

on a rotating Earth, we can establish a point directly

overhead, each person on Earth having his own overhead

point-although for people over a restricted area, say that of

New York City, the different overhead points are practically

identical.

The overhead point is the “zenith,” which is a medieval

misspelling of part of an Arabic phrase meaning “over

head.” The point directly opposite in that part of the

celestial sphere which lies under the Earth is the ‘nadir,” a

medieval misspelling of an Arabic word meaning “op

posite.”

The great circle that runs around the celestial sphere,

equidistant from the zenith and nadir, is the “horizon,” from

a Greek word meaning “boundary,” because to us it seems

the boundary between sky and Earth (if the Earth were

perfectly level, as it is at sea). This system of locating

points in the sky is therefore called the “Horizon System.”

The north-south great circle traveling from horizon to

horizon through the zenith is the meridian. The cast-west



great circle traveling from horizon to horizon through the

zenith, and making a right angle with the meridian, is the

14 prime vertical.”

A point in the sky can then be said to be so I many

degrees (positive) above the horizon or so many degrees

(negative) below the horizon, this being the “altitude.”

Once that is determined, the exact point in the sky can

be located by measuring on that altitude the number of

degrees westward from the southern half of the meridian.

At least astronomers do that. Navigators and surveyors

measure the number of -degrees eastward from the north

end of the meridian. (In both cases the direction of meas

ure is clockwise.)

The number of degrees west of the southern edge of the

meridian (or east of the northern edce, depending on the

system used) is the azimuth. The word is a less corrupt

form of the Arabic expression from which “zenith” also

comes.

If you set north as having an azimuth of O’, then east

has an azimuth of 90’, south an azimuth of 180’, and west

an azimuth of 270’. Instead of boxing the compass with

outlandish names you can plot direction by degrees.

And as for myseff?

Why, I have an azimuth of isaac. Naturally.



4. The Heavenly Zoo

On July 20, 1963 there was a total eclipse of the Sun,

visible in parts of Maine, but not quite visible in its total

aspect from my house. In order to see the total eclipse I

would have had to drive two hundred miles, take a chance

on clouds, then drive back two hundred miles, braving the

traffic congestion produced by thousands of other New

Englanders with the same notion.

I decided not to (as it happened, clouds interfered with

seeing, so it was just as well) and caught fugitive glimpses

of an eclipse that was only 95 per cent total, from my

backyard. However, the difference between a 95 per cent

eclipse and a 100 per cent eclipse is the difference between

a notion of water and an ocean of water, so I did not feel

very overwhelmed by what I saw.

V-/bat makes a total eclipse so remarkable is the sheer

astronomical accident that the Moon fits so snugly over the

Sun. The Moon is just large enougb. to cover the Sun

completely (at times) so that a temporary night falls and

the stars spring out. And it is just small enough so that

during the Sun’s obscuration, the corona, especially the

brighter parts near the body of the Sun, is completely

visible.

The apparent size of the Sun and Moon depends upon

both their actual size and their distance from us. The

diameter of the Moon is 2160 miles while that of, the Sun is

864,000 miles. The ratio of the diameter of the Sun to that

of the Moon is 864,000/2160 or 400. In other words, if both

were at the same distance from us, the Sun would appear

to be 400 times as broad as the Moon.

However, the Sun is farther away from us than the Moon

is, and therefore appears smaller for its size than the Moon

does. At great distances, such as -those which characterize

the Moon and the Sun, doubling the distance halves the



apparent diameter. Remembering that, consider that the

average distance of the Moon from us is 238,000 miles

while that of the Sun is 93,000,000 miles. The ratio of the

distance of the Sun to that of the Moon is 93,000,

000/238,000 or 390. The Sun’s apparent diameter is cut

down in proportion.

In other words, the two effects just about cancel. The

Sun’s greater distance makes up for its greater size and the

result is that the Moon and the Sun appear to be equal in

size. The apparent angular diameter of the Sun averages 32

minutes of arc, while that of the Moon averages 31 minutes

of arc.

These are average values because both Moon and Earth

possess elliptical orbits. The Moon is closer to the Earth

(and therefore appears larger) at some times than at

others, while the Earth is closer to the Sun (which

therefore appears larger) at some times than at others.

This variation in apparent diameter is only 3 per cent for

the Sun and about 5 per cent for the Moon, so that it goes

unnoticed by the casual observer.

There is no astronomical reason why Moon and Sun

should fit so well. It is the sheerest of coincidence, and only

the Earth among all the planets is blessed in this fashion.

Indeed, if it is true, as astronomers suspect, that the

Moon’s distance from the Earth is gradually increasing as a

result of tidal friction, then this excellent fit even here on

Earth is only true of our own geologic era. The Moon was

too large for an ideal total eclipse in the far past and will be

too small for any total eclipse at all in the far future.

Of course, there is a price to pay for this excellent fit.

The fact that the Moon and Sun are roughly equal in ap

parent diameter means that the conical shadow of the

Moon comes to a vanishing point near the Earth’s surface.

If the two bodies were exactly equal in apparent size the

shadow would come to a pointed end exactly at the One



degree equals 60 minutes, so that both Sun and Moon are

about half a degree in diameter.

Earth’s surface, and the eclipse would be total for only

an instant of time. In other words, as the Moon covered the

last sliver of Sun (and kept on moving, of course) the first

sliver of Sun would begin to appear on the other side.

Under the most favorable conditions, when the Moon is

as close as possible (and therefore as apparently large as

possible) while the Sun is as far as possible (and there fore

as apparently small as possible), the Moon’s shadow comes

to a point well below the Earth’s surface and we pass

through a measurable thickness of that shadow. In other

words, after the unusually large Moon covers the last sliver

of the unusually small Sun, it continues to move for a short

interval of time before it ceases to overlap the Sun and

allows the first sliver of it to appear at the other side. An

eclipse, under the most favorable conditions, can be 71/2

minutes long.

On the other hand, if the Moon is smaller than average

in appearance, and the Sun larger, the Moon’s shadow will

fall short of the Earth’s surface altogether. The small Moon

will not completely cover the larger Sun, even when both

are centered in the sky. Instead, a thin ring of Sun wilt

appear all around the Moon. This is an “annular eclipse”

(from a Latin word for “ring”). Since the Moon’s apparent

diameter averages somewhat less than the Sun’s, annular

eclipses are a bit more likely than total eclipses.

This situation scarcely allows astronomers (and ordinary

beauty-loving mortals, too) to get a good look, since not

only does a total eclipse of the Sun last for only a few

,minutes, but it can be seen only over that small portion of

the Earth’s surface which is intersected by the narrow

shadow of the Moon.

To make matters worse, we don’t even get as many

eclipses as we might. An eclipse of the Sun occurs

whenever the Moon gets between ourselves and the Sun.



But that happens at every new,Moon; in fact the Moon is

“new” because it is between us and the Sun so that it is the

op posite side (the one we don’t see) that is sunlit, and we

only get, at best, the sight of a very thin crescent sliver of

light at one edge of the Moon. Well, since there are twelve

new Moons each year (sometimes thirteen) we ought to see

twelve eclipses of the Sun each year, and sometimes

thirteen. No?

No! At most we see five eclipses of the Sun each year

(all at widely separated portions of the Earth’s surface, of

course) and sometimes as few as two. What happens the

rest of the time? Let’s see.

The Earth’s orbit about the Sun is all in one plane.

That is, you can draw an absolutely flat sheet through

the entire orbit. The Sun itself will be located in this plane

as well. (This is no coincidence. The law of gravity makes it

necessary.)

If we imagine this plane of the Earth’s orbit carried out

infinitely to the stars, we, standing on the Earth’s surface,

will see that plane cutting the celestial sphere into two

equal halves. The line of intersection will form a “great

circle” about the sky, and this line is called the “ecliptic.”

Of course, it is an imaginary line and not visible to the

eye. Nevertheless, it can be located if we use the Sun as a

marker. Since the plane of the Earth’s orbit passes through

the Sun, we are sighting along the,plane when we look at

the Sun. The Sun’s position in the sky always falls upon the

line of the ecliptic. Therefore, in order to mark out the

ecliptic against the starry background, we need only follow

the apparent path of the Sun through the sky. (I am

referring now not to the daily path from east to west, which

is the reflection of Earth’s rotation, but rather the path of

the Sun from west to east against the starry background,

which is the reflection of the Earth’s revolution about the

Sun.)



Of course, when the Sun is in the sky the stars are not

visible, being blanked out by the scattered sunlight that

turns the sky blue. How then can the position of the Sun

among the stars be made out?

Well, since the Sun travels among the stars, the half of

the sky which is invisible by day and the half which is

visible by night shifts a bit from day to day and from night

to night. By watching the night skies throughout the year

the stars can be mapped throughout the entire circuit of

the ecliptic. It then becomes possible to calculate the

position of the Sun against the stars on each particular day,

since there is always just one position that will account for

the exact appearance of tile night sky on any particular

night.

If you prepare a celestial sphere-that is, a globe with the

stars marked out upon it-you can draw an accurate great

circle upon it representing the Sun’s path. The time it takes

the Sun to make one complete trip about the ecliptic (in

appearance) is about 3651/4 days, and it is this which

defines the “year.”

The Moon travels about the Earth in an ellipse and there

is a plane that can be drawn to include its entire orbit, this

plane passing through the Earth itself. Wien we look at the

Moon we are sighting along this plane, and the Moon

marks out the intersection of the plane with the starry

background. The stars may be seen even when the Moon is

in the sky, so that marking out the Moon’s path (also a

great circle) is far easier than marking out the Sun’s. The

time it takes the Moon to make one complete trip about its

path, about 271/3 days, defines the “sidereal month” (see

Chapter 6).

Now if the plane of the Moon’s orbit about the Earth

coincided with the plane of the Earth’s orbit about the Sun,

both Moon and Sun would mark out the same circu lar line

against the stars. Imagine them starting from the same

position in the sky. The Moon would make a complete



circuit of the ecliptic in 28 days, then spend an additional

day and a half catching up to the Sun, which had also been

moving (though much more slowly) in the interval. Every

29’h days there would be a new Moon and an eclipse of the

Sun.

Furthermore, once every 291/2 days, there, would be a

full Moon, when the Moon was precisely on the side op

posite to that of the Sun so that we would see its entire

visible hemisphere lit by the Sun. But at that time the Moon

should pass into the Eartb’s shadow and there would be a

total eclipse of the Moon.

AR this does not happen-every 291/2 days because the

plane of the Moon’s orbit about the Earth does not coincide

with the plane of the Earth’s orbit about the Sun. The two

planes make an angle of 5‘8’ (or 308 minutes of arc) ‘

The two great circles, if marked out on a celestial sphere

would be set off from each other at a slight slant. They

would cross at two points, diametrically opposed and would

be separated by a maximum amount exactly half way

between the crossing point. (The crossin2 points are called

“nodes,” a Latin word meaning “knots”)

If you have trouble visualizing this, the best thing is to

get a basketball and two rubber bands and try a few ex

periments. If you form a great circle of each rubber band

(one that divides the globe into two equal halves) and make

them non-coincident, you will see that they cross each

other.in the manner I have described.

At the points of maximum separation of the Moon’s path

from the ecliptic, the angular distance between them is 308

minutes of are. This is a distance equal to roughly ten times

the apparent diameter of either the Sun or the Moon. This

means that if the Moon happens to overtake the Sun at a

point of maximum separation, there will be enough space

between them to fit in nine circles in a row, each the

apparent size of Moon or Sun.



In most cases, then, the Moon, in overtaking the Sun,

will pass above it or below it with plenty of room to spare,

and there will be no eclipse.

Of course, if the Moon happens to overtake the Sun at a

point near one of the two nodes, then the Moon does get

into the way of the Sun and an eclipse takes place.

This happens only, as I said, from two to five times a

year.

If the motions of the Sun and Moon are adequately

analyzed mathematically, then it becomes easy to predict

when such meetings will take place in the future, and when

they have taken place in the past, and exactly from what

parts of the Eaith’s surface the eclipse will be visible.

Thus, Herodotus tells us that the Ionian philosopher,

Thales, predicted an eclipse that came just in time to stop a

battle between the Lydians and the Medians’ (With such a

sign of divine displeasure, there was no use going on with

the war.) The battle took place in Asia Minor some time

after 600 B.c., and astronomical calculations show that a

total eclipse of the Sun was visible from Asia Minor on May

28, 585 B.c. This star-crossed battle, there fore, is the

earliest event in history which can be dated to the’exact

day.

The ecliptic served early mankind another purpose

besides acting as a site for eclipses. It was an eternal

calendar, inscribed in the sky.

The earliest calendars were based on the circuits of the

Moon, for as the Moon moves about the sky, it goes through

very pronounced phase changes that even the most casual

observer can’t help but notice. The 291/2 days it takes to

go from new Moon to new Moon is the “synodic month”

(see Chapter 6).

The trouble with this system is that in the countries

civilized enough to have a calendar, there are important

periodic phenomena (the flooding of the Nile, for in stance,

or the coming of seasonal rains, or seasonal cold) that do



not fit in well with the synodic month, There weren’t a

whole number of months from Nile flood to Nile flood. The

average interval was somewhere between twelve and

thirteen months.

In Egypt it came to be noticed that the average intervals

between the floods coincided with one complete Sun-circuit

(the year). The result was that calendars came to consist of

years subdivided into months. In Babylonia and, by dint of

copying, among the Greeks and Jews, the months were tied

firnay to the Moon, so that the year was made up

sometimes ‘of 12 months and sometimes of 13 months in a

complicated pattern that repeated itself every 19 years.

This served to keep the years in line with the seasons and

the months in line with the phases of the Moon. However, it

meant that individual years were of different lengths (see

Chapter 1).

The Egyptians and, by dint of copying, the Romans and

ourselves abandoned the Moon and made each year equal

in length, and each with 12 slightly long months’

The “calendar month” averaged 301/2 days long in place

of the 291/2. days of the synodic month. This meant the

months fell out of line with the phases of the Moon, but

mankind survived that.

The progress of the Sun along the ecliptic marked off

the calendar, and since the year (one complete circuit) was

divided into 12 months it seemed natural to divide the

ecliptic into 12 sections. The Sun would travel through one

section in one month, through the section to the east of

that the next month, through still another section the third

month, and so on. After 12 months it would come back to

the first section.

Each section of the ecliptic has its own pattern of stars,

and to identify one section from another it is the most

natural thing in the world to use those patterns. If one

section has four stars in a roughly square configuration it



might be called “the square”; another section might be the

“V-shape,” another the “large triangle,” and so on.

Unfortunately, most people don’t have my neat, geo

metrical way of thinking and they tend to see complex

figures rather than simple, clean shapes. A group of stars

arranged in a V might suggest the head and homs of a bull,

for instance. The Babylonians worked up such imaginative

patterns for each section of the ecliptic and the Greeks

borrowed these giving each a Greek name. The Romans

borrowed the iist next, giving them Latin names, and

passing them on to us.

The following is the list, with each name in Latin and in

English: ‘I) Aries, the Ram; 2) Taurus’ the Bull; 3) Gemini,

the Twins; 4) Cancer, the Crab; 5) Leo, the Lion; 6) Virgo,

the Virgin; 7) Libra, the Scales; 8) Scorpio, the Scorpion; 9)

Sagittarius, the Archer; 10) Capricomus, the Goat; 11)

Aquarius, the Water-Carrier; 12) Pisces, the Fishes.

As you see, seven of the constellations represent ani

mals. An eighth, Sagittarius, is usually drawn as a centaur,

which may be considered an animal, I suppose. Then, if we

remember that human beings are part of the animal

kingdom, the only strictly nonanimal constellation is Libra.

The Greeks consequently called this band of

constellations o zodiakos kyklos or “the circle of little

animals,” and this has come down to us as the Zodiac.

In fact, in the sky as a whole, modem astronomers

recognize 88 constellations. Of these 30 (most of them

constellations of the southern skies’ invented by modems)

represent inaniinate objects. Of the remaining 58, mostly

ancient, 36 represent mammals (including 14 human

beings), 9 represent birds,, 6 represent reptiles, 4

represent fish, and 3 represent arthropods. Quite a

heavenly zoo!

Odd, though, considering that most of the constellations

were invented by an agricultural society, that not one

represents a member of the plant kingdom. Or can,that be



used to argue that the early star-gazers were herdsmen

and not farmers?

The line of the ecliptic is set at an angle of 231/2 ‘ to the

celestial equator (see Chapter 3) since, as is usually stated,

the Earth’s axis is tipped 23V2’.

At two points, then, the ecliptic crosses the celestial

equator and those two crossing points are the “equinoxes”

(“equal nights”). When the Sun is at those crossing points,

it shines directly over the equator and days and nights are

equal (twelve hours each) the world over. Hence, the name.

One of the equinoxes is reached when the Sun, in its

path along the ecliptic, moves from the southern celestial

hemisphere into the northern. It is rising higher in the sky

(to us in the Northern Hemisphere) and spring is on its

way. That, therefore, is the “vernal equinox,” and it is on

March 20.

On that day (at least in ancient Greek times) the Sun

entered the constellation of Aries. Since the vernal equinox

is a good time to begin the year for any agricultural society,

it is customary to begin the list of the constellations of the

Zodiac, as I did, with Aries.

The Sun stays about one month ‘m each constellation, so

it is in Aries from March 20 to April 19, in Taurus from

April 20 to May 20, and so on (at least that was the lineup

in Greek times).

As the Sun continues to move along the ecliptic after the

vernal equinox, it moves farther and farther north of the

celestial equator, rising higher and higher in our northern

skies. Finally, halfway between the two equinoxes, on June

21, it reaches the point of maximum separation between

ecliptic and celestial equator. Momentarily it “stands stiff”

in its north-soufh rdotion, then “turns” and begins (it

appears to us) to travel south again. This is the time of the

“summer solstice,” where “solstice” is from the Latin

meaning “sun stand-still.”



At that time the position of the Sun is a full 231/2’ north

of the celestial equator and it is entering the con stellation

of Cancer. Consequently the line of 231/2’ north latitude on

Earth, the line over which the Sun is shining on June 20, is

the “Tropic of Cancer.” (“Tropic” is from a Greek word

meaning “to turn.”)

On September 23, the Sun has reached the “autumnal

equinox” as it enters the constellation of Libra. It then

moves south of the celestial equator, reaching the point of

maximum southerliness on December 21, when it enters

the constellation of Capricorn. This is the “winter solstice,”

and the line of 231/2 ‘ south latitude on the Earth is (you

guessed it) the “Tropic of Capricorn.”

Here is a complication! The Earth’s axis “wobbles.”

If the line of the axis were extended to the celestial

sphere, each pole would draw a slow circle, 47’ in diameter,

as it moved. The position of the celestial equator depends

on the tilt of the axis and so the celestial equator moves

bodily against the background of the stars from east to

west in a direction parallel to the ecliptic. The position of

the equi noxes (the intersection of the moving celestial

equator with the unmoving ecliptic) travels westward to

meet the Sun.

The equinox completes a circuit about the ecliptic in

25,760 years, which means that in 1 year the vernal

equinox moves 360/25,760 or 0.014 degrees. The, Sun, in

making its west-to-east circuit, comes to the vernal equinox

which is 0.014 degrees west of its position at the last

crossing. The Sun must travel that additional 0.014 degrees

to make a truly complete circuit with respect to the stars. It

takes 20 minutes of motion to cover that additional 0.014

degrees. Because the equinox precedes itself and is

reached 20 minutes ahead of schedule each year, this

motion of the Earth’s axis is called “the pre cession of the

equinoxes.”



Because of the precession of the equinoxes, the vernal

equinox moves one full constellation of the Zodiac every

2150 years. In the time of the Pyramid builders, the Sun

entered Taurus at the time of the vernal equinox. In the

time of the Greeks, it entered Aries. In modem times, it

enters Pisces. In A.D. 4000 it will enter Aquarius.

The complete circle made by the Sun with respect to the

stars takes 365 days, 6 hours, 9 minutes, 10 seconds. This

is the “sidereal year.” The complete circle from equinox to

equinox takes 20 minutes less; 365 days, 5 hours, 48

minutes, 45 seconds. This is the “tropical year,” because it

also measures the time required for the Sun to move from

tropic to tropic and back again.

It is the tropical year and not the sidereal year that

governs our seasons, so it is the tropical year we mean

when we speak of the year.

The scholars of -ancient times noted that the position of

the Sun in the Zodiac had a profound effect on the Earth.

Whenever it was in Leo, for instance, the Sun shone with

a lion’s strength and it was invariably hot; when it was in

Aquarius, the water-carrier usually tipped his um so that

there was much snow. Furthermore, eclipses were clearly

meant to indicate catastrophe, since catastrophe always

followed eclipses. (Catastrophes also always followed lack

of eclipses but no one paid attention to that.)

Naturally, scholars sought for other effects and found

them in the movement of the five bright star-like objects,

Mercury, Venus, Mars, Jupiter, and Saturn. These, like the

Sun and Moon, moved against the starry background and

all were therefore called “planctes” (“wanderers”) by the

Greeks. We call them “planets.”

The five star-like planets circle the Sun as the Earth

does and the planes of their orbits are tipped only slightly

to that of the Earth. Thir% means they seem to move in the

ecliptic, as the Sun and Moon do, progressing through the

constellations of the Zodiac.



Their motions, unlike those of the Sun and the Moon,

are quite complicated. Because of the motion of the Earth,

the tracks made by the star-like planets form loops now and

then. This made it possible for the Greeks to have five

centuries of fun working out wrong theories to ac count for

those motions.

Still, though the theories might be wrong, they sufficed

to work out what the planetary positions were in the past

and what they would be in the future. All one had to do was

to decide what particular influence was exerted by a

particular planet in a particular constellation of the Zodiac;

note the positions of all the planets at the time of a

person’s birth; and everything was set. The decision as to

the particular influences presents no problem. You make

any decision you care to. The pseudo-science of astrology

invents such influences without any visible difficulty. Every

astrologer has his own set.

To astrologers, moreover, nothing has happened since

the time of the Greeks. The period from March 20 to April

19 is still governed by the “sign of Aries,” even though the

Sun is in Pisces at that time nowadays, thanks to the

precession of the equinoxes. For that reason it is now

necessary to distinguish between the “signs of the Zodiac”

and the “constellations of the Zodiac.” The signs now are

what the constellations were two thousand years ago.

I’ve never heard that this bothered any astrologer in the

world.

AU this and more occurred to me some time ago when I

was invited to be on a well-known television conversa tion

show that was scheduled to deal with the subject of

astrology. I was to represent science against the other

three members of the panel, all of whom were professional

astrologers.

For a moment I felt that I must accept, for surely it was

my duty as a rationalist to strike a blow against folly and

superstition. Then other thoughts occurred to me.



The three practitioners would undoubtedly be experts at

their own particular line of gobbledygook and could easily

speak a gallon of nonsense while I was struggling with a

half pint of reason.

Furthermore, astrologers are adept at that line of argu

ment that all pseudo-scientists consider “evidence.” The

line would be something like this, “People born under Leo

are leaders of men, because the lion is the king of ,beasts,

and the proof is that Napoleon was born under the sign of

Leo.”

Suppose, then, I were to say, “But one-twelfth of living

human beings, amounting to 250,000,000 individuals, were

born in Taurus. Have you, or has anybody, ever tried to

determine whether the proportion of leaders among them

is significantly greater than among non-Leos? And how

would you test for leadership, objectively, anyway’.?”

Even if I managed to say all this, I would merely be

stared at as a lunatic and, very likely, as, a dangerous sub

versive. And the general public, which, in this year of 1968,

ardently believes in astrology and supports more

astrologers in affluence (I strongly suspect) than existed in

all previous centuries combined, would arrange lynching

parties.

So as I wavered between the desire to fight for the right,

and the suspicion that the right would be massacred and

sunk without a trace, I decided to turn to astrology for

help. Surely, a bit of astrologic analysis would tell me what

was in store for me in any such confrontation.

Since I was born on January 2, that placed me under the,

sign of Capricornus-the goat.

That did it! Politel but very firmly, I refused to be on the

program!



5. Roll Call

When all the world was young (and I was a teen-ager),

one way to give a science fiction story a good title was to

make use of the name of some heavenly body. Among my

own first few science fiction stories, for instance, were such

items as “Marooned off Vesta,” “Christmas on Ganymede,”

and “The Callistan Menace.” (Real swino,,inc, titles, man!)

This has gone out of fashion, alas, but the fact remains

that in the 1930’s, a whole generation of science fiction

fans grew up with the names of the bodies of the Solar

System as familiar to them as the names of the American

states. Ten to one they didn’t know why the names were

what they were, or how they came to be applied to the

bodies of the Solar System or even, in some cases, bow

they were pronounced-but who cared? When a tentacled

monster came from Umbriel or lo, how much more im

pressive that was than if it had merely come from Pbila

delphia.

But ignorance must be battled. Let us, therefore, take

up the matter of the names, call the roll of the Solar System

in the order (more or less) in which the names were

applied, and see what sense can be made of them.

The Earth itself should come first, I suppose. Earth is an

old Teutonic word, but it is one of the glories of the English

language that we always turn to the classic tongues as well.

The Greek word for Earth was Gaia or, in Latin spelling,

Gaea. This gives us “geography” (“earth-writing”),

“geology” (“earth-discourse”), “geom etry” (“earth-

measure”), and so on.

The Latin word is Terra. In science fiction stories a

human being from Earth may be an “Earthl;ng” or an

“Earthman,” but he is frequently a “Terrestrial,” while a

creature from another world is almost invariably an “extra

Terrestrial.”



The Romans also referred to the Earth as Tellus Mater

(“Mother Earth” is what it means). The genitive form of

tellus is telluris, so Earthmen are occasionally referred to

in s.f. stories as “TeHurians.” There is also a chemical

element “tellurium,” named in honor of this version of the

name of our planet.

But putting Earth to one side, the first two heavenly

bodies to have been noticed were, undoubtedly and obvi

ously, the Sun and the Moon, which, like Earth, are old

Teutonic words.

To the Greeks the Sun was Helios, and to the Romans it

was Sol. For ourselves, Helios is almost gone, although we

have “helium” as the name of an element originally found

in the Sun, “heliotrope” (“sun-turn”) for the sun flower, and

so on.

Sol persists better. The common adjective derived from

sun” may be “sunny,” but the scholarly one is “solar.”

We may speak of a sunny day and a sunny disposition,

but never of the “Sunny System.” It is always the “Solar

System.” In science fiction, the Sun is often spoken of as

Sol, and the Earth may even be referred to as “Sol Ill.”

The Greek word for the Moon is Selene, and the Latin

word is Luna. The first lingers on in the name of the

chemical element “selenium,” which was named for the

Moon. And the study of the Moon’s surface features may be

called “selenography.” The Latin name appears -m the

common adjective, however, so that one speaks of a “lunar

crescent” or a “lunar eclipse.” Also, because of the theory

that exposure to the li ht of the full Moon drove men crazy

(“moon-struck”), we obtained the word “lunatic.”

I have a theory that the notion of naming the heavenly

bodies after mythological characters did not originate with

the Greeks, but that it was a deliberate piece of copy

cattishness. . To be sure, one speaks of Helios as the god of

the Sun and Gaea as the goddess of the Earth, but it seems

obvi ous to me that the words came first, to express the



physical objects, and that these were personified into gods

and goddesses later on.

The later Greeks did, in fact, feel this lack of mytho

logical character and tried to make Apollo the god of the

Sun and Artemis (Diana to the Romans) the goddess of the

Moon. This may have taken hold of the Greek scholars but

not of the ordinary folk, for whom Sun and Moon remained

Helios and Selene. (Nevertheless, the in fluence of this

Greek attempt on later scholars was such that no other

impo rtant heavenly body was named for Apollo and

Artemis.)

I would like to clinch this theory of mine, now, by taking

up another heavenly body.

After the Sun and Moon, the next bodies to be recog

nized as important individual entities must surely have

been the five bright “stars” whose positions with respect to

the real stars were not fixed and which therefore, along

with the Sun and the Moon, were called planets (see

Chapter 4).

The brightest of these “stars” is the one we call Venus,

and it must have been the first one noticed-but not

necessarily as an individual. Venus sometimes appears in

the evening after sunset, and sometimes in the morning

before sunrise, depending on which part of its orbit it

happens to occupy. It is therefore the “Evening Star” some

times and the “Morning Star” at other times. To the early

Greeks, these seemed two separate objects and each was

given a name.

The Evening Star, which always appeared in the west

near the setting Sun, was named Hesperos (“evening” or

44 west”). The equivalent Latin name was Vesper. The

Morning Star was named Phosphoros (“light-bringee’), for

when the Morning Star appeared the Sun and its light were

not far behind. (The chemical element “phosphorus” - Latin

spelling-was so named because it glowed in the dark as the

result of slow combination with oxygen.) The Latin name



for the Morning Star was Lucifer. which also means “light-

bringer.”

Now notice that the Greeks made no use of mythology

here. Their words for the Evening Star and Morning Star

were logical, descriptive words. But then (during the sixth

century B.c.) the Greek scholar, Pythagoras of Samos,

arrived back in the Greek world after his travels in

Babylonia. He brought with him a skullfull of Babylonian

notions.

At the time, Babylonian astronomy was well developed

and far in advance of the Greek bare beginnings. The

Babylonian interest in astronomy was chiefly astrological in

nature and so it seemed natural for them to equate the

powerful planets with the powerful gods. (Since both had

power over human beings, why not?) The Babylonians knew

that the Evening Star and the Morning Star were a single

planet-after all, they never appeared on the same day; if

one was present, the other was absent, and it was clear

from their movements that the Morning Star passed the

Sun and became the Evening Star and vice versa. Since the

planet representing both was so bright and beautiful, the

Babylonians very logically felt it ap propriate to equate it

with Ishtar, their goddess of beauty and love.

Pythagoras brought back to Greece this Babylonian

knowledge of the oneness of the Evening and Morning Star,

and Hesperos and Phosphoros vanished from the heavens.

Instead, the Babylonian system was copied and the

planet was named for the Greek goddess of beauty and

love, Aphrodite. To the Romans this was their

corresponding goddess Yenus, and so it is to us.

Thus, the habit of naming heavenly bodies for gods and

goddesses was, it seems to me, deliberately copied from

the Babylonians (and their predecessors) by the Greeks.

The name “Venus,” by the way, represents a problem.

Adjectives from these classical words have to be taken

from the genitive case and the genitive form of “Venus” is



Veneris. (Hence, “venerable” for anything worth the

respect paid by the Romans to the goddess; and because

the Romans respected old age, “venerable” came to be

applied to old men rather than young women.)

So we cannot speak of “Venusian atmosphere” or

“Venutian atmosphere” as science fiction writers some

times do. We must say “Venerian atmosphere.” Un

fortunately, this has uncomfortable associations and it is

not used. We might turn back to the Greek name but the

genitive form there is Aphrodisiakos, and if we speak of the

“Aphrodisiac atmosphere” I think we will give a false

impression.

But something must be done. We are actually exploring

the atmosphere of Venus with space probes and some

adjective is needed. Fortunately, there is a way out. The

Venus cult was very prominent in early days in a small

island south of Greece. It was called Kythera (Cythera in

Latin spelling) so that Aphrodite was referred to, poetically,

as the “Cytherean go’ddess.” Our poetic astron omers have

therefore taken to speaking of the “Cytherean

atmosphere.”

The other four planets present no problem. The second

brightest planet is truly the king planet. Venus may be

brighter but it is confined to the near neighborhood of the

Sun and is never seen at midnight. The second brightest,

however, can shine through all the hours of night and so it

should fittingly be named for the chief god. The Babi

lonians accordingly named it “Marduk.” The Greeks

followed suit and called it “Zeus,” and the Romans named it

Jupiter. The genitive form of Jupiter is fovis, so that we

speak of the “Jovian satellites.” A person bom under the

astrological influence of Jupiter is “jovial.”

Then there -is a reddish planet and red is obviously the

color of blood; that is, of war and conflict. The Baby lonians

named this planet “Nergal” after their god of war, and the

Greeks again followed suit by naming it “Ares” after theirs.



Astronomers who study the surface features of the planet

are therefore studying “areography.” The Latins used their

god of war, Mars, for the planet. The genitive form is

Martis, so we can speak of the “Martian canals.”

The planet nearest the Sun, appears, like Venus, as both

an evening star and morning star. Being smaller and less

reflective than Venus, as well as closer to the Sun, it is

much harder to see. By the time the Greeks got around to

naming it, the mythological notion had taken hold. The

evening star manifestation was named “Hermes,” and the

morning star one “Apollo.”

The latter name is obvious enough, since the later

Greeks associated Apollo with the Sun, and by the time the

planet Apollo was in the sky the Sun was due very shortly.

Because the planet was closer to the Sun than any other

planet (though, of course, the Greeks did not know this was

the reason), it moved more quickly against the stars than

any object but the Moon. This made it resemble the wing-

footed messenger of the gods, Hermes.

But giving the planet two names was a matter of conserv

atism. With the Venus matter straightened out,

Hermes/Apollo was quickly reduced to a single planet and

Apollo was dropped. The Romans named it “Mercurius,”

which was their equivalent of Hermes, and we call it

Mercury.

The quick journey of Mercury across the stars is like the

lively behavior of droplets of quicksilver, which came to be

called “mercury,” too, and we know the type of personality

that is described as “mercurial.”

There is one planet left. This is the most slowly moving

of all the planets known to the ancient Greeks (being the

farthest from the Sun) and so they gave it the name of an

ancient god, one who would be “pected to move in grave,

and solemn steps. They called it “Cronos,” the father of

Zeus and ruler of the universe before the suc cessful revolt

of the Olympians under Zeus’s leadership.



The Romans gave it the name of a god they considered

the equivalent of Cronos and called it “Saturnus,” which to

us is Saturn. People born under Saturn are supposed to

reflect its gravity and are “satumine.”

For two thousand years the Earth, Sun, Moon, Mercury,

Venus, Mars, Jupiter, and Saturn remained the only known

bodies of the Solar System. Then came 1610 and the Italian

astronomer Galileo Galilei, who built himself a telescope

and turned it on the heavens. In no time at all he found four

subsidiary objects circling the planet Jupiter.

(The German astronomer Johann Kepler promptly named

such subsidiary bodies “satellites,” from a Latin word for

the hangers-on of some powerful man.)

There was a question as to what to name the new

bodies.

The mythological names of the planets had hung on into

the Christian era, but I imagine there must have been some

natural hesitation about using heathen gods for new

bodies.

Galileo himself felt it wise to honor Cosimo Medici H,

Grand Duke of Tuscany from whom he expected (and later

received) a position, and called them Sidera MetUcea (the

Medicean stars). Fortunately this didn’t stick. Nowa days

we call the four satellites the “Galilean satellites” as a

group, but individually we use mythological names after all.

A German astronomer, Simon Marius, gave them these

names after having discovered the satellites one day later

than Galileo.

The names are all in honor of Jupiter’s (Zeus’s) loves, of

which there were many. Working outward from Jupiter, the

first is lo (two syllables please, eye’oh), a maiden whom

Zeus turned into a heifer to hide her from his wife’s

jealousy. The second is Europa, whom Zeus in the form of a

bull abducted from the coast of Phoenicia in Asia and

carried to Crete (which is how Europe received its name).



The third is Ganymede, a young Trojan lad (well, the

Greeks were liberal about such things) whom Zeus ab

ducted by assuming the guise of an eagle. And the fourth is

Callisto, a nymph whom Zeus’s wife caught and turned into

a bear.

As it happens, naming the third satellite for a male

rather than for a female turned out to be appropriate, for

Ganymede is the largest of the Galilean satellites and,

indeed, is the largest of any satellite in the Solar System.

(It is even larger than Mercury, the smallest planet.)

The naming of the Galilean satellites established once

and for all the convention that bodies of the Solar System

were to be named mythologically, and except in highly

unusual instances this custom has been followed since.

In 1655 the Dutch astronomer Christian Huygens dis

covered a satellite of Saturn (now known to be the sixth

from the planet). He named it Titan. In a way this was

appropriate, for Saturn (Cronos) and his brothers and

sisters, who ruled the Universe before Zeus took over, were

referred to collectively as “Titans.” However, since the

name refcrs to a group of beings and not to an indi vidual

being, its use is unfortunate. The name was ap propriate in

a second fashion, too. “Titan” has come to mean “giant”

because the Titans and their allies were pictured by the

Greeks as- being of superhuman size (whence the word

“titanic”), and it turned out that Titan was one of the

largest satellites in the Solar System.

The Italian-French astronomer Gian Domenico Cassini

was a little more precise than Huygens had been. Between

1671 and 1684 he discovered four more satellites of

Saturn, and these he named after individual Titans and

Titanesses.

The satellites now known to be 3rd, 4th, and 5th from

Saturn he named Tethys, Dione, and Rhea, after three

sisters of Saturn. Rhea was Saturn’s wife as well. The 8th



satellite from Saturn he named Iapetus after one of

Satum’s brothers. (Iapetus is frequently mispronounced.

In English it is “eye-ap’ih-tus.”) Here finally the Greek

names were used, chiefly because there were no Latin

equivalents, except for Rhea. There the Latin equivalent is

Ops. Cassini tried to lump the four satellites he had

discovered under the name of “Ludovici” after his patron,

Louis XIV-Ludovicus, in Latin-but that second at tempt to

honor royalty also failed.

And so within 75 years after the discovery of the tele

scope, nine new bodies of the Solar System were

discovered, four satellites of Jupiter and five of Saturn.

Then some thing more exciting turned up.

On March 13, 1781, a German-English astronomer,

William Herschel, surveying the heavens, found what he

thought was a comet. This, however, proved quickly to be

no comet at all, but a new planet with an orbit outside that

of Saturn.

There arose a serious problem as to what to name the

new planet, the first to be discovered in historic times.

Herschel himself called it “Georgium Sidus” (“George’s

star”) after his patron, George III of England, but this third

attempt to honor royalty failed. Many astronomers felt it

should be named for the discoverer and called it

“Herschel.” Mythology, however, won out.

The German astronomer Johann Bode came up with a

truly classical suggestion. He felt the planets ought to

make a heavenly family. The three innermost planets

(exclud ing the Earth) were Mercury, Venus, and Mars, who

were siblings, and children of Jupiter, whose orbit lay

outside theirs. Jupiter in turn was the son of Saturn, whose

orbit lay outside his. Since the new planet had an orbit

outside Satum’s, why not name it for Uranus, god of the sky

and father of Saturn? The suggestion was accepted and

Uranus* it was. What’s more, in 1798 a German chemist,



Martin Heinrich Klaproth, discovered a new element he

named in its honor as “uranium.”

In 1787 Herschel went on to discover Uranus’s two

largest satellites (the 4th and 5th from the planet, we now

know). He named them from mythology, but not from

Graeco-Roman mythology. Perhaps, as a naturalized

Englishman, he felt 200 per cent English (it’s that way,

sometimes) so he turned to English folktales and named the

satellites Titania and Oberon, after the queen and king of

the fairies (who make an appearance, notably, in

Shakespeare’s A Midsummer Night’s Dream).

In 1789 be went on to discover two more satellites of

Saturn (the two closest to the planet) and here too he

disrupted mythological logic. The planet and the five

satellites then known were all named for various Titans and

Titanesses (plus the collective name, Titan). Herschel

named his two Mimas and Enceladus (en-seYa-dus) after *

Uranus is pronounced “yooruh-nus.” I spent almost all my

life accenting the second syllable and no one ever

corrected me. I just happened to be reading Webster’s

Unabridged one day… two of the giants who rose in

rebellion against Zeus long after the defeat of the Titans.

After the discovery of Uranus, astronomers climbed

hungrily upon the discover-a-planet bandwagon and

searched particularly in the unusually large gap between

Mars and Jupiter. The first to find a body there was the

Italian astronomer Giuseppe Piaz2i. From his observatory

at Palermo, Sicily he made his first sighting on January 1,

1801. 

Although a priest, he adhered to the mythological con

vention and named the new body Ceres, after the tutelary

goddess of his native Sicily. She was a sister of Jupiter and

the goddess of grain (hence “cereal”) and agriculture.

This was the second planet to receive a feminine name

(Venus was the first, of course) and it set a fashion. Ceres

turned out to be a small body (485 miles in diameter), and



many more were found in the -gap between Mars and

Jupiter. For a hundred years, all the bodies so discovered

were given feminine names.

Three “planetoids” were discovered in addition to Ceres

over the next six years. Two were named Juno and Vesta

after Ceres’ two sisters. They were also the sisters of

Jupiter, of course, and Juno was his wife as well. The

remaining planetoid was named Pallas, one of the alternate

names for Athena, daughter of Zeus (Jupiter) and there fore

a niece of Ceres. (Two chemical elements discovered in that

decade were named “ceriunf’ and “paradiunf’ after Ceres

and Pallas.)

Later planetoids were named after a variety of minor

goddesses, such. as Hebe, the cupbearer of the gods, Iris,

their messenger, the various Muses, Graces, Horae,

nymphs, and so on. Eventually the list was pretty well

exhausted and planetoids began to receive trivial and

foolish names. We won’t bother with those.

New excitement came in 1846. The motions of Uranus

were slightly erratic, and from them the Frenchman Urbain

J. J. Leverrier and the Englishman John Couch Adams

calculated the position of a planet beyond Uranus, the grav

72 itational attraction of which would account for Uranus’s

anomalous motion. The planet was discovered in that

position.

Once again there was difficulty in the naniing. Bode’s

mythological family concept could not be carried on, for

Uranus was the first god to come out of chaos and had no

father. Some suggested the planet be named for Leverrier.

Wiser council prevailed. The new planet, rather greenish

in its appearance, was named Neptune after the god of the

sea.

(Leverrier also calculated the possible existence of a’

planet inside the orbit of Mercury and named it Vulcan,

after the god of fire and the forge, a natural reference to

the planet’s closeness to the central fire of the Solar



System. However, such a planet was never discovered and

undoubtedly does not exist.)

As soon as Neptune was- discovered, the English astron

omer William Lassell turned his telescope upon it and dis

covered a large satellite which he named Triton, ap

propriately enough, since Triton was a demigod of the sea

and a son of Neptune (Poseidon).

In 1851 Lassell discovered two more satellites of

Uranus, closer to the planet than Herschel’s Oberon and

Titania. Lassell, also English, decided to continue Her

schel’s English folklore bit. He turned to Alexander Pope’s

The Rape of the Lock, wherein were two elfish characters,

Ariel and Umbriel, and these names were given to the

satellites.

More satellites were turning up. Saturn was already

known to have seven satellites, and in 1848 the American

astronomer George P. Bond discovered an eighth; in 1898

the American astronomer William H. Pickering discovered a

ninth and completed the list. These were named Hy perion

and Phoebe after a Titan and Titaness. Pickering also

thought he had discovered a tenth in 1905, and named it

Themis, after another Titaness, but this proved to be

mistaken.

In 1877 the American astronomer Asaph Hall, waiting

for an unusually close approach of Mars, studied its sur 73

roundings carefully and discovered two tiny satellites,

which he named Phobos (“fear”) and Deimos (“teffor”), two

sons of Mars (Ares) in Greek legend, though obvi ously

mere personifications of the inevitable consequences of

Mars’s pastime of war.

In 1892 another American astronomer, Edward E.

Barnard, discovered a fifth satellite of Jupiter, closer

than the Galilean satellites. For a long time it received no

name, being called “Jupiter V” (the fifth to be discovered)

or “Barnard’s satellite.” Mythologically, however, it was

given the name Amalthea by the French astronomer



Camille Flammarion, and this is coming into more com mon

use. I am glad of this. Amalthea was the nurse of Jupiter

(Zeus) in his infancy, and it is pleasant to have the nurse of

his childhood closer to him than the various girl and boy

friends of his maturer years.

In the twentieth dentury,no less than seven more Jovian

satellites were discovered, all far out, all quite small, all

probably captured planetoids, all nameless. Unofficial

names have been proposed. Of these, the three planetoids

nearest Jupiter bear the names Hestia, Hera, and Demeter,

after the Greek names of the three sisters of Jupiter (Zeus).

Hera, of course, is his wife as well. Undeithe Roman

versions of the names (Vesta, Juno, and Ceres, respec

tively) all three are planetoids. The two farthest are Posei

don and Hades, the two brothers of Jupiter (Zeus). The

Roman version of Poseidon’s name (Neptune) is applied to

a planet. Of the remaining satellites, one is Pan, a grandson

of Jupiter (Zeus), and the other is Adrastea, another of the

nurses of his infancy.

The name of Jupitees (Zeus’s) wife, Hera, is thus applied

to a satellite much farther and smaller than those

commemorating four of his extracurricular affairs. I’m not

sure that this is right, but I imagine astronomers under

stand these things better than I do.

In 1898 the German astronomer G. Witt discovered an

unusual planetoid, one with an orbit that lay closer to the

Sun than did any other of the then-known planetoids. It

inched past Mars and came rather close to Earth’s orbit.

Not counting the Earth, this planetoid might be viewed

as passing between Mars and Venus and therefore Witt

gave it the name of Eros, the god of love, and the son of

Mars (Ares) and Venus (Aphrodite).

This started a new convention, that of giving planetoids

with odd orbits masculine names. For instance, the planet

oids that circle in Jupiter’s orbit all received the names of

masculine participants in the Trojan war: Achilles, Hector,



Patroclus, Ajax, Diomedes, Agamemnon, Priamus, Nestor,

Odysseus, Antilochus, Aeneas, Anchises, and Troilus.

A particularly interesting case arose in 1948, when the

German-American astronomer Walter Baade discovered a

planetoid that penetrated more closely to the Sun than

even Mercury did. He named it Icarus, after the mythical

character who flew too close to the Sun, so that the wax

holding the feathers of his artificial wings melted, with the

result that be fell to his death.

Two last satellites were discovered. In 1948 a Dutch

American astronomer, Gerard P. Kuiper, discovered an

innermost satellite of Uranus. Since Axiel (the next inner

most) is a character in William Shakespeare’s The Tem pest

as well as in Pope’s The Rape of the Lock, free asso ciation

led Kuiper to the heroine of The Tempest and he named the

new satellite Miranda.

In 1950 be discovered a second satellite of Neptune.

The first satellite, Triton, represents not only the name

of a particular demigod, but of a whole class of merman-

like demigods of the sea. Kuiper named the second, then,

after a whole class of mermaid-like nymphs of the sea,

Nereid.

Meanwhile, during the first decades of the twentieth

century, the American astronomer Percival Lowell was

searching for a ninth planet beyond Neptune. He died in

1916 without having succeeded but in 1930, from his ob

servatory and in his spirit, Clyde W. Tombaugh made the

discovery.

The new planet was named Pluto, after the god of the

Underworld, as was appropriate since it was the planet

farthest removed from the light of the Sun. (And in 1940,

when two elements were found beyond uranium, they were

named “neptunium!’ and “plutonium” after Neptune and

Pluto, the two planets beyond Uranus.)

Notice, though, that the first two letters of “Pluto,’ are

the initials of Percival Lowell. And so, ft0y, an astron omer



got his name attached to a planet. Where Herschel and

Leverrier had failed, Percival Lowell had succeeded, at

least by initial, and under cover of the mythological

conventions.



6. Round And Round And…

Any-one who writes a book on astronomy for the general

public eventually comes up against the problem of trying to

explain that the Moon always presents one face to the

earth, but is nevertheless rotating.

To the average reader who has not come up against this

problem before and who is inpatient with involved

subtleties, this is a clear contradiction in terms. It is easy to

accept the fact that the Moon always presents one face to

the Earth because even to the naked eye, the shadowy

blotches on the MooWs surface are always found in the

same position. But in that case it seems clear that the

Moon is not rotating, for if it were rotating we would, bit by

bit, see every portion of its surface.

Now it is no use sm.Uing gently at the lack of sophistica

tion of the average reader, because he happens to be right.

The Moon is not rotating with respect to the observer on

the Earth’s surface. When the astronomer says that the

Moon is rotating, he means with respect to other observers

altogether.

For instance, if one watches the Moon over a period of

time, one can see that the line marking off the sunlight

from the shadow progresses steadily around the Moon; the

Sun shines on every portion of the Moon in steady pro

gression. This means that to an observer on the surface of

the Sun (and there are very few of those), the Moon would

seem to be rotating, for the observer would, little by

little’see every portion of the Moon’s surface as it turned to

be exposed to the suiidight.

But our average reader may reason to himself as fol

lows: “I see only one face of the Moon and I say it is not

rotating. An observer on the Sun sees all parts of the Moon

and he says it is rotating. Clearly, I am more im portant

than the Sun observer since, firstly, I exist and be doesn’t,



and, secondly, even if he existed, I am me and he isn’t.

Therefore, I insist on having it my way. The Moon does not

rotate!”

There has to be a way out of this confusion, so let’s think

things through a little more systematically. And to do so,

let’s start with the rotation of the Earth itself, since that is

a point nearer to all our hearts.

One thing we can admit to begin with: To an observer on

the Earth,,the Earth is not rotating. If you stay in one place

from now till doomsday, you will see but one portion of the

Earth’s surface and no other. As far as you are concerned,

the planet is standing still. Indeed, through most of

civilized human history, even the wisest of men insisted

that “reality” (whatever that may be) exactly matched the

appearance and that the Earth “really” did not rotate. As

late as 1633, Galileo found himself in a spot of trouble for

maintaining otherwise.

But suppose we had an observer on a star situated (for

simplicity’s sake) in the plane of the EartWs equator; or, to

put it another way, on the celestial equator (see Chapter 3).

Let us further suppose that the observer was equipped with

a device that made it possible for Mm to study the Earth’s

surface in detail. To him, it would seem that the Earth

rotated, for little by little he would see every part of its

surface pass before his eyes. By taking note of some

particular small feature (for example, you and I standing on

some point on the equator) and timing its return, he could

even determine the exact period of the Earth’s rotation-that

is, as far as he is concerned.

We can duplicate his feat, for when the observer on the

star sees us exactly in the center of that part of Earth’s

surface visible to himself, we in turn see. the observer’s

star directly overhead. And just as he would time the

periodic return of ourselves to that centrally located

position, so we could time the return of his star to the

overhead point.



The period determined wiU be the same in either case.

(Let’s measure this time in minutes, by the way. A

minute can be defined as 60 seconds, where I second is

equal to 1/31,556,925.9747 of the tropical year.)

The period of Earth’s rotation with respect to the star is

just about 1436 minutes. It doesn’t matter which star we

use, for the apparent motion of the stars with respect to

one another, ii viewed from the Earth, is so vanishingly

small that the constellations can be considered as moving

all in one piece.

The period of 1436 minutes is called Earth’s “sidereal

day.” The word “sidereal” comes from a Latin word for

“star,” and the phrase therefore means, roughly speaking,

“the star-based day.”

Suppose, though, that we were considering an observer

on the Sun. If he were watching the Earth, he, too, would

observe it rotating, but the period of rotation would not

seem the same to him as to the observer on the star. Our

solar observer would be much closer to the Earth; close

enough, in fact, for Earth’s motion about the Sun to intro

duce a new factor. In the course of a single rotation of the

Earth (judging by the star’s observer), the Earth would

have moved an appreciable distance through space, and

the solar observer would find himself viewing the planet

from a different angle. The Earth would have to turn for

four more minutes before it adjusted itself to the new angle

of view.

We could interpret these results from the point of view

of an observer on the Earth. To duplicate the measure

ments of the solar observer, we on Earth would have to

measure the period of time from one passage of the Sun

overhead to the next (from noon to noon, in other words).

Because of the revolution of the Earth about the Sun,

the Sun seems to move from west to east against the back

ground of the stars. After the passage of one sidereal day, a

particular star would have returned to the overhead posi



tion, but the Sun would have drifted eastward to a point

where four more minutes would be required to make it pass

overhead. The solar day is therefore 1440 minutes long, 4 ‘

ates longer than the sidereal day.

Next, suppose we have an observer on the Moon. He is

even closer to the @h and the apparent motion of the Earth

against the stars is some thirteen times greater for him

than for an observer on the Sun. Therefore, the dis

crepancy between what he sees and what the star observer

sees is about thirteen times greater than is the Sun/star

discrepancy.

If we consi er this same si tion from t. ie Earth, we

would be measuring the time between successive passages

of the Moon exactly overhead. The Moon drifts eastward

against the starry background at thirteen times the rate the

Sun does. After one sidereal day is completed, we have to

wait a total of 54 additional minutes for the Moon to pass

overhead again. The Earth’s “lunar day” is therefore 1490

minutes long.

We could also figure out the periods of Earth’s rotation

with respect to an ob ‘server on Venus, on Jupiter, on

Halley’s Comet, on an artificial satellite, and so on, but I

shall have mercy and refrain. We can instead summarize

the little we do have as follows: sidereal day 1436 minutes

solar day 1440 minutes lunar day 1490 minutes By now it

may seem reasonable to ask: But which is the day? The real

day?

The answer to that question is that the question is not a

reasonable one at all, but quite unreasonable; and that

there is no real day, no real period of rotation. There are

only different apparent periods, the lengths of which de

pend upon the position of the observer. To use a prettier

sounding phrase, the length of the period of the Earth’s

rotation depends on the frame of reference, and all frames

of reference are equally valid.



But if all frames of reference are equally valid, are we

left nowhere?

Not at all! Frames of reference may be equally valid, but

they are usually not equally useful. In one respect, a

particular frame of reference may be most useful; in an

other respect, another frame of reference may be most

useful. We are free to pick and choose, using now one, now

another, exactly as suits our dear little hearts.

For instance, I said that the solar day is 1440 minutes

long but actually thafs a He. Because the Earth’s axis is

tipped to the plane of its orbit and because the Earth is

sometimes closer to the Sun and sometimes farther (so that

it moves now faster, now slower in its orbit), the solar day

is sometimes a little longer than 1440 minutes and

sometimes a little shorter. If you mark off “noons” that are

exactly 1440 minutes apart all through the year, there will

be times during the year when the Sun will pass over head

fully 16 minutes ahead of schedule, and other times when it

will pass overhead fully 16 minutes behind schedule.

Fortunately, the Fffors cancel out and by the end of the

year all is even agmn.

For that reason it is not the solar day itself that is 1440

minutes Ion amp; but the average length of all the solar

days of the year; this average is the “mean solar day.” And

at noon of all but four days a year, it is not the real Sun that

crosses the overhead point but a fictitious body called the

“mean Sun.” The mean Sun is located where the real Sun

would be if the real Sun moved perfectly evenly.

The lunar day is even more uneven than the solar day,

but the sidereal day is a really steady affair. A particular

star passes overhead every 1436 minutes virtually on the

dot.

If we7re going to measure time, then, it seems obvious

that the sidereal day is the most useful, since it is the most

constant. Where the sidereal day is used as the basis for

checking the clocks of the world by the passage of a star



across the hairline of a telescope eyepiece, then the Earth

itself, as it rotates with respect to the stars, is serving as

the reference clocl The second can then be defined as

1/1436.09 of a sidereal day. (Actually, the length of the year

is even more constant than that of the sidereal day, which

is why the second is now officially defined as a frac tion of

the tropical year.)

The solar day, uneven as it is, carries one important

advantage. It is based on the position of the Sun, and the

position of the Sun determines whether a particular por

tion of the Earth is in light or in shadow. In short, the solar

day is equal to one period of light (daytime) plus one period

of darkness (night). The average man through out history

has managed to remain unmoved by the posi tion of the

stars, and couldn’t have cared less when one of them

moved overhead; but he certainly couldn’t help noticing,

and even being deeply concerned, by the fact that it might

be day or night at a particular moment; surmise or sunset;

noon or twilight.

It is the solar day, therefore, which is by far the most

useful and important day of all. It was the original basis of

time measurement and it is divided into exactly 24 hours,

each of which is divided into 60 minutes (and 24 times 60 is

1440, the number of minutes in a solar day).

On this basis, the sidereal day is 23 hours 56 minutes

long and the lunar day is 24 hours 50 minutes long.

So useful is the solar day, in fact, that mankind has

become accustomed to thinking of it as the day, and of

thinking that the Earth “really” rotates in exactly 24 hours,

where actually this is only its apparent rotation with re

spect to the Sun, no more “real” or “unreal” than its ap

parent rotation with respect to any other body. It is no

more “real” or “unreal,” in fact, than the apparent rota tion

of the Earth with respect to an observer on the Earth - that

is, to the apparent lack of rotation altogether.



The lunar day has its uses, too. If we adjusted our

watches to lose 2 minutes 5 seconds every hour, it would

then be running on a lunar day basis. In that case, we

would find that high tide (or low tide) came exactly twice a

day and at the same times every day-indeed, at twelve hour

intervals (with minor variations).

And extremely useful is the frame of reference of the

Earth itself; to wit, the assumption that the Earth is not

rotating at all. In judging a billiard shot, in throwing a

baseball, in planning a trip cross-country, we never take

into account any rotation of the Earth. We always assume

the Earth is standing still.

Now we can pass on to the Moon. For the viewer from

the Earth, as I said earlier, it does not rotate at all so that

its “terrestrial day” is of infinite length. Nevertheless, we

can maintain that the Moon rotates if we shift our frame of

reference (-usually without warning or explana’ tion so that

the reader has trouble following). As a matter of fact, we

can shift our plane of reference to either the Sun or the

stars so that not only can the-Moon be con sidered to rotate

but to do so in either of two periods.

With respect to the stars, the period of the Moon’s rota

tion is 27 days, 7 hours, 43 minutes, 11.5 seconds, or

27.3217 days (where the day referred to is the 24-hour

mean solar day). This is the Moon’s sidereal day. It is also

the period (with respect to the stars) of its revolu tion

about the Earth, so it is almost invariably called the

“sidereal month.”

In one sidereal month, the Moon moves about 1/1.1 of

the length of its orbit about the Sun, and to an observer on

the Sun the change in angle of viewpoint is consider able.

The Moon must rotate for over two more days to make up

for it. The period of rotation of the Moon with respect to

the Sun is the same as its perio,d of revolution about the

Earth with respect to the Sun, and this may be called the

Moon’s solar day or, better still, the solar month. (As a



matter of fact, as I shall shortly point out, it is called

neither.) The solar month is 29 days, 12 hours, 44 minutes,

2.8 seconds long, or 29.5306 days long.

Of these two months, the solar month is far more useful

to mankind because the phases of the Moon depend on the

relative positions of Moon and -Sun. It is therefore 29-5306

days, or one solar month, from new Moon to new Moon, or

from full Moon to full Moon. In ancient times, when the

phases of the Moon were used to mark off the seasons, the

solar month became the most iinpor tant unit of time.

Indeed, great pains were taken to detect the exact day

on which successive new Moons appeared in order that the

calendar be accurately kept (see Chapter 1). It was the

place of the priestly caste to take care of this, and the very

word “calendar,” for instance, comes from the Latin word

meaning “to proclaim,” because the beginning of each

month was proclaimed with much ceremony. An assembly

of priestly officials, such as those that, in ancient times,

might have proclaimed the beginning of each month, is

called a “synod.” Consequently, what I have been calling

the solar month (the logical name) is, actually, called the

synodic month.”

The farther a planet is from the Sun and the faster it

turns with respect to the stars, the smaller the discrepancy

between its sidereal day and solar day. For the planets

beyond Earth, the discrepancy can be ignored.

For the two planets closer to the Sun than the Earth the

discrepancy is very great. Both Mercury and Venus turn

one face eternally to the Sun and have no solar day. They

turn with respect to the stars, however, and have a sidereal

day which @ out to be as long as the period of their

revolution about the Sun (again with respect to the stars).

If the various true satellites of the Solar System (see

Chapter 7) keep one face to their primaries at all times, as

is very likely true, their sidereal day would be equal to their

period of revolution about their primary.



If this is so I can prepare a table (not quite like any I

have ever seen) listing the sidereal period of rotation for

each of the 32 major bodies of the Solar System: the Sun,

the Earth, the eight other planets (even Pluto, which has a

rotation figure, albeit an uncertain one), the Moon, and the

21 other true satellites. For the sake of direct corn parison

I’ll give the period in minutes and list them in the order of

length. After each satellite I shall put the name of the

primary in parentheses and give a number to represent the

position of that satellite, counting outward from the

primary.

Sidereal Day

Body (minutes)

Venus 324,000

Mercury 129,000

Iapetus (Satum-8) 104,000

Moon (Earth-1) 39,300

Sun 35,060

Hyperion (Saturn-7) 30,600

Callisto (Jupiter-5) 24,000

Titan (Satum-6) 23,000

Oberon (Uranus-5) 19,400

Titania (Uranus-4) 12,550

Ganymede (Jupiter-4) 10,300

Pluto 8650

Triton (Neptune-1)

Rhea (Saturn-5) 6500

Umbriel (Uranus-3) 5950

Europa (Jupiter-3) 5100

Dione (Satum-4) 3950

Ariel (Uranus-2) 3630

Tethys (Saturn-3) 2720 lo (Jupiter-2) 2550

Miranda (Uranus-1) 2030

Enceladus (Saturn-2) 1975

Deimos (Mars-2) 1815

Mars 1477



Earth 1436

Mimas (Satum-1) 1350

Neptune 948

Amaltheia (Jupiter-1) 720

Uranus 645

Saturn 614

Jupiter 590

Phobos 460

These figures-represent the time it takes for stars to

make a complete circuit of the skies from the frame of

reference of an observer on the surface of the body in

question. If you divide each figure by 720, you get the

number of minutes it would take a star (in the region of the

body’s celestial equator) to travel the width of the Sun or

Moon as seen from the Earth.

On Earth itself, this takes about 2 minutes and no more,

believe it or not. On Phobos (Mars’s inner satellite), it takes

only a little over half a minute. The stars will be whirling by

at four times their customary rate, while a bloated Mars

hangs motionless in the sky. What a sight that would be to

see.

On the Moon, on the other hand, it would take 55

minutes for a star to cover the apparent width of the Sun.

Heavenly bodies could be studied over continuous

sustained intervals nearly thirty times as long as is possible

on the Earth. I have never seen this mentioned as an

advantage for a Moon-based telescope, but, combined with

the absence of clouds or other atmospheric, interference, it

makes a lunar observatory something for which astron

omers ought to be willing to undergo rocket trips.

On Venus, it would take 450 minutes or 7’h hours for a

star to travel the apparent width of the Sun as we see it.

What a fix astronomers could get on the heavens there - if

only there were no clouds.



7. Just Mooning Around

Almost every book on astronomy I have ever seen, large

or small, contains a little table of the Solar System. For

each planet, there’s given its diameter, its distance from

the sun, its time of rotation, its albedo, its density, the

number of its moons, and so on.

Since I am morbidly fascinated by numbers, I jump on

such tables with the perennial hope of finding new items of

information. Occasionally, I am rewarded with such things

as surface temperature or orbital velocity, but I never really

get enough.

So every once in a while’ when the ingenuity-circuits in

my brain are purring along with reasonable smoothness, I

deduce new types of data for myself out of the material on

band, and while away some idle hours. (At least I did this in

the long-gone days when I had idle hours.)

I can still do it, however, provided I put the results into

formal essay-form; so come join me and we will just moon

around together in this fashion, and see what turns up.

Let’s begin this way, for instance…

According to Newton, every object in the universe

attracts every other object in the universe with a force (i)

that is proportional to the product of the masses (ml and

M2) of the two objects divided by the square of the distance

(d) between them, center to center. We multiply by the

gravitational constant (g) to convert the propor tionality to

an equality, and we have-. f = 9MIM2 (Equation 1) d2

This means, for instance, that there is an attraction be

tween the Earth and the Sun, and also between the Earth

and the Moon, and between the Earth and each of the

various planets and, for that matter, between the Earth and

any meteorite or piece of cosmic dust in the heavens.

Fortunately, the Sun is so overwhelmingly massive corn

‘Pared with everything else in the Solar System that in



calculating the orbit of the Earth, or of any other planet, an

excellent first approximation is attained if only the planet

and the Sun are considered, as though they were alone in

the Universe. The effect of other bodies can be calculated

later for relatively minor refinements.

In the same way, the orbit of a satellite can be worked

out first by supposing that it is alone in the Universe with

its primary.

It is at this point that something interests me. If the Sun

is so much more massive than any planet, shouldwt it exert

a considerable attraction on the satellite even though it is

at a much greater distance from that satellite than the

primary is? If so, just how considerable is “considerable”?

To put it another way, suppose we picture a tug of war

going on for each satellite, with its planet on one side of the

gravitational rope and the Sun on the other. In this tug of

war, how well is the Sun doing?

I suppose astronomers have calculated such things, but I

have never seen the results reported in any astronomy text,

or the subject even discussed, so I’ll de it for myself.

Here’s how we can go about it. Let us call the mass of a

satellite m, the mass of its primary (by which, by the way, I

mean the planet it circles) m,, and the mass of the Sun m..

The distance from the satellite to its primary will be d, and

the distance from the satellite to the Sun will be d.. The

gravitational force between the satellite and its primary

would be J, and that between the satellite and the Sun

would be fg-and that’s the whole business. I promise to use

no other symbols in this chapter.

From Equation 1, we can say that the force of attraction

between a satellite and its primary would be:

fp = gmmp (Equation 2) while that between the same

satellite and the Sun would be: gmm f,, = ds2 (Equation 3)

What we are interested in is how the gravitational force

between satellite and primary compares with that between

satellite and Sun. In other words we want the ratio which



we can call the “tug-of-war value.” To get that we must

divide equation 2 by equation 3. The result of such a

division would be: fl,/f. = (M,/M.) (d./d,) 2 (Equation 4)

In making the division, a number of simplications have

taken place. For one thing the gravitational constant has

dropped out, which means we won’t have to bother with an

inconveniently small number and some inconvenient units.

For another, the mass of the satellite has dropped out. (In

other words, in obtaining the tug-of-war value, it doesn’t

matter how big or little a particular satellite is.

The result would be the same in any case.)

What we need for the tug-of-war value is the ratio of the

mass of the planet to that of the sun (mlm,,) and the square

of the ratio of the distance from satellite to Sun to the

distance from satellite to primary (dld,)2.

There are only six planets that have satellites and these,

in order of decreasing distance from the Sun, -are: Nep

tune, Uranus, Saturn, Jupiter, Mars, and Earth. (I place

Earth at the end, instead of at the beginning, as natural

chauvinism would dictate, for my own reasons. YouR find

out.)

For these, we will first calculate the mass-ratio and the

results turn out as follows:

Neptune 0.000052

Uranus 0.000044

Saturn 0.00028

Jupiter 0.00095

Mars 0.00000033

Earth 0.0000030

As you see, the mass ratio is really heavily in favor of the

Sun. Even Jupiter, which is by far the most massive planet,

is not quite one-thousandth as massive as the Sun.

In fact, all the planets together (plus satellites,

planetoids, comets, and meteoric matter) make up, no more

than 1/750 of the mass of the Sun.

So far, then, the tug of war is all on the side of the Sun.



However, we must next get the distance ratio, and that

favors the planet heavily, for each satellite is, of course, far

closer to its primary than it is to the Sun. And what’s more,

this favorable (for the planet) ratio must be squared,

making it even more favorable, so that in the end we can be

reasonably sure that the Sun will lose out in the tug of war.

But we’ll check, anyway.

Let’s take Neptune first. It has two satellites, Triton and

Nereid. The average distance of each of these from the Sun

is, of necessity, precisely the same as the average dis tance

of Neptune from the Sun, which is 2,797,000,000 miles.

The average distance of Triton from Neptune is, however

only 220,000 miles, while the average distance of Nerei@

from Neptune is 3,460,000 miles.

If we divide the distance from the Sun by the distance

frbm Neptune for each satellite and square the result we

get 162,000,000 for Triton and 655,000 for Nereid. We

multiply each of these figures by the mass-ratio of Neptune

to the Sun, and that gives us the tug-of-war value, which is:

Triton 8400

Nereid 34

The conditions differ markedly for the two satellites.

The gravitational influence of Neptune on its nearer

satel lite, Triton, is overwhelmingly greater than the

influence of the Sun on the same satellite. Triton is @y in

Nep tune’s grip. The outer satellite, Nereid, however, is at

tracted by Neptune considerably, but not overwhelmingly,

more strongly than by the Sun. Furthermore, Nereid has a

highly eccentric orbit, the most eccentric of any satellite in

the system. It approaches to within 800,000 miles of

Neptune at one end of its orbit and recedes to as far as 6

million miles at the other end. When most distant from

Neptune, Nereid experiences a tug-of-war value as low as

For a variety of reasons (the eccentricity of Nereid’s orbit,

for one thing) astronomers generally suppose that Nereid is



not a true satellite of Neptune, but a planetoid captured by

Neptm on the occasion of a too-close ap, proach.

Neptune’s weak hold on Nereid certainly seems to sup

port this. In fact, from the long astronomic view, the asso

ciation between Neptune and Nereid may be a temporary

one. Perhaps the disturbing effect of the solar pull will

eventually snatch it out of Neptune’s grip. Triton, on the

other hand, will never leave Neptune’s company short of

some catastrophe on tL System-wide scale.

There’s no point in going through all the details of the

calculations for all the satellites. I’ll do the work on my own

and feed you the results. Uranus, for instance, has five

known satellites, all revolving in the plane of Uranus’s

equator and all considered true satellites by astronomers.

Reading outward from the planet, they are: Miranda,

Ariel, UmbrieL Titania, and Oberon.

The tug-of-war values for these satellites are:

Miranda 24,600

Ariel 9850

Umbriel 4750

Titania 1750

Oberon 1050

All are safely and overwhelming in Uranus’s grip, and

the high of-war values fit Vith their status as true satellites.

We pass on, then, to Saturn, which has nine satellites:

Mimas, Enceladus, Tethys, Dione, Rhea, Titan, Hyperion,

,Iapetus, and Phoebe. Of these, the eight innermost revolve

in the plane of Satum’s equator and are considered true

satellites. Phoebe, the ninth, has a highly inclined orbit and

is considered a captured planetoid.

The tug-of-war values for these satellites are:

Mimas 1 15,500

Enceladus 9800

Tethys 6400

Dione 4150

Rhea 2000



Titan 380

Hyperion 260

Iapetus 45

Phoebe 31/2

Note the low value for Phoebe.

Jupiter has twelve satellites and I’ll take them in two

installments. The first five: Amaltheia, lo, Europa, Gany

mede, and Callisto all revolve in the plane of Jupiter’s

equator and all are considered true satellites. The tug-o

amp; war values for these are:

Amaltheia 18,200 lo 3260

Europa 1260

Ganymede 490

Callisto 160 and all are clearly in Jupiter’s grip.

Jupiter, however, has seven more satellites which have

no official names (see Chapter 5), and which are com monly

known by Roman numerals (from VI to XII) given in the

order of their discovery. In order of distance from Jupiter,

they are VI ‘X, VII, XII, XI, VIII, and IX. All are small and

with orbits that are eccentric and highly inclined to the

plane of Jupitet’s equator. Astronomers consider them

captured planetoids. (Jupiter is far more massive than the

other planets and is nearer the planetoid belt, so it is not

surprising that it would capture seven planetoids.)

The tug-of-war results for these seven certainly bear out

the captured planetoid notion, for the values are:

VI 4.4 x 4.3 vii 4.2 xii 1.3 xi 1.2

Vill 1.03 ix 1.03

Jupitees grip on these outer satellites is feeble indeed.

Mars has two satellites, Phobos and Deimos, each tiny

and very close to Mars. They rotate in the plane of Mars’s

equator, and are considered true satellites. The tug-of-war

values are:

Phobos 195

Deimos 32



So far I have fisted 30 satellites, of which 21 are con

sidered true satellites and 9 are usually tabbed as (prob

ably) captured planetoids. I would like, for the moment, to

leave out of consideration the 31st satellite, which hap

pens to be our own Moon (I’ll get back to it, I promise) and

summarize the 30 as follows:

Number of Satellites Planet true captured

Neptune I I

Uranus 5 0

Saturn 8 1

Jupiter 5 7

Mars 2 0

It is unlikely that any additional true satellites will be

discovered (though, to be sure, Miranda was discovered as

recently as 1948). However, any number of tiny bodies

coming under the classification of captured planetoids may

yet tum up, particularly once we go out there and actually

look.

But now let’s analyze this list in terms of tug-of-war

values. Among the true satellites the lowest tug-of-war

value is that of Deimos, 32. On the other hand, among the

nine satellites listed as captured, the highest tug-of-war

value is that of Nereid with an average of 34.

Let us accept this state of affairs and assume that the

tug-of-war figure 30 is a reasonable mibimum for a true

satellite and that any satellite with a lower figure is, in all

likelihood, a captured and probably temporary member of

the planet’s family.

Knowing the mass of a planet and its distance from the

Sun, we can calculate the distance from the planet’s

center at which this tug-of-war value will be found. We can

use

Equation 4 for the purpose, setting flf, equal to 30, put

ting in the known values for m,, m,, and d,, and then

solving for d,. That will be the maximum distance at which

we can expect to find a true satellite. The only planet that



can’t be handled in this way is Pluto, for which the value of

m, is very uncertain, but I omit Pluto cheer fully.

We can also set a minimum distance at which we can

expect a true satellite; or, at least, a true satellite in the

usual form. It has been calculated that if a true satellite is

closer to its primary than a certain distance, tidal forces

will break it up into fragments. Conversely, if fragments

already exist at such a distance, they will not coalesce into

a single body. This limit of distance is called the “Roche

limit” and is named for the astronomer E. Roche, who

worked it out in 1849. The Roche limit is a distance from a

planetary center equal to 2.44 times the planet’s radius.

So’ sparing you the actual calculations, here are the

results for the four outer planets:

Distance of True Satellite

(miles from the center of the primary)

Planet maximum minimum

(tug-of-war = 30) (Roche limit)

Neptune 3,700,000 38,000

Uranus 2,200,000 39,000

Saturn 2,700,000 87,000

Jupiter 2,700,000 106,000

As you see, each of these outer planets, with huge

masses and far distant from the competing Sun, has ample

room for large and complicated satellite systems within

these generous limits, and the 21 true satellites all fall

within them.

Saturn does possess something within Roche’s limit-its

ring system. The outermost edge of the ring system

stretches out to a distance of 85,000 miles from the

planet’s center. Obviously the material in the rings could

have been collected into a true satellite if it had not been so

near Saturn.

The ring system is unique as far as visible planets are

concerned, but of course the only planets we can see are

those of our own Solar System. Even of these, the only ones



we can reasonably consider in connection with satel lites

(I’ll explain why in a moment) are the four large ones.

Of these, Saturn has a ring system and Jupiter just

barely misses one. Its innermost satellite, Amaltheia, is

about 110,000 miles from the planet’s center, with the

Roche limit at 106,000 miles. A few thousand miles in

ward and Jupiter would have rings. I would like to make the

suggestion therefore that once we reach outward to

explore other stellar systems we will discover (probably to

our initial amazement) that about half the large planets we

find will be equipped with rings after the fashion of Saturn.

Next we can try to do the same thing for the inner

planets. Since the inner planets are, one and all, much less

massive than the outer ones and much closer to the com

peting Sun, we might guess that the range of distances

open to true satellite formation would be more limited, and

we would be right. Here are the actual figures as I have

calculated them.

Distance of True Satellite Planet maximum minimum

(miles from the center (tug-of-war = 30)

of the primary) (Roche limit)

Mars  15,000  5150

Earth  29,000  9600

Venus  19,000  9200

Mercury  1300  3800

Thus, you see, where each of the outer planets has a

range of two million miles or more within which true satel

lites could form, the situation is far more restricted for the

inner planets. Mars and Venus have a permissible range of

but 10,000 miles. Earth does a little better, with 20,000

miles.

Mercury is the most interesting case. The maximum dis

tance at which it can expect to form a natural satellite

against the overwhelming competition of the nearby Sun is

well within the Roche limit. It follows from that, if my

reasomng is correct, that Mercury cannot have a true satel



lite, and that anything more than a possible spattering of

gravel is not to be expected.

In actual truth, no satellite has been located for Mercury

but, as far as I know, nobody has endeavored to present a

reason for, this or treat it as anything other than an

empirical fact. If any Gentle Reader, with a greater knowl

edge of astronomic detail than myself, will write to tell me

that I have been anticipated in this, and by whom, I Will try

to take the news philosophically. At the very least, I will

confine my kicking and screaming to the privacy of my

study.

Venus, Earth, ‘and Mars are better off than Mercury and

do have a little room for true satellites beyond the Roche

limit. It is not much room, however, and the chances of

gathering enough material over so small a volume of space

to make anything but a very tiny satellite is minute.

And, as it happens, neither Venus nor Earth has any

satellite at all (barring possible minute chunks of gravel)

within the indicated limits, and Mars has two small

satel.Iites, one perhaps 12 miles across and the other 6,

which scarcely deserve the name.

It is amazing, and very gratifying to me, to note how all

this makes such delightful sense, and how well I can reason

out the details of the satellite systems of the various

planets. It is such a shame that one small thing remains

unaccounted for; one trifling thing I have ignored so far,

but WHAT IN BLAZES IS OUR OWN MOON DOING WAY

OUT THERE?

It’s too far out to be a true satellite of the Earth, if we go

by my beautiful chain of reasoning-which is too beau tiful

for me to abandon. It’s too big to have been cap tured by

the Earth. The chances of such a capture having been

effected and the Moon then having taken up a nearly

circular orbit about the Earth are too small to make such

an eventuality credible.

There are theories, of course, to the effect that the



Moon was once much closer to the Earth (within my per

mitted limits for a true satellite) and then gradually moved

away as a result of tidal action. Well, I have an objection to

that. If the Moon were a true satellite that originally had

circled Earth at a distance of, say, 20,000 miles, it would

almost certainly be orbiting in the plane of Earth’s equator

and it isn’t.

But, then, if the Moon is neither a true satellite of the

Earth nor a captured one, what is it? This may surprise

you, but I have an answer; and to explain what that an swer

is, let’s get back to my tug-of-war determinations.

There is, after all, one satellite for which I have not cal

culated it, and that is our Moon. We’ll do that now.

The average distance of the Moon from the Earth is

237,000 miles, and the average distance of the Moon from

the Sun is 93,000,000 miles. The ratio of the Moon-Sun

distance to the Moon-Earth distance is 392. Squaring that

gives us 154,000. The ratio of the mass of the Earth to that

of the Sun was given earlier in the chapter and is

0.0000030. Multiplying this figure by 154,000 gives us the

tug-of-war value, which comes out to: Moon 0.46

The Moon, in other words, is unique among the satel

lites of the Solar System in that its primary (us) loses the

tug of war with the Sun. The Sun attracts the Moon twice

as strongly as the Earth does.

We might look upon the Moon, then, as neither a true

satellite of the Earth nor a captured one, but as a planet in

its own right, moving about the Sun in careful step with the

Earth. To be sure, from within the Earth-Moon sys tem, the

simplest way of picturing the situation is to have the Moon

revolve about the Earth; but if you were to draw a picture

of the orbits of the Earth and Moon about the Sun exactly

to scale, you would see that the Moon’s orbit is everywhere

concave toward the Sun. It is always

“falling” toward the Sun. All the other satellites, without

exception, “fall” away from the Sun through part of their



orbits, caught as they are by the superior puR of their

pri.rnary-but not the Moon.

And consider this-the Moon does not revolve about the

Earth in the plane of Earth’s equator, as would be ex

pected of a true satellite. Rather it revolves about the Earth

in a plane quite close to that of the ecliptic; that is, to the

plane in which the planets, generally, rotate about the Sun.

This is just what would be expected of a planet!

Is it possible then, that there is an intermediate point

between the situation of a massive planet far distant from

the Sun, which, develops about a single core, with numer

ous satellites formed, and that of a small planet near the

Sun which develops about a single core with no satellites?

Can there be a boundary condition, so to speak, in which

there is condensation about two major cores so that a

double planet is formed?

Maybe Earth just hit the edge of the permissible mass

and distance; a little too small, a little too close. Perhaps if

it were better situated the two halves of the double planct

would have been more of a size. Perhaps both might have

bad atmospheres and oceans and-life. Perhaps in other

stellar systems with a double planet, a greater equal ity is

more usual.

What a shame if we have missed that

Or, maybe (who knows), what luck!



8. First And Rearmost

When I was in junior high school I used to amuse myself

by swinging on the rings in gym. (I was lighter then, and

more foolhardy.) On one occasion I grew weary of the

exercise, so at the end of one swing I let go.

It was my feeling at the time, as I distinctly remember,

that I would continue my semicircular path and go swoop

ing upward until gravity took hold; and that I would then

come down light as gossamer, landing on my toes after a

perfect entrechat.

That is not the way it happened. My path followed nearly

a straight line, tangent to the semicircle of swing at the

point at which I let go. I landed good and hard on one side..

After my head cleared, I stood up* and to this day that is

the hardest fall I have ever taken.

I might have drawn a great deal of intellectual good out

of this incident. I might have pondered on the effects of

inertia; puzzled out methods of sumn-ting vectors; or de

duced some facts about differential calculus.

However, I will be frank with you. What really im

pressed itself upon me was the fact that the force of gravity

was both mighty and dangerous and that if you weren’t

watching every minute, it would clobber you.

Presumably, I had learned that, somewhat less dras

tically, early in life; and presumably, every human being

who ever got onto his hind legs at the age of a year or less

and promptly toppled, learned the same fact.

People react oddly. After I stood up, I completely ignored

my badly sprained (and possibly broken, though it later

turned out not to be) right wrist imd lifted my untouched

left wrist to my ear.

What worried me was whether my wristwatch were still

running.



In fact, I have been told that infants have an instinctive

fear of falling, and that this arose out of the survival value

of having such an instinctive fear during the tree-living

aeons of our simian ancestry.

We can say, then, that gravitational force is the first

force with which each individual human being comes in

contact. Nor can we ever manage to forget its existenc6,

since it must be battled at every step, breath, and heart

beat. Never for one moment must we cease exerting a

counterforce.

It is also comforting that this mighty and overwhelming

force protects us at all times. It holds us to our planet and

doesn’t allow us to shoot off into space. It holds our air and

water to the planet too, for our perpetual use. And it holds

the Earth itself in its orbit about the Sun, so that we always

get the light and warmth we need.

What with all this, it generally comes as a rather sur

prising shock to many people to learn that gravitation is not

the strongest force in the universe. Suppose, for in stance,

we compare it with the electromagnetic force that allows a

magnet to attract iron or a proton to attract an electron.

(The electromagnetic force also exhibits repul sion, which

gravitational force does not, but that is a detail that need

not distress us at this moment.)

How can we go about comparing the relative strengths

of the electromagnetic force and the gravitational force? .

Let’s begin by considering two objects alone in the uni

verse. The gravitational force between them, as was dis

covered by Newton, can be expressed by the following

equation (see also Chapter 7):

Gmr amp;

Fg = (Equation 1) d2 where F, is the gravitational force

between the objects; m is the mass of one object; the mass

of the other; d the distance between them; and G a

universal “gravitational constant.”



We must be careful about our units of measurement. If

we measure mass in grams, distance in centimeters, and G

in somewhat more complicated units, we will end up by

determining the gravitational force in something called

“dynes.” (Before I’m through this chapter, the dynes will

cancel out, so we need not, for present purposes, consider

the dyne anything more than a one-syllable noise. It will be

explained, however, in Chapter 13.)

Now let’s get to work. The value of G is fixed (as far ,as

we know) everywhere in the universe. Its value in the units

I am using is 6.67 x 10-8. If you prefer long zero riddled

decimals to exponential figures, you can express

G as 0.0000000667.

Let’s suppose, next, that we are considering two objects

of identical mass. This means that m = m’. so that mm’

becomes mm, or M2. Furthermore, let’s suppose the parti

cles to be exactly I centimeter apart, center to center. In

that case d = 1, and d2 = 1 also. Therefore, Equation 1

simplifies to the following:

F, = 0.0000000667 m2 (Equation 2)

We can now proceed to the electromagnetic force, which

we can symbolize as F,.

Exactly one hundred years after Newton worked out the

equation for gravitational forces, the French physicist

Charles Augustin de Coulomb (1736-1806) was able’to

show that a very similar equation could be used to deter

mine the electromagnetic force between two electrically

charged objects.

— Let us suppose, then, that the two objects for which

we have been trying to calculate gravitational forces also

carry electric charges, so that they also experience an

electro magnetic force. In order to make sure that the

electromag netic force is an attracting one and is therefore

directly comparable to the gravitational force, let us

suppose that one object carries a positive electric charge

and the other a negative one. (The principle would remain



even if we used like electric charges and measured the

force of clec tromagnetic repulsion, but why introduce

distractions?)

According to Coulomb, the electromagnetic force be 102

tween the two objects would be expressed by the foflo ‘

wmg equation:

F. (Equation 3) d2 where q is the charge on one object,

q’ on the other, and d is the distance between them.

If we let distance be measured in centimeters and elec

tric charge in units called “electrostatic units” (usually

abbreviated “esu7’), it is not necessary to insert a term

analogous to the gravitational constant, provided the ob

jects are separated by a vacuum. And, of course, since I

started by assuming the objects were alone in the universe,

there is necessarily a vacuunf between them.

Furthermore, if we use the units just mentioned, the

value of the electromagnetic force will come out in dynes.

But lefs simplify matters by supposing that the positive

electric charge on one object is exactly equal to the nega

tive electric charge on the other, so that q = q,* which

means that the objects . qq = qq = q2. Again, we can allow

to be separated by just one centimeter, center to center, so

that d2 = 1. Consequently, Equation 3 becomes:

Fe = q2 (Equation 4)

Let’s summarize. We have two objects separated by one

centimeter, center to center, each object possessing identi

cal charge (positive in one case and negative in the other)

and identical mass (no qualifications). There is both a

gravitational and an electromagnetic attraction, between

them.

The next problem is to determine how much stronger

the electromagnetic force is than the gravitational force (or

how much weaker, if that is how it turns out). To do * We

could make one of them negative to allow for the fact that

one object carries a negative electric charge. Then we

could say that a negative value for- the electromagnetic



force implies an attraction and a positive value a repulsion.

However, for our pur poses, none of this folderol is needed.

Since electromagnetic at traction and repulsion are but

opposite manifestations of the same phenomenon, we shall

ignore signs.

this we must determine the ratio of the forces by

dividing

(let us say) Equation 4 by Equation 2. The result is:

F, q2 (Equation 5) 

F, 0.0000000667 M2

A decimal is an inconvenient thing to have in a denomi

nator, but we can move it up into the numerator by taking

its reciprocal (that is, by dividing it into 1). Since 1 di vided

by 0.0000000667 is equal to 1.5 x 101, or 15,000, 000, we

can rewrite Equation 5 as:

F, _ 15,000,000 q2 (Equation 6)

Fg m2 or, still more simply, as:

F,. = 15,000,000 (VM)2 (Equat;on 7)

Since both F, and F, are measured in dynes, then in

taking the ratio we find we are dividing dynes by dynes.

The units, therefore, cancel out, and we are left with a

“pure number.” We are going to find, in other words, that

one force is stronger than the other by a fixed amount; an

amount that will be the same whatever units we use or

whatever units an intelligent entity on the fifth planet of

the star Fomalhaut wants to use. We will have, therefore, a

universal constant.

In order to determine the ratio 0 the two es, we see from

Equation 7 that we must first determine the value of qlm;

that is, the charge of an object divided by its mass. Let’s

consider charge first.

AJI objects are made up of subatomic particles of a

number of varieties. These particles fall into exactly three

classes, however, with respect to electric charge:



1) Class A are those particles which, like the neutron

and the neutrino, have no charge at all. Their charge is 0.

2) Class B are those particles which, like the proton and

the positron, carry a positive electric charge. But all

particles which carry a positive electric charge invariably

carry the same quantity of positive electric charge what

ever their differences in other respects (at least as far as

we know). Their charge can therefore be specified as +I.

3) Class C are those particles which, like the electron

and the anti-proton, carry a negative electric charge.

Again, this charge is always the same in quantity. Their

charge is - 1.

You see, then, that an object of any size can have a net

electric charge of zero, provided it happens to be made up

of neutral particles and/or equal numbers of positive and

negative particles.

For such an object q = 0, and no matter how large its

mass, the value of qlm is also zero. For such bodies,

Equation 7 tells us, FIF, is zero. The gravitational force is

never zero (as long as the objects have any mass at all) and

it is, therefore, under these conditions, infinitely stronger

than the electromagnetic force and need be the only one

considered.

This is just about the case for actual bodies. The over all

net charge of the Earth and the Sun is virtually zero, and in

plotting the EartWs orbit it is only necessary to con sider

the gravitational attraction between the two bodies.

Still, the case where F. = 0 and, therefore, FIF,, = 0 is

clearly only one extreme of the situation and not a par

ticularly interesting one. What about the other extreme?

Instead of an object with no charge, what about an

object with maximum charge?

If we are going to make charge maximum, let’s first

eliminate neutral particles which add mass without charge.

Let’s suppose, instead, that we have a piece of matter

com posed exclusively of charged particles. Naturally it is



of no use to include charged particles of both varieties,

since then one ” of charge would cancel the other and total

charge would be less than maximum.

We will want one object then, composed exclusively of

positively charged particles- and another exclusively of

negatively charged particles. We can’t possibly do better

than that as a general thing.

And yet while all the charged particles have identical

charges of either + 1 or - 1, as the case may be, they pos

sess different masses. What we want are charged particles

of, the smallest possible mass. In that case the largest pos

sible individual charge is hung upon the smallest possible

mass, and the ratio qlm is at a maximum.

It so happens that the negatively charged particle of

smallest mass is the electron and the positively charged

particle of smallest mass is the positron. For those bodies,

the ratio qltn is greater than for any other known object

(nor have we any reason, as yet, for suspecting that any

object of higher qlm remains to be discovered).

Suppose, then, we start with two bodies, one of which

contains a certain number of electrons and the other the

same number of positrons. There will be a certain electro

magnetic force between them and also a certain gravi

tational force.

If you triple the number of electrons in the first body

and triple the number of positrons in the other, the total

charge triples for each body and the total electromagnetic

force, therefore, becomes 3 times 3, or 9 times greater.

However, the total mass also triples for each bod and the

y total gravitational force also becomes 3 times 3, or 9

times greater. While each force increases, they do so to an

equal extent, and the ratio of the two remains the same.

In fact the ratio of the two forces remains the same,

even if the charge and/or mass on one body is not equal to

the charge and/or mass on the other; or if the charge



and/or mass of one body is changed by an amount different

from the charge in the other.

Since we are concerned only with the ratio of the two

forces, the electromagnetic and the gravitational, and since

this remains the same, however much the number of

electrons in one body and the number of positrons in the

other are changed, why bother with any but the simplest

possible number-one?

In other words, let’s consider a Single electron and a

simple positron separated by exactly I centimeter. This

system will give us the maximum value’for the ratio of

electromagnetic force to gravitational force.

It so happens that the electron and the positron have

equal masses. That mass, in grams (which are the mass

units we are using in this calculation) is 9.1 X 10-28 or, if

you prefer, 0.00000000000000000000000000091.

The electric charge of the electron is equal to that of the

positron (though different in sign). In electrostatic units

(the charge-units being used in this calculation), the value

is 4.8 x 10-111, or 0.00000000048.

To get the value qlm for the electron (or the positron) we

must divide the charge by the mass. If we divide 4.8 x 10-

10 by 9.1 X 10-28, we get the answer 5.3 x 1017 or

530,000,000,000,000,000.

But, as Equation 7 tells us, we must square the ratio

qlm. We multiply 5.3 x 1017 by itself and obtain for (qlm)2

the value of 2.8 x 101,1, or 280,000,000,000,000,

000,000,000,000,000,000,000.

Again, consulting Equation 7, we find we must multiply

this number by 15,000,000, and then we finally have the

ratio we are looking for. Carrying through this multiplica

tion gives us 4.2 x 1042, or 4,200,000,000,000,000,000,

000,000,000,000,000,000,000,000.

We can come to the conclusion, then, that the electro

magnetic force is, under the most favorable conditions,



over four million trillion trillion trillion times as strong as

the gravitational force.

To be sure, under normal conditions there are no elec

tron/positron systems in our surroundings, for positron

virtually do not exist. Instead our universe (as far as we

know) is held together electromagnetically by electron/

proton attractions. The proton is 1836 times as massive as

the electron, so that the gravitational attraction is

increased without a concomitant increase in

electromagnetic attrac tion. In this case the ratio F,IF, is

only 2.3 x 10il”.

There are two other major forces in the physical world.

There is the nuclear strong interaction force which is

over a hundred times as strong as even the electromagnetic

force; and the nuclear weak interaction force, which is

considerably weaker than the electromagnetic force. All

three, however, are far, far strcinger than the gravitational

force.

In fact, the force of gravity-though it is the first force

with which we are acquainted, and though it is always with

us, and though it is the one with a strength we most

thoroughly appreciate-is by far the weakest known force in

nature. It is first and rearmost!

What makes the gravitational force seem so strong?

First, the two nuclear forces;ire short-range forces

which make themselves felt only over distances about the

width of an atomic nucleus. The electromagnetic force and

the gravitational force are the only two long-range forces.

Of these, the electromagnetic force cancels itself out

(with slight and temporary local exceptions) because both

an attraction and a repulsion exist.

This leaves gravitational force alone in the field.

What’s more, the most conspicuous bodies in the uni

verse happen to be conglomerations of vast mass, and we

live on the surface of one of these conglomerations.



Even so, there are hints that give away the real weak

ness of gravitational force. Your weak muscle can lift a fifty-

pound weight with the whole mass of the earth pull ing,

gravitationally, in the other direction. A to magnet will lift a

pin against the entire counterpufl of the earth.

Oh, gravity is weak all right. But let’s see if we can

dramatize that weakness further.

Suppose that the Earth were an assemblage of nothing

but its mass in positrons, while the Sun were an assem

blage of nothing but its mass in electrons. The force of at

traction between them would be vastly greater than the

feeble gravitational force that holds them together now.

In fact, in order to reduce the electromagnetic attraction

to no more than the present gravitational one, the Earth

and Sun would have to be separated by some

33,000,000,000, 000,000 light-years, or about five million

times the diame ter of the known universe.

Or suppose you imagined in the place of the Sun a mil

108 lion tons of electrons (equal to the mass of a very small

asteroid). And in the place of the Earth, imagine 31/3 tons

of positrons.

The electromagnetic attraction between these two in

significant masses, separated by the distance from the

Earth to the Sun, would be equal to the gravitational at

traction between the colossal masses of those two bodies

right now.

In fact, if one could scatter a million tons of electrons on

the Sun, and 31/3 tons of positrons on the Earth, you would

double the Sun’s attraction for the Earth and alter the

nature of Earth’s orbit considerably. And if you made it

electrons, both on Sun and Earth, so as to introduce a

repulsion, you would cancel the gravitational attraction al

together and send old Earth on its way out of the Solar

System.

Of course, all this is just paper calculation. The mere

fact that electromagnetic forces are as strong as they are



means that you cannot collect a significant number of like

charged particles in one place. They would repel each other

too strongly.

Suppose you divided the Sun into marble-sized

fragments and strewed them through the Solar System at

mutual rest.

Could you, by some manmade device, keep those

fragments from falling together under the pull of gravity?

Well, this is no greater a task than that of getting bold of a

million tons of electrons and squeezing them together into

a ball.

The same would hold true if you tried to separate a

sizable quantity of positive charge from a sizable quantity

of negative charge.

If the universe were composed of electrons and posi

trons as the chief charged particles, the electromagnetic

force would make it necessary for them to come together.

Since they are anti-particles, one being the precise

reverse of the other, they would melt together, cancel each

other, and go up in one cosmic flare of gamma rays.

Fortunately, the universe is composed of electrons and

protons as the chief charged particles. Tbough their

charges are exact opposites (-I for the former and +1 for

the latter), this is not so of other properties-such as mass,

for instance. Electrons and protons are not antiparticles, in

other words, and cannot cancel each other.

Their opposite charges, however, set up a strong mutual

attraction that cannot, within limits, be gainsaid. An elec

tron and ia proton therefore approach closely and then

maintain themselves at a wary distance, forming the hy

drogen atom.

Individual protons can cling together despite electro

magnetic repulsion because of the existence of a very

short-range nuclear strong interaction force that sets up an

attraction between neighboring protons that far over



balances the electromagnetic repulsion. This makes atoms

other than hydrogen possible.

In short: nuclear forces dominate the atomic nucleus;

electromagnetic forces dominate the atom itself; and grav

itational forces dominate the large astronomic bodies.

The weakness of the gravitational force is a source of

frustration to physicists.

The different forces, you see, make themselves felt by

transfers of particles. The nuclear strong interaction force,

the strongest of all, makes itself evident by transfers of

pions (pi-mesons), while the electromagnetic force (next

strongest) does it by the transfer of photons. An analogous

particle involved in weak interactions (third strongest) has

recently been reported. It is called the “W particle” and as

yet the report is a tentative one.

So far, so good. It seems, then, that if gravitation is a

force in the same sense that the others are, it should make

itself evident by transfers of particles.

Physicists have given this particle a name, the

“graviton.”

They have even decided on its properties, or lack of prop

erties. It is electrically neutral and without mass. (Because

it is without mass, it must travel at an unvarying velocity,

that of light.) It is stable, too; that is, left to itself, it Will not

break down to form other particles.

So far, it is rather like the neutrino, [See Chapter 13 of

my book View from a Height, Doubleday, 1963.] hich is also

stable, electrically neutral, and massless (hence traveling

at the velocity of light).

The graviton and the neutrino differ in some respects,

however. The neutrino comes in two varieties, an electron

neutrino and a muon (mu-meson) neutrino, each with its

anti-particle; so there are, all told, four distinct kinds of

neutrinos. The graviton comes in but one variety and is its

own anti-particle. There is but one kind of graviton.



Then, too, the graviton has a spin of a type that is as

signed the number 2, while the neutrino along with most

other subatomic particles have spins of 1/2. (There are also

some mesons with a spin of 0 and the photon with a spin of

1.)

The graviton has not yet been detected. It is even more

elusive than the neutrino. The neutrino, while massless and

chargeless, nevertheless has a measurable energy con tent.

Its existence was first suspected, indeed, because it carried

off enough energy to make a sizable gap in the

bookkeeping.

But gravitons?

Well, remember that factor of 10421

An individual graviton must be trillions of trillions of

trillions of times less energetic than a neutrino.

Considering how difficult it was to detect the neutrino, the

detection of the graviton is a problem that will really test

the nuclear physicist.



9. The Black Of Night

I suppose many of you are familiar with the comic strip

“Peanuts.” My daughter Robyn (now in the fourth grade) is

very fond of it, as I am myself.

She came to me one day, delighted with a particular

sequence in which one of the little characters in “Peanuts”

asks his bad-tempered older sister, “Why is the sky blue,?”

and she snaps back, “Because it isn’t green!”

When Robyn was all through laughing, I thought I would

seize the occasion to maneuver the conversation in the

direction of a deep and subtle scientific discussion (entirely

for Robyn’s own good, you understand). So I said, “Wen,

tell me, Robyn, why is the night sky black?”

And she answered at once (I suppose I ought to have

foreseen it), “Because it isn’t purple!”

Fortunately, nothing like this can ever seriously frustrate

me. If Robyn won’t cooperate, I can always turn, with a

snarl, on the Helpless Reader. I will discuss the blackness

of the night sky with youl

Ile story of the black of night begins with a German

physician and astronomer, Heinrich Wilhelm Matthias

Olbers, bom in 1758. He practiced astronomy as a hobby,

and in midlife suffered a peculiar disappointment. It came

about in this fashion…

Toward the end of the eighteenth century, astronomers

began to suspect, quite strongly, that some sort of planet

must exist between the orbits of Mars and Jupiter. A team

of German astronomers, of whom Olbers was one of the

most important, set themselves up with the intention of

dividing the ecliptic among themselves and each searching

his own portion, meticulously, for the planet.

Olbers and his friends were so systematic and thorough

that by rights they should have discovered the planet and

received the credit of it. But life is funny (to coin a phrase).



While they were still arranging the details, Giuseppe

Piazzi, an Italian astronomer who wasn’t looking for planets

at all, discovered, on the night of January 1, 1801, a point

of light which had shifted its position against the

background of stars. He followed it for a period of time and

found it was continuing to move steadily. It moved less

rapidly than

Mars and more rapidly than Jupiter, so it was very likely

a planet in an intermediate orbit. He reported it as such so

:hat it was the casual Piazzi and not the thorough Olbers

who got the nod in the history books.

Olbers didn’t lose out altogether, however. It seems that

after a period of time, Piazzi fell sick and was unable to

continue his observations. By the time he got back to the

telescope the planet was too close to the Sun to be observ

able.

Piazzi didn’t have enough observations to calculate an

orbit and this was bad. It would take months for the slow-

moving planet to get to the other side of the Sun and into

observable position, and without a calculated orbit it might

easily take years to rediscover it.

Fortunately, a young German mathematician, Karl

Friedrich Gauss, was just blazing his way upward into the

mathematical firmament. He had worked out something

called the “method of least squares,” which made it

possible to calculate a reasonably good orbit from no more

than three good observations of a planetary position.

Gauss calculated the orbit of Piazzi’s new planet, and

when it was in observable range once more there was

Olbers and his telescope watching the place where Gauss’s

calcula tions said it would be. Gauss was right and, on

January 1, 1802, Olbers found it.

To be sure, the new planet (named “Ceres”) was a

peculiar one, for it turned out to be less than 500 miles in

diameter. It was far smaller than any other known planet



and smaller than at least six of the satellites known at that

time.

Could Ceres be all that existed between Mars and

Jupiter? The German astronomers continued looking (it

would be a shame to waste all that preparation) and sure

enough, three more planets between Mars and Jupiter were

soon discovered. Two of them, Pallas and Vesta, were dis

covered by Olbers. (In later years many more were

discovered.)

But, of course, the big payoff isn’t for second place. All

Olbers got out of it was the name of a planetoid. The thou

sandth planetoid between Mars and Jupiter was named

“Piazzia,” the thousand and first “Gaussia,” and the thou

sand and second (hold your breath, now) “Olberia.”

Nor was Olbers much luckier in his other observations.

He specialized in comets and discovered five of them,

but practically anyone can do that. There is a comet called

“Olbers’ Comet” in consequence, but that is a minor dis

tinction.

Shall we now dismiss Olbers? By no means.

It is hard to tell just what will win you a place in the

annals of science. Sometimes it is a piece of interesting

reverie that does it. In 1826 Olbers indulged himself in an

idle speculation concerning the black of night and dredged

out of it an’apparently ridiculous conclusion.

Yet that speculation became “Olbers’ paradox,” which

has come to have profound significance a century after

ward. In fact, we can begin with Olbers’ paradox and end

with the conclusion that the only reason life exists any

where in the universe is that the distant galaxies are reced

ing from us.

What possible effect can the distant galaxies have on us?

Be patient now and we’ll work it out.

In ancient times, if any astronomer had been asked why

the night sky was black, he would have answered-quite

reasonably-that it was because the light of the Sun was



absent. If one had then gone on to question him why the

stars did not take the place of the Sun, he would have

answered-again reasonably-that the stars were limited in

number and individually dim. In fact, all the stars we can

see would, if lumped together, be only a half-birionth as

bright as the Sun. Their influence on the blackness of the

night sky is therefore insignificant.

By the nineteenth century, however, this last argument

had lost its force. The number of stars was tremendous.

Large telescopes revealed them by the countless

millions.

Of course, one might argue that those countless millions

of stars were of no importance for they were not visible to

the naked eye and therefore did not contribute to the light

in the night sky. This, too, is a useless argument. The stars

of the Milky Way are, individually, too faint to be made out,

but en masse they make a dimly luminous belt about the

sky. The Andromeda galaxy is much farther away than the

stars of the Milky Way and the individual stars that make it

up are not individually visible except (just barely) in a very

large telescope. Yet, en masse, the Andromeda galaxy is

faintly visible to the naked eye. (It’is, in fact, the farthest

object visible to the unaided eye; so if anyone ever asks you

how far you can see; tell him 2,000,000 light years.)

In short distant stars-no matter how distant and no

matter how dim, individually-must contribute to the light of

the night sky, and this contribution can even become

detectable without the aid of instruments if these dim

distant stars exist in sufficient density.

Olbers, who didn’t know about the Andromeda galaxy,

but did know about the Milky Way, therefore set about

asking himself how much light ought to be expected from

the distant stars altogether. He began by making several

assumptions:

1. That the universe is infinite in extent.



2. That the stars are infinite in number and evenly

spread throughout the universe.

3. That the stars are of uniform average brightness

through all of space.

Now let’s imagine space divided up into shells (like

those of an onion) centering about us, comparatively thin.

shells compared with the vastness of space, but large

enough to contain stars within them.

Remember that the amount of light that reaches us from

individual stars of equal luminosity varies inversely as the

square of the distance from us. In other words, if Star A

and Star B are equally bright but Star A is three times as

far as Star B, Star A delivers only % the light. If Star A

were five times as far as Star B, Star A would deliver 1/2r,

the light, and so on.

This holds for our shells. The average star in a shell

2000 light-years from us would be only 1/4 as bright in

appearance as the average star in a shell only 1000 light

years from us. (Assumption 3 tells us, of course, that the

intrinsic brightness of the average star in both shells is the

same, so that distance is the only factor we need consider.)

Again, the average star in a shell 3000 light-years from

us would be only % as bright in appearance as the average

star in the 10004ight-year shell, and so on.

But as you work your way outward, each succeeding

shell is more voluminous than the one before. Since each

shell is thin enough to be considered, without appreciable

error, to be the surface of the sphere made up of all the

shells within, we can see that the volume of the shells in

creases as the surface of the spheres would-that is, as the

square of the radius. The 2000-light-year shell would have

four times the volume of the 1000-light-year shell.

The 3000-light-year shell would have nine times the

volume of the 1000-light-year shell, and so on.

If we consider the stars to be evenly distributed through

space (Assumption 2), then the number of stars in any



given shell is proportional to the volume of the shell. If the

2000-light-year shell is four times as voluminous as the

1000-light-year shell, it contains four times as many stars.

If the 3000-light-year shell is nine times as voluminous

as the 1000-light-year shell, it contains nine times as many

stars, and so on.

Well, then, if the 2000-light-year shell contains four

,times as many stars as the IOOG-light-year shell, and if

each star in the former is % as bright (on the average) as

each star of the latter, then the total light delivered by the

20GO-light-year shell is 4 times Y4 that of the 1000 fight-

year shell. In other words, the 2000-light-year shell delivers

just as much total light as the 1000-light-year shell. The

total brightness of the 3000-light-year shell is 9 times %

that of the 1000-light-year shell, and the bright ness of the

two shells is equal again.

In summary, if we divide the universe into successive

shells, each shell delivers as much light, in toto, as do any

of the others. And if the universe is infinite in extent (As

sumption 1) and therefore consists of an finate number of

shells, the stars of the universe, however dim they may be

individually, ought to deliver an infinite amount of light to

the Earth.

The one catch, of course, is that the nearer stars may

block the light of the more distant stars.

To take this into account, let’s look at the problem in

another way. In no matter which direction one looks, the

eye will eventually encounter a star, if it is true they are

infinite in number and evenly distributed in space (As

sumption 2). The star may be individually invisible, but it

will contribute its bit of light and will be immediately

adjoined in all directions by other bits of light.

The night sky would then not be black at all but would

be I an absolutely solid smear of starlight. So would the day

sky be an absolutely solid smear of starlight, with the Sun

itself invisible against the luminous background.



Such a sky would be roughly as bright as 150,000 suns

like ours, and do you question that under those conditions

life on Earth would be impossible?

However, the sky is not as bright as 150,000 suns. The

night sky is black. Somewhere in the Olbers’ paradox there

is some mitigating circumstance or some logical error..

Olbers himself thought he found it. He suggested that

space was not truly transparent; that it contained clouds of

dust and gas which absorbed most of the starlight, allowing

only an insignificant fraction to reach the Earth.

That sounds good, but it is no good at all. There are

indeed dust clouds in space but if they absorbed all the

starlight that fell upon them (by the reasoning of Olbers’

paradox) then their temperature would go up until they

grew hot enough to be luminous. They would, eventually,

emit as much light as they absorb and the Earth sky would

still be star-bright over all its extent.

But if the logic of an argument is faultless and the con

clusion is still wrong, we must investigate the assumptions.

What about Assumption 2, for instance? Are the stars in

deed infinite in number and evenly spread throughout the

universe?

Even in Olbers’ time there seemed reason to believe this

assumption to be false. The German-English astronomer

William Herschel made counts of stars of different bright

ness. He assumed that, on the average, the dimmer stars

were more distant than the bright ones (which follows from

Assumption 3) and found that the density of the stars in

space fell off with distance.

From the rate of decrease in density in different direc

tions, Herschel decided that the stars made up a lens

shaped figure. The long diameter, he decided, was 150

times the distance from the Sun to Arcturus (or 6000 light-

years, we would now say), and the whole conglomer ation

would consist of 100,000,000 stars.



This seemed to dispose of Olbers’ paradox. If the lens

shaped conglomerate (now called the Galaxy) truly con

tained all the stars in existence, then Assumption 2 breaks

down. Even if we imagined space to be infinite in extent

outside the Galaxy (Assumption 1), it would contain no

stars and would contribute no illumination. Consequently,

there would be only a finite number of star-containing

shells and only a finite (and not very large) amount of

illumination would be received on Earth. That would be

why the night sky is black.

The estimated size of the Galaxy has been increased

since Herschel’s day. It is now believed to be 100,000 light-

years in diameter, not 6000; and to contain 150,000,

000,000 stars, not 100,000,000. This change, however, is

not crucial; it still leaves the night sky black.

In the twentieth century Olbers’ paradox came back to

life, for it came to be appreciated that there were indeed

stars outside the Galaxy.

The foggy patch in Andromeda had been felt through out

the nineteenth century to be a luminous mist that formed

part of our own Galaxy. However, other such patches of

mist (the Orion Nebula, for instance) contained stars that

lit up the mist. The Andromeda patch, on the other hand,

seemed to contain no stars but to glow of itself.

Some astronomers began to suspect the truth, but it

wasn’t definitely established until 1924, when the Amer

ican astronomer Edwin Powell Hubble turt’ied the 100 inch

telescope on the glowing mist and was able to make out

separate stars in its outskirts. These stars were in

dividually so dim that it became clear at once that the

patch must be hundreds of thousands of light-years away

from us and far outside the Galaxy. Furthermore, to be

seen, as it was, at that distance, it must rival in size our

entire Galaxy and be another galaxy in its own right.

And so it is. It is now believed to be over 2,000,000 light-

years from us and to contain at least 200,000,000, 000



stars. Still other galaxies were discovered at vastly greater

distances. Indeed, we now suspect that within the

observable universe there are at least 100,000,000,000

galaxies, and the distance of some of them has been esti

mated as high as 6,000,000,000 light-years.

Let us take Olbers’ three assumptions then and substi

tute the word “galaxies” for “stars” and see how they

sound.

Assumption 1, that the universe is infinite, sounds good.

At least there is no sign of an end even out to distances

of billions of light-years.

Assumption 2, that galaxies (not stars) are infinite in

number and evenly spread throughout the universe, sounds

good, too. At least they are evenly distributed for as far out

as we can see, and we can see pretty far.

Assumption 3, that galaxies (not stars) are of uniform

average brightness throughout space, is harder to handle.

However, we have no reason to suspect,-6at distant

galaxies are consistently larger or smaller than nearby

ones, and if the galaxies come to some uniform average

size and star-content, then it certainly seems reasonable to

suppose they are uniformly bright as well.

Well, then, why is the night sky black? We’re back to

that.

Let’s try another tack. Astronomers can determine

whether a distant luminous object is approaching us- or

receding from us by studying its spectrum (that is, its lijzht

as spread out in a rainbow of wavelengths from short

wavelength violet to long-wavelength red).

The spectrum is crossed by dark lines which are in a

fixed position if the object is motionless with respect to us.

If the object is approaching us, the lines shift toward the

violet. If the object is receding from us, the lines shift

toward the red. From the size of the shift astronomers can

determine the velocity of approach or recession.



In the 1910s and 1920s the spectra of some galaxies (or

bodies later understood to be galaxies) were studied, and

except for one or two of the very nearest, all are re ceding

from us. In fact, it soon became apparent that the farther

galaxies are receding more rapidly than the nearer ones.

Hubble was able to formulate what is now called “Hubble’s

Law” in 1929. This states that the velocity of recession of a

galaxy is proportional to its distance from us. If Galaxy A is

twice as far as Ga laxy D, it is receding at twice the

velocity. The farthest observed galaxy, 6,000, 000,000 light-

years from us, is receding at a velocity half that of light.

The reason for Hubble’s Law is taken to lie in the ex

pansion of the universe itseff-an expansion which can be

made to follow from the equations set up by Einstein’s

General Theory of Relativity (which, I hereby state firmly, I

will not go into).

Given the expansion of the universe, now, how are

Olbers’ assumptions affected?

If, at a distance of 6,000,000,000 light-years a galaxy

recedes at half the speed of light, then at a distance of

12,000,000,000 light-years a galaxy ought to be receding at

the speed of light (if Hubble’s Law holds). Surely, further

distances are meaningless, for we cannot halve velocities

greater than that of light. Even if that were pos sible, no

light, or any other “message” could reach us from such a

more-distant galaxy and it would not, in effect, be in our

universe. Consequently, we can imagine the universe to be

finite after all, with a “Hubble radius” of some

12,000,000,000 light-years.

But that doesn’t wipe out Olbers’ paradox. Under the

requirements of Einstein’s theories, as galaxies move faster

and faster relative to an observer, they become shorter and

shorter in the line of travel and take up less and less space,

so that there is room for larger and larger numbers of

galaxies. In fact, even in a finite universe, with a radius of

12,000,000,000 light-years, there might still be an in finite



number of galaxies; almost all of them (paper-thin) existing

in the outermost few miles of the Universe-sphere.

So Assumption 2 stands even if Assumption I does not;

and Assumption 2, by itself, can be enough to insure a star-

bright sky.

But what about the red shift?

Astronomers measure the red shift by the change in

position of the spectral lines, but those lines move only

because the entire spectrum moves. A shift to the red is a

shift in the direction of lesser energy. A receding galaxy

delivers less radiant energy to the Earth than the same

galaxy would deliver if it were standing still relative to us

- just because of the red shift. The faster a galaxy recedes

the less radiant energy it delivers. A galaxy receding at the

speed of light delivers no radiant energy at all no matter

how bright it might be.

Thus, Assumption 3 falls! It would hold true if the uni

verse were static, but not if it is expanding. Each succeed

ing shell in an expanding universe delivers less light than

the one within because its content of galaxies is succes

sively farther from us; is subjected to a successively

greater red shift; and falls short, more and more, of the

expected radiant energy it might deliver.

And because Assumption 3 fails, we receive only a finite

amount of energy from the universe and the night sky is

black.

According to the most popular models of the universe,

this expansion will always continue. It may continue with

out the production of new galaxies so that, eventually,

billions of years hence, our Galaxy (plus a few of its

neighbors, which together make up the “local cluster” of

galaxies) will seem alone in the universe. AU the other

galaxies will have receded too far to detect. Or new

galaxies may continuously form so that, the universe will

always seem full of galaxies, despite its expansion. Either



way, however, expansion will continue and the night sky

will remain black.

There is another suggestion, however, that the universe

oscillates; that -the expansion will gradually slow down

until the universe comes to a moment of static pause, then

begins to contract again, faster and faster, till it tightens at

last into a small sphere that explodes and brings about a

new expansion.

If so, then as the expansion slows the diinming effect of

the red shift will diminish and the night sky will slowly

brighten. By the time the universe is static the sky will be

uniformly star-brigbt as Olbers’ paradox required. Then,

once the universe starts contracting, there will be a “violet

shift” and the energy delivered will increase so that the sky

will become far brighter and still brighter.

This will be true not only for the Earth (if it still existed

in the far future of a contracting universe) but for any body

of any sort in the universe. In a static or, worse still, a

contracting universe there could, by Olbers’ paradox, be no

cold bodies, no solid bodies. There would be uniform high

temperatures everywhere-in the millions of degrees, I

suspect-and life simply could not exist.

So I get back to my earlier statement. The reason there

is life on Earth, or anywhere in the universe, is simply that

the’distant galaxies are moving away from us.

In fact, now that we know the ins and outs of Olbers’

paradox, might we, do you suppose, be able to work out the

recession of the distant galaxies as a necessary conse

quence of the blackness of the night sky? Maybe we could

amend the famous statement of the French philosopher

Rene Descartes.

He said, “I think, therefore I am!”

And we could add: “I am, therefore the universe ex

pandsl”



10. A Galaxy At A Time

Four or five’vears ago there was a small fire at a school

two blocks from my house. It wasn’t much of a fire, really,

producing smoke and damaging some rooms in the base

ment, but nothing more. What’s more, it was outside school

hours so that no lives were in danger.

Nevertheless, as soon as the first piece of fire apparatus

was on the scene the audience had begun to gather. Every

idiot in town and half the idiots from the various con

tiguous towns came racing down to see the fire. They came

by auto and by oxcart, on bicycle and on foot. They came

with girl friends on their arms, with aged parents on their

shoulders, and with infants at the breast.

They parked all the streets solid for miles around and

after the first fire engine had come on the scene nothing

more could have been added to it except by helicopter.

Apparently this happens every time. At every disaster,

big or small, the two-legged ghouls gather and line up

shoulder to shoulder and chest to back. They do this, it

seems, for two purposes: a) to stare goggle-eyed and slack-

jawed at destruction and misery, and b) to prevent the

approach of the proper authorities who are attempting to

safeguard life and property.

Naturally, I wasn’t one of those who rushed to see the

fire and I felt very self-righteously noble about it. How ever

(since we are all friends), I will confess that this is not

necessarily because I am free of the destructive in stinct.

It’s just that a messy little fire in a basement isn’t my idea

of destruction; or a good, roaring blaze at the munitions

dump, either.

If a star were to blow up, then we might have some

thing.

Come to think of it, my instinct for destruction must be

well developed after all, or I wouldn’t find myself so



fascinated by the subject of supernovas, those colossal

stellar explosions.

Yet in thinking of them, I have, it turns out, been a piker.

Here I’ve been assuming for years that a supernova was

the grandest spectacle the universe had to offer (pro vided

you were standing several dozen light-years away) but,

thanks to certain 1963 findings, it turns out that a

supemova taken by itself is not much more than a two inch

firecracker.

This realization arose out of radio astronomy. Since

World War 11, astronomers have been picking up micro

wave (very short radio-wave) radiation from various parts

of the sky, and have found that some of it comes from our

own neighborhood. The Sun itself is a radio source and so

are Jupiter and Venus.

The radio sources of the Solar System, however, are

virtually insignificant. We would never spot them if we

weren’t right here with them. To pick up radio waves

across the vastness of stellar distances we need something

better. For instance, one radio source from beyond the

Solar System is the Crab Nebula. Even after its radio waves

have been diluted by spreading out for five thousand light-

years before reaching us, we can still pick up what remams

and impinges upon our instruments. But then the Crab

Nebula represents the remains of a supernova that blew

itself to kingdom come-the first light of the explo sion

reaching the Earth about 900 years ago.

But a great number of radio sources lie outside our

Galaxy altogether and are millions and even billions of

light-years distant. Still their radio-wave emanations can be

detected and so they must represent energy sources that

shrink mere supemovas to virtually nothing.

For instance, one particularly strong source turned out,

on investigation, to arise from a galaxy 200,000,000 light

years away. Once the large telescopes zeroed in on that

galaxy it turned out to be distorted in shape. After closer



study it became quite clear that it was not a galaxy at all,

but two galaxies in the process of collision.

When two galaxies collide like that, there is little likeli

hood of actual collisions between stars (which are too small

and too widely spaced). However, if the galaxies possess

clouds of dust (and many galaxies, including our own, do),

these clouds will collide and the turbulence of the collision

will set up radio-wave emission, as does the turbulence (in

order of decreasing intensity) of the gases of the Crab

Nebula, of our Sun, of the atmosphere of Jupiter, and of the

atmosphere of Venus.

But as more and more radio sources were detected and

pinpointed, the number found among the far-distant’,ga

laxies seemed impossibly high. There might be occasional

collisions among galaxies but it seemed most unlikely that

there could be enough collisions to account for all those

radio sources.

Was there any other possible explanation? What was

needed was some cataclysm just as vast and intense as that

represented by a pair of colliding galaxies, but one that

involved a single gallaxy. Once freed from the neces sity of

supposing collisions we can explain any number of radio

sources.

But what can a single galaxy do alone, without the help

of a sister galaxy?

Well, it can explode.

But how? A galaxy isn’t really a single object. It is simply

a loose aggregate of up to a couple of hundred billion stars.

These stars can explode individually, but how can we have

an explosion of a whole galaxy at a time?

To answer that, let’s begin by understanding that a

galaxy isn’t really as loose an aggregation as we might tend

to think. A galaxy like our own may stretch out 100,000

light-years in its longest diameter, but most of that consists

of nothing more than a thin powdering of stars-thin enough

to be ignored. We happen to live in this thinly starred



outskirt of our own Galaxy so we accept that as the norm,

but it isn’t.

The nub of a galaxy is its nucleus, a dense packet of

stars roughly spherical in shape and with a diameter of,

say, 10,000 light-years. Its volume is then 525,000,000,000

cubic light-years, and if it contains 100,000,000,000 stars,

that means there is I star per 5.25 cubic light-years.

With stars massed together like that, the average dis

tance between stars in the galactic nucleus is 1.7 light-

years - but that’s the average over the entire volume. The

den sity of star numbers in such a nucleus increases as one

moves toward the center, and I think it is entirely fair to

expect that toward the center of the nucleus, stars are not

separated by more than half a light-year.

Even half a light-year is something like 3,000,000,000,

000 miles or 400 times the extreme width of Pluto’s orbit,

so that the stars aren’t actually crowded, they’re not likely

to be colliding with each other, and yet…

Now suppose that, somewhere in a galaxy, a supernova

lets go.

What happens?

In most cases, nothing (except that one star is smashed

to flinders). If the supernova were in a galactic suburb in

our own neighborhood, for instance-the stars would be so

thinly spread out that none of them would be near enough

to pick up much in the way of radiation. The in credible

quantities of energy poured out into space by such a

supemova would simply spread and thin out and come to

nothing.

In the center of a galactic nucleus, the supernova is not

quite as easy to dismiss. A good supernova at its height is

releasing energy at nearly 10,000,000,000 times the rate of

our Sun. An object five light-years away would pick up a

tenth as much energy per second as the Earth picks up

from the Sun. At half a light-year from the supernova it



would pick up ten times as much energy per second as

Earth picks up from the Sun.

This isn’t good. If a supernova let go five light-years

from us we would have a year of bad heat problems. If it

were half a light-year away I suspect there would be little

left of earthly life. However, don’t worry. There is only one

star-system within five light-years of us and it is not the

kind that can go supemova.

But what about the effects on the stars themselves? If

our Sun were in the neighborhood of a supernova it would

be subjected to a batb of energy and its own temperature

would have to go up. After the supernova is done, the Sun

would seek its own equilibrium again and be as good as

before (though life on its planets may not be). However, in

the process, it would have increased its fuel consump tion

in proportion to the fourth power of its absolute tem

perature. Even a small rise in temperature might lead to a

surprisingly large consumption of fuel.

It is by fuel consumption that one measures a star’s age.

When the fuel supply shrinks low enough, the star

expands into a red giant or explodes into a supernova. A

distant supenova by war@ng the Sun slightly for a year

might cause it to move a century, or ten centuries closer to

such a crisis. Fortunately, our Sun has a long lifetime ahead

of it (several billion years), and a few centuries or even a

million years would mean little.

Some stars, however, cannot afford to age even slightly.

They are already close to that state of fuel consumption

which will lead to drastic changes, perhaps even supernova

-hood. Let’s call such stars, which are on the brink, pre

supernovas. How many of them would there be per galaxy?

It has been estimated that there are an average of 3

supemovas per century in the average galaxy. That means

that in 33,000,000 years there are about a million super

novas in the average galaxy. Considering that a galactic life

span may easily be a hundred billion years, any star that’s



only a few million years removed from supemova hood may

reasonably well be said to be on the brink. if, out of the

hundred billion stars in an average galac tic nucleus, a

million stars are on the brink, then 1 star out of 100,000 is

a pre-supern6va. This means that pre supemovas within

galactic nuclei are separated by average distances of 80

light-years. Toward the center of the nu cleus, the average

distance of separation might be as low as 25 light-years.

But iven-at 25 light-years, the light from a supemova

would be only 1/2:-,o that which the Earth receives from

the

Sun, and its effect would be trifling. And, as a matter of

fact, we frequently see supemovas light up one galaxy or

another and nothing happens. At least, the supemova

slowly dies out and the galaxy is then as it was before.

However, if the average galaxy has I pre-supemova in

every 100,000 stars, particular galaxies may be poorer than

that in supernovas richer. An occasional galaxy may be

particularly rich and I star out of every 1000 may be a pre-

supernova.

In such a galaxy, the nucleus would contain 100,000,

000 pre-supemovas, separated by an average distance of 17

light-years. Toward the center, the average separation

might be no more than 5 light-years. If a supemova lights

up a pre-supernova only 5 light-years away it will shorten

its life significantly, and if that supernova had been a

thousand years from explosion before, it might be only two

months from explosion afterward.

Then, when it lets go, a more distant pre-supemova

which has had its lifetime shortened, but not so drastically,

by the first, may have its lifetime shortened again by the

second and closer supernova, and after a few months it

blasts.

On and on like a bunch of tumbling dominoes this would

go, until we end up with a galaty in which not a single



supernova lets bang, but several million,perhaps, one after

the other.

There is the galactic explosion. Surely such a tumbling

of dominoes would be sufficient to give birth to a corusca

tion of radio waves that would still be easily detectable

even after it had spread out for a billion light-years.

Is this just speculation? To begin with, it was, but in late

1963 some observational data made it appear to be more

than that.

It involves a galaxy in Ursa Major which is called M82

because it is number 82 on a list of objects in the heavens

prepared by the French astronomer Charles Messier about

two hundred years ago.

Messier was a comet-hunter and was always looking

through his telescope and thinking he had found a comet

and turning handsprings and then finding out that he had

been fooled by some foggy object which was always there

and was not a comet.

Finally, he decided to map each of 101 annoying ob jects

that were foggy but were not comets so that others would

not be fooled as he was. It was that list of annoy ances that

made his name immortal.

The first on his list, Ml, is the Crab Nebula.. Over two

dozen are globular clusters (spherical conglomerations of

densely strewn stars), Ml 3 being the Great Hercules Clus

ter, which is the largest known. Over thirty members of his

list are galaxies, including the Andromeda Galaxy (M31)

and the Whirlpool Galaxy (M51). Other famous objects on

the list are the Orion Nebula (M42), the Ring Nebula

(M57), and the Owl Nebula (M97).

Anyway, M82 is a galaxy about 10,000,000 light-years

from Earth which aroused interest when it proved to be a

strong radio source. Astronomerp. turned the 200-inch

telescope upon it and took pictures, through filters that

blocked all light except that coming from hydrogen ions.



There was reason to suppose that any disturbances that

might exist would show up most clearly among the hydro

gen ions.

They did! A three-hour exposure revealed jets of bydro

gen up to a thousand light-years long, bursting out of the

galactic nucleus. The total mass of hydrogen being shot out

was the equivalent of at least 5,000,000 average stars.

From the rate at which the jets were traveling and the

distance they had covered, the explosion must have taken

place about 1,500,000 years before. (Of course, it takes

light ten million years to reach us from M82, so that the

explosion took place 11,500,000 years ago, Earth-time just

at the beginning of the Pleistocene Epoch.)

M82, then, is the case of an exploding galaxy. The

energy expended is equivalent to that of five million super

novas formed in rapid succession, like uranium atoms

undergoing fission in an atomic bomb-though on a vastly

greater scale, to be sure. I feel quite certain that if there

had been any life anywhere in that galactic nucleus, there

isn’t any now.

In fact, I suspect that even the outskirts of the galaxy

may no longer be examples of prime real estate.

Which brings up a horrible thought… Yes, you guessed

it!

What if the nucleus of our own dear Galaxy explodes?

It very likely won’t, of course (I don’t want to cause fear

and despondency among the Gentle Readers), for explod

ing galaxies are probably as uncommon among galaxies as

exploding stars are among stars. Still, if it’s not going to

happen, it is all the more comfortable then, as an intellec

tual exercise, to wonder about the consequences of such an

explosion.

To begin with, we are not in the nucleus of our Galaxy

but far in the outskirts and in distance there is a modicum

of safety. This is especially so since between ourselves and



the nucleus are vast clouds of dust that will effectively

screen off any visible fireworks.

Of course, the radio waves would come spewing out

through dust and all, and this would probably ruin radio

astronomy for millions of years by blanking out everything

else. Worse still would be the cosmic radiation that might

rise high enough to become fatal to life. In other words, we

might be caught in the fallout of that galactic explo sion.

Suppose, though, we put cosmic radiation to one side,

since the extent of its formation is uncertain and since

consideration of its presence would be depressing to the

spirits. Let’s also abolish the dust clouds with a wave of the

speculative hand.

Now we can see the nucleus. What does it look like

without an explosion?

Considering the nucleus to be 10,000 light-years in

diameter and 30,000 light-years away from us, it would be

visible as a roughly spherical area about 20’ in dia meter.

When entirely above the horizon it would make up a patch

about %5 of the visible sky.

Its total light would be about 30 times that given off by

Venus at its brightest, but spread out over so large an area

it would look comparatively dim. An area of the nucleus

equal in size to the full Moon would have an average

brightness only 1/200,000 of the full Moon.

It would be visible then as a patch of luminosity broad

ening out of the Milky Way in the constellation of Sagit

tarius, distinctly brighter than the Milky Way itself; bright

est at the center, in fact, and fading off with distance from

the center.

But what if the nucleus of our Galaxy exploded? The

explosion would take place, I feel certain, in the center of

the nucleus, where the stars were thickest and the effect of

one pre-supemova on its neighbors would be most marked.

Let us suppose that 5,000,000 supernovas are formed, as in

M82.



If the nucleus has pre-supemovas separated by 5 light

years in its central regions (as estimated earlier in the

chapter, for galaxies capable of explosion), then 5,000,000

pre-supernovas would fit into a sphere about 850 light

years in diameter. At a distance of 30,000 light-years, such

a sphere would appear to have a diameter of 1.6’, which is

a little more than three times the apparent di ameter of the

full Moon. We would therefore have an ex cellent view.

Once the explosion started, supernova ought to follow

supemova at an accelerating rate. It would be a chain

reaction.

If we were to look back on that vast explosion millions of

years later, we could say (and be roughly correct) that the

center of the nucleus had all exploded at once. But this is

only roughly correct. If we actually watch the ex plosion in

process, we will find it will take considerable time, thanks

entirely to the fact that light takes considerable time to

travel from one star to another.

When a supernova explodes, it can’t affect a neighbor

ing presupemova (5 light-years away, remember) until the

radiation of the first star reaches the second-and that

would take 5 years. If the second star was on the far side of

the first (with respect to ourselves), an additional 5 years

would be lost while the light traveled back to the vicinity of

the first. We would therefore see the second supernova 10

years later than the first.

Since a supemova will not remain visible to the naked

eye for more than a year or so even under the best condi

tions (at the distance of the Galactic nucleus), the second

supemova would not be visible until long after the first had

faded off to invisibility.

In short, the 5,000,000 supemovas, forming in a sphere

850 light-years in diameter, would be seen by us to appear

over a stretch of time equal to roughly a thousand years.

If the explosions started at the near edge of that sphere

so that radiation had to travel away from us and return to



set off other supernovas, the spread might easily be 1500

years.

If it started at the far end and additional explosions took

place as the light of the original explosion passed the pre

supernovas en route to ourselves, the time-spread might be

considerably less.

On the whole, the chances are that the Galactic nucleus

would begin to show individual twinkles. At first there

might be only three or four twinkles a decade, but then, as

the decades and centuries passed, there would be more

and more until finally there.might be several hundred

visible at one time. And finally, they would all go out and

leave behind dimly glowing gaseous turbulence.

How bright will the individual twinkles be? A single

supemova can reach a maximum absolute magnitude of

- 17. That means if it were at a distance of 10 parsecs (32.5

light-years) from ourselves, it would have an appar ent

magnitude of -17, which is 1/10,000 the brightness of the

Sun.

At a distance of 30,000 light-years, the apparent magni

tude of such a supemova would decline by l0 magnitudes.

The apparent magnitude would now be -2, which is

about the brightness of Jupiter at its brightest.

This is quite a static statistic. At the distance of the

nucleus, no ordinary star can be individually seen with the

naked eye. The hundred billion stars of the nucleus just

make up a luminous but featureless haze under ordinary

conditions. For a single star, at that distance, to fire up to

the apparent brightness of Jupiter is simply colossal. Such a

supemova, in fact, burns with a tenth the light intensity of

an entire non-exploding galaxy such as ours.

Yet it is unlikely that every supemova forming will be a

supemova of maximum brilliance. Let’s be conservative and

suppose that the supemovas will be, on the average, two

magnitudes below the maximum. Each will then have a

magnitude of 0, about that of the star Arcturus.



Even so, the “twinkles” would be prominent indeed. If

humanity were exposed to such a sight in the early stages

of civilization, they would never make the mistake of think

ing that the heavens were eternally fixed and

unchangeable.

Perhaps the absence of that particular misconception

(which, in actual fact, mankind labored under until early

modern times) might have accelerated the development of

astronomy.

However, we can’t see the Galactic nucleus and that’s

that. Is there anything even faintly approaching such a

multi-explosion that we can see?

There’s one conceivable possibility. Here and there, in

our Galaxy, are to be found globular clusters. It is

estimated there are about 200 of these per galaxy. (About a

hundred of our own clusters have been observed, and the

other hundred are probably obscured by the dust clouds.)

These globular clusters are like detached bits of galactic

nuclei, 100 light-years or so in diameter and containing

from 100,000 to 10,000,000 stars-symmctricary scat tered

about the galactic center.

The largest known globular cluster is the Great Hercules

Cluster, M13, but it is not the closest. The nearest globular

cluster is Omega Centauri, which is 22,000 light-years from

us and is clearly visible to the naked eye as an object of the

fifth magnitude. It is only a point of light to the naked eye,

however, for at that distance even a diameter of 100 light

years covers an area of only about 1.5 minutes of arc in

diameter.

Now let us say that Omega Centauri contained 10,000

pre-supemovas and that every one of these exploded at

their earliest opportunity. There would be fewer twinkles

altogether, but they would appear over a shorter time in

terval and would be, individually, twice as bright.

It would be a perfectly ideal explosion, for it would be

unobscured by dust clouds; it would be small enough to be



quite safe; and large enough to be sufficiently spectacular

for anyone.

And yet, now that I’ve worked up my sense of excite

ment over the spectacle, I must admit that the chances of

viewing an explosion in Omega Centauri are just about nil.

And even if it happened, Omega Centauri is not visible

in New England and I would have to travel quite a bit south

ward if I expected to see it high in the sky in full glory and I

don’t like to travel.

Hmm… Oh well, anyone for a neighborhood fire?



Part II

Of Other Things



11. Forget It!

The other day I was looking through a new textbook on

biology (Biological Science: An Inquiry into Life, written by

a number of contributing authors and published by Har

court, Brace amp; World, Inc. in 1963). 1 found it

fascinating.

Unfortunately, though, I read the Foreword first (yes,

I’m one of that kind) and was instantly plunged into the

deepest gloom. Let me quote from;the first two paragraphs:

“With each new generation our fund of scientific knowl

edge increases fivefold… At the current rate of s.cien tific

advance, there is about four times as much’significant

biological knowledge today as in 1930, and about sixteen

times as much as in 1900. By the year 2000, at this rate of

increase, there will be a hundred times as much biology to

dcover’ in the introductory course as at the beginning of

the century.”

Imagine how this affects me. I am a professional “keeper

upper” with science and in my more manic, ebullient, and

carefree moments, I even think I succeed fairly well.

Then I read something like the above-quoted passage

and the world falls about my ears. I don’t keep up with

science. Worse, I can’t keep tip with it. Still worse, I’m

falling farther behind every day.

And finally, when I’m all through sorrowing for myself, I

devote a few moments to worrying about the world

generally. What is going to become of Homo sapiens?

We’re going to smarten ourselves to death. After a while,

we will all die of pernicious education, with our brain cells

crammed to indigestion with facts and concepts, and with

blasts of information exploding out of our ears.

But then, as luck would have it, the very day after I read

the Foreword to Biological Science I came across an old,

old book entitled Pike’s Arithmetic. At least that is the



name on the spine. On the title page it spreads itself a bit

better, for in those days titles were titles. It goes “A New

and Complete System of Arithmetic Composed for the Use

of the Citizens of the United States,” by Nicolas Pike, A.M.

It was first published in 1785, but the copy I have is only

the “Second Edition, Enlarged,” published in 1797.

It is a large book of over 500 pages, crammed full of

small print and with no relief whatever in the way of

illustrations or diagrams. It is a solid slab of arithmetic

except for small sections at the very end that introduce

algebra and geometry.

I was amazed. I have two children in grade school (and

once I was in grade school myself), and I know what arith

metic books are like these days. They are nowhere near as

large. They can’t possibly have even one-fifth the wordage

of Pike.

Can it be that we are leaving anything out?

So I went through Pike and, you know, we are leaving

something out. And there’s nothing wrong with that. The

trouble is we’re not leaving enough out.

On page 19, for instance, Pike devotes half a page to a

listing of numbers as expressed in Roman numerals, ex

tending the list to numbers as high as five hundred thou

sand.

Now Arabic numerals reached Europe in the High

Middle Ages, and once they came on the scene the Roman

numerals were completely outmoded. They lost all pos sible

use, so infinitely superior was the new Arabic nota tion.

Until then who knows how many reams of paper were

required to explain methods for calculating with Roman

numerals. Afterward the same calculations could be

performed with a hundredth of the explanation. No

knowledge was lost only inefficient rules.

And yet five hundred years after the deserved death of

the Roman numerals, Pike still included them and ex

pected his readers to be able to translate them into Arabic



numerals and vice versa even though he gave no instruc

tions for how to manipulate them. In fact, nearly two hun

138 dred years after Pike, the Roman numerals are still

being taught. My little daughter is learning them now.

But why? Where’s the need? To be sure, you will find

Roman numerals on cornerstones and gravestones, on

clockfaces and on some public buildings and documents,

but it isn’t used for any need at all. It is used for show, for

status, for antique flavor, for a craving for some kind of

phony classicism.

I dare say there are some sentimental fellows who feel

that knowledge of the Roman numerals is a kind of gate

way to history and culture; that scrapping them would be

like knocking over what is left of the Parthenon, but I have

no patience with such mawkishness. We might as well

suggest that everyone who learns to drive a car be required

to spend some time at the wheel of a Model-T Ford so he

could get the flavor of early cardom.

Roman numerals? Forget iti-And make room instead for

new and valuable material.

But do we dare forget things? Why not? We’ve forgot ten

much; more than you imagine. Our troubles stem not from

the fact that we’ve forgotten, but that we remember too

well; we don’t forget enough.

A great deal of Pike’s book consists of material we have

imperfectly forgotten. That is why the modern arithmetic

book is shorter than Pike. And if we could but perfectly

forget, the modern arithmetic book could grow still shorter.

For instance, Pike devotes many pages to tables-pre

sumably important tables that he thought the reader ought

to be familiar with. His fifth table is labeled “cloth meas

ure.29 Did you know that 2% inches make a “nail”? Well,

they do. And 16 nails make a yard; while 12 nails make an

ell.

No, wait a while. Those 12 nails (27 inches) make a

Flemish ell. It takes 20 nails (45 inches) to make an English



ell, and 24 nails (54 inches) to make a French ell. Then, 16

nails plus 1% inches (371/5 inches) make a Scotch ell.

Now if you’re going to be in the business world and

import and export cloth, you’re going to have to know all

those ells-unless you can figure some way of getting the ell

out of business.

Furthermore, almost every piece of goods is measured

in its own units. You speak of a firkin of butter, a punch of

prunes, a fother of lead, a stone of butcher’s meat, and so

on. Each of these quantities weighs a certain number of

pounds (avoirdupois pounds, but there are also troy pounds

and apothecary pounds and so on), and Pike carefully gives

all the equivalents.

Do you want to measure distances? Well, how about this:

7 92/100 inches make I link; 25 links make I pole; 4 poles

make I chain; 10 chains make I furlong; and 8 furlongs

make I mile.

Or do you want to measure ale or beer-a very com mon

line of work in Colonial tim6s. You have to know the

language, of course. Here it is: 2 pints make a quart and 4

quarts make a gallon. Well, we still know that much

anyway.

In Colonial times, however, a mere gallon of beer or ale

was but a starter. That was for infants. You had to know

how to speak of man-sized quantities. Well, 8 gallons make

a firkin-that is, it makes “a firkin,of ale in Lon don.” It

takes, however, 9 gallons to make “a firkin of beer in

London.” The intermediate quantity, 81/2 gallons, is

marked down as “a firkin of ale or beer”-presumably

outside of the environs of London where the provincial

citizens were less finicky in distinguishing between the two.

But we go on: 2 firkins (I suppose the intermediate kind,

but I’m not sure) make a kilderkin and 2 kilderkins make a

barrel. Then ll/z barrels make I hogshead; 2 bar rels make a

puncheon; and 3 barrels make a butt.

Have you got all that straight?



But let’s try dry measure in case your appetite has been

sharpened for something still better.

Here, 2 pints make a quart and 2 quarts make a pottle.

(No, not bottle, pottle. Don’t tell me you’ve never heard

of a pottle!) But let’s proceed.

Next, 2 pottles make a gallon, 2 gallons make a peck,

and 4 pecks make a bushel. (Long breath now.) Then 2

bushels make a strike, 2 strikes make a coom, 2 cooms

make a quarter, 4 quarters make a chaldron (though in the

demanding city of London, it takes 41/2 quarters to make a

chaldron). Finally, 5 quarters make a wey and 2 weys make

a last.

I’m not making this up. I’m copying it right out of Pike,

page 48.

Were people who were studying arithmetic in 1797 ex

pected to memorize all this? Apparently, yes, because Pike

spends a lot of time on compound addition. That’s right,

compound addition. . You see, the addition you consider

addition is just 44 simple addition.” Compound addition is

something stronger and I will now explain it to you.

Suppose you have 15 apples, your friend has 17 apples,

and a passing stranger has 19 apples and you decide to

make a pile of them. Having done so, you wonder bow

many you have altogether. Preferring not to count, you

draw upon your college education and prepare to add 15 +

17 + 19. You begin with the units column and find that 5 +

7 + 9 = 21.;You therefore divide 21 by 10 and find the

quotient is 2 plus a remainder of I,. so you put down the

remainder, 1, and carry the quotient 2 into the tens col- I

seem to hear loud yells from the audience. “What is all

this? comes the fevered demand. “Where does this ‘divide

by 10’ jazz come from?”

Ah, Gentle Readers, but this is exactly what you do

whenever you add. It is only that the kindly souls who

devised our Arabic system of numeration based it on the

number 10 in such a way that when any two-digit num ber



is divided by 10, the first digit represents the quotient and

the second the remainder.

For that reason, having the quotient and remainder in

our hands without dividing, we can add automatically. If the

units column adds up to 21, we put down I and carry 2; if it

bad added up to 57, we would have put down 7 and carried

5, and so on.

The only reason this works, mind you, is that in adding a

set of figures, each column of dicits (starting from the right

and working leftward) represents a value ten times as great

as the column before. The rightmost column is units, the

one to its left is tens, the one to its left is hun dreds, and so

on.

It is this combination of a number system based on ten

and a value ratio from column to column of ten that makes

addition very simple. It is for this reason that it is, as Pike

calls it, “simple addition.”

Now suppose you have I dozen and 8 apples, your friend

has 1 dozen and 10 apples, and a passing stranger has I

dozen and 9 apples. Make a pile of those and add them as

follows:

I dozen 8 units

1 dozen 10 units

1 dozen 9 units

Since 8 + 10 + 9 = 27, do we put down 7 and carry 2?

Not at all! The ratio of the “dozens” column to the (tunits”

column is not 10 but 12, since there are 12 units to a

dozen. And since the number system we are using is based

on I 0 and not on 12, we can no longer let the dicits do our

thinking for us. We have to go long way round.

If 8 + 10 + 9 - 27, we must divide that sum by the ratio

of the value of the columns; in this case, 12. We find that 27

divided by 12 gives a quotient of 2 plus a remain der of 3,

so we put down 3 and carry 2. In the dozens column we get

I + I + 1 + 2 = 5. Our total therefore is 5 dozen and 3

apples.



Whenever a ratio of other than 10 is used so that you

have to make actual divisions in adding, you have “com

pound addition.” You must indulge in compound addition if

you try to add 5 pounds 12 ounces and 6 pounds 8 ounces,

for there are 16 ounces to a pound. You are stuck again if

you add 3 yards 2 feet 6 inches to I yard 2 feet 8 inches, for

there are 12 inches to a foot, and 3 feet to a yard.

You do the former if you care to; I’ll do the latter.

First, 6 inches and 8 inches are 14 inches. Divide 14 by

12, getting 1 and a remainder of 2, so you put down 2 and

carry 1. As for the feet, 2 + 2 + I = 5. Divide 5 by 3 and get

I and a remainder of 2, put down 2 and carry 1. In the

yards, you have 3 + 1 + 1 = 5. Your answer, then, is 5 yards

2 feet 2 inches.

Now why on Earth should our unitratios vary all over the

lot, when our number system is so firmly based on 10?

There are many reasons (valid in their time) for the use

of odd ratios like 2, 3, 4, 8, 12, 16, and 20, but surely we

are now advanced and sophisticated enough to use 10 as

the exclusive (or n arly exclusive) ratio. If we could do so,

we could with such pleasure forget about compound

addition-and compound subtraction, compound multipli

cation, compound division, too. (They also exist, of course.)

To be sure, there are times when nature makes the uni

versal ten impossible. In measuring time, the day and the

year have their lengths fixed for us by astronomical condi

tions and neither unit of time can be abandoned. Com

pound addition and the rest will have to be retained for

suchspecial cases, alas.

But who in blazes says we must measure things in

firkins and pottles and Flemish ells? These are purely man

made measurements, and we must remember that

measures were made for man and not man for measures.

It so happens that there is a system of measurement

based exclusively on ten in this world. It is called the

metric system and it is used all over the civilized world



except for certain English-speaking nations such as the

United States and Great Britain.

By not adopting the metric system, we waste our time

for we gain. nothing, not one thing, by learning- our own

measurements. The loss in time (which is expensive in

deed) is balanced by not one thing I can imagine. (To be

sure, it would be expensive to convert existing instruments

and tools but it would have been nowhere nearly as ex

pensive if we had done it a century ago, as we should

have.)

There are those, of course, who object to violating our

long-used cherished measures. They have given up cooms

and ehaldrons but imagine there is something about inches

and feet and pints and quarts and pecks and bushels that is

“simpler” or “more natural” than meters and liters.

There may even be people who find something danger

ously foreign and radical (oh, for that vanished word of

opprobrium, “Jacobin”) in the metric system-yet it was the

United Stettes that led the way.

In 1786, thirteen years before the wicked French revo

lutionaries designed the metric system, Thomas Jefferson (a

notorious “Jacobin,” according to the Federalists, at least)

saw a suggestion of his adopted by the infant, United

States. The nation established a decimal currency.

What we had been using was British currency, and that

is a fearsome and wonderful thing. Just to point out bow

preposterous it is, let me say that the British people who,

over the centuries, have, with monumental patience, taught

themselves to endure anything at all provided it was “tra

ditional”-are now sick and tired of their durrency and are

debating converting it to the decimal system. (Tley can’t

agree on the exact details of the change.)

But consider the British currency as it has been. To

begin with, 4 farthings make 1- penny; 12 pennies make I

shilling, and 20 shillings make I pound. In addition, there is

a virtual farrago of terms, if not always actual coins, such



as ha’pennies and thruppences and sixpences and crowns

and balf-crowns and florins and guineas and heaven knows

what other devices with which to cripple the mental

development of the British schoolchild and line the pockets

of British tradesmen whenever tourists come to call and

attempt to cope with the currency.

Needless to say, Pike gives careful instruction on how to

manipulate pounds, shillings, and pence-and very special

instructions they are. Try dividing 5 pounds, 13 shillings, 7

pence by 3. Quick now!

In the United States, the money system, as originally

established, is as follows: 10 mills make I cent; 10 cents

make I dime; 10 dimes make 1 dollar; 10 dollars make I

eagle. Actually, modern Americans, in their calculations,

stick to dollars and cents only.

The result? American money can be expressed in deci

mal form and can be treated as can any other decimals. An

American child who has learned decimals need only be

taught to recognize the dollar sign and he is all set. In the

time that he does, a British child has barely mastered the

fact that thruppence ba’penny equals 14 farthings.

What a pity that when, thirteen years later, in 1799, the

metric system came into being, our original anti-British,

pro-French feelings had not lasted just long enough to

allow us to adopt it. Had we done so, we would have been

as happy to forget our foolish pecks and ounces, as we are

now happy to have forgotten our pence and shillings.

(After all, would you like to go back to British currency

in preference to our own?)

What I would like to see is one form of money do for all

the world. Everywhere. Why not?

I appreciate the fact that I may be accused because of

this of wanting to pour humanity into a mold, and of being

a conformist. Of course, I am not a conformist (heavens!).

I have no objection to local customs and local dialects

and local dietaries. In fact, I insist on them for I constitute



a locality all by myself. I just don’t want to keep provin

cialisms that were w ‘ell enough in their time but that

interfere with human well-being in a world which is now 90

minutes in circumference.

If you think provincialism is cute and gives humanity

color and charm, let me quote to you once more from Pike.

“Federal Money” (dollars and cents) had been intro

duced eleven years before Pike’s second edition, and he

gives the exact wording of the law that established it and

discusses it in detail-under the decimal system and not

under compound addition.

Naturally, since other systems than the Federal were

still in use, rules had to be formulated and given for con

verting (or “reducing”) one system to another. Here is the

list. I won’t give you the actual rules, just the list of

reductions that were necessary, exactly as he lists them:

I. To reduce New Hampshire, Massachusetts,, Rnode

Island, Connecticut, and Virginia currency:

1. To Federal Money 

2. To New York and North Carolina currency

3. To Pennsylvania, New Jersey, Delaware, and Maryland

currency

4. To South Carolina and Georgia currency

5. To English money

6. To Irish money

7. To Canada and Nova Scotia currency

8. To Livres Toumois (French money)

9. To Spanish milled dollars

II. To reduce Federal Money to New England and

Virginia currency.

III. To reduce New Jersey, Pennsylvania, Delaware, and

Maryland currency:



1. To New Hampshire, Massachusetts, Rhode Island,

Connecticut, and Virginia currency

2. To New York and…

Oh, the heck with it. You get the idea.

Can anyone possibly be sorry that all that cute provin

cial flavor has vanished? Are you sorry that every time you

travel out of state you don’t have to throw yourself into fits

of arithmetical discomfort whenever you want to make a

purchase? Or into similar fits every time someone from

another state invades yours and tries to dicker with you?

What a pleasure to have forgotten all that.

Then tell me what’s so wonderful about having fifty sets

of marriage and divorce laws?

In 1752, Great Britain and her colonies (some two

centuries later than Catholic Europe) abandoned the Julian

calendar and adopted the astronomically more cor rect

Gregorian calendar (see Chapter 1). Nearly half a century

later, Pike was still giving rules for solving com plex

calendar-based problems for the Julian calendar as well as

for the Gregorian. Isn’t it nice to have forgotten the Julian

calendar?

Wouldn’t it be nice if we could forget most of calendri

cal complications by adopting a rational calendar that

would tie the day of the month firmly to the day of the week

and have a single three-month calendar serve as a

perpetual one, repeating itself over and over every three

months? There is a world calendar proposed which would

do just this.

It would enable us to do a lot of useful forgetting.

I would like to see the English language come into

worldwide use. Not necessarily as the only language or

even as the major language. It would just be nice if every

one-whatever his own language was-could also speak

English fluently. It would help in communications and per



haps, eventually, everyone would just choose to speak

English.

That would save a lot of room for other things.

Why English? Well, for one thing more people speak

English as either first or second language than any other

language on Earth, so we have a head start. Secondly, far

more science is reported in English than in any other lan

guage and it is communication in science that is critical

today and will be even more critical tomorrow.

To be sure, we ought to make it as easy as possible for

people to speak English, which means we should rational

ize its spelling and grammar.

English, as it is spelled today, is almost a set of Chinese

ideograms. No one can be sure how a word is pronounced

by looking at the letters that make it up. How do you

pronounce: rough, through, though, cough, hiccough, and

lough; and why is it so terribly necessary to spell all those

sounds with the mad letter combination “ough”?

It looks funny, perhaps, to spell the words ruff, throo,

thoh, cawf, hiccup, and lokh; but we already write hiccup

and it doesn’t look funny. We spell colour, color, and centre,

center, and shew, show and grey, gray. The result looks

funny to a Britisher but we are us ‘ed to it. We can get used

to the rest, too, and save a lot of wear and tear on the

brain. We would all become more intelligent, if intelligence

is measured by proficiency at spelling, and we’ll not have

lost one thing.

And grammar? Who needs the eternal hair-splitting

arguments about “shall” and “will” or “which” and “that”?

The uselessness of it can be demonstrated by the fact

that virtually no one gets it straight anyway. Aside from

losing valuable time, blunting a child’s reasoning faculties,

and instilling him or her with a ravening dislike for the

English language, what do you gain?

If there be some who think that such blurring of fine

distinctions will ruin the language, I would like to point out



that English, before the grammarians got hold of it, had

managed to lose its gender and its declensions almost

everywhere except among the pronouns. The fact that we

have only one definite article (the) for all genders and cases

and times instead of three, as in French (le, la, les) or six,

as in German (der, die, das, dem, den, des) in no way blunts

the English language, which remains an ad mirably flexible

instrument. We cherish our follies only because we are

used to them and not because they are not really follies.

We must make room for expanding knowledge, or at

least make as much room as possible. Surely it is as im

portant to forget the old and useless as it is to learn the

new and important.

Forget it, I say, forget it more and more. Forget it!

But why am I getting so excited? No one is listening to a

word I say.



12. Nothing Counts

In the previous chapter, I spoke of a variety of things;

among them, Roman numerals. These seem, even after five

centuries of obsolescence, to exert a peculiar fascination

over the inquiring mind.

It is my theory that the reason for this is that Roman

numerals appeal to the ego. When one passes a corner

stone which says: “Erected MCMXVIII,” it gives one a

sensation of power to say, “Ah, yes, nineteen eighteen” to

one’s self. Whatever the reason, they are worth further

discussion.

The notion of number and of counting, as well as the

names of the smaller and more-often-used numbers, date

back to prehistoric times and I don’t believe that there is a

tribe of human beings on Earth today, however primitive,

that does not have some notion of number.

With the invention of writing (a step which marks the

boundary line between “prehistoric” and “historic”), the

next step had to be taken-numbers had to be written.

One can, of course, easily devise written symbols for the

words that represent particular numbers, as easily as for

any other word. In English we can write the number of

fingers on one hand as “five” and the number of digits on

all four limbs as “twenty.”

Early in the game, however, the kings’ tax-collectors,

chroniclers, and scribes saw that numbers bad t-he pe

culiarity of being ordered. There was one set way of count

ing numbers and any number could be defined by counting

up to it. Therefore why not make marks which need be

counted up to the proper number.

Thus, if we let “one” be represented as ‘ and “two” as

and “three” as ”’, we can then work out the number

indicated by a given symbol without trouble. You can see,



for instance, that the symbol stands for “twenty-three.”

What’s more, such a symbol is universal.

Whatever language you count in, the symbol stands for

the number “twenty-three” in whatever sound your par

ticular language uses to represent it.

It gets hard to read too many marks in an unbroken row,

so it is only natural to break it up into smaller groups. If we

are used to counting on the fingers of one hand, it seems

natural to break up the marks into groups of five.

“Twenty-three” then becomes ”’ @” ‘if” fl@lf “f. If we are

more sophisticated and use both hands in counting, we

would write it fl”pttflf ‘//. If we go barefoot and use our

toes, too, we might break numbers into twenties.

All three methods of breaking up number symbols into

more easily handled groups have left their mark on the

various number systems of mankind, but the favorite was

division into ten. Twenty symbols in one group are, on the

whole, too many for easy grasping, while five symbols in

one group produce too many groups as numbers grow

larger. Division into ten is the happy compromise.

It seems a natural thought to go on to indicate groups of

ten by a separate mark. There is no reason to insist on

writing out a group of ten as Ifillittif every time, when a

separate mark, let us say -, can be used for the purpose.

In that case “twenty-three” could be written as - ”’.

Once you’ve started this way, the next steps are clear.

By the time you have ten groups of ten (a hundred), you

can introduce another symbol, for instance +. Ten hun

dreds, or a thousand, can become = and so on. In that case,

the number “four thousand six hundred seventy-five” can

be written - ++++++

To make such a set of symbols more easily graspable, we

can take advantage of the ability of the eye to form a

pattern. (You know how you can tell the numbers displayed

by a pack of cards or a pair of dice by the pattern itself.)



We could therefore write “four thousand six hundred sev

enty-five” as

And, as a matter of fact, the ancient Babylonians used

just this system of writing numbers, but they used cunei

form wedges to express it.

The Greeks, in the earlier stages of their development,

used a system similar to that of the Babylonians, but in

later times an alternate method grew popular. They made

use of another ordered system-that of the letters of the

alphabet.

It is natural to correlate the alphabet and the number

system. We are taught both about the same time in child

hood, and the two ordered systems of objects naturally

tend to match up. The series “ay, bee, see, dee…” comes as

glibly as “one, two, three, four…” and there is no dif ficulty

in substituting one for the other.

If we use undifferentiated symbols such as ’” for

ggseven,” all the components of the symbol are identical.

and all must be included without exception if. the symbol is

to mean “seven” and nothing else. On the other hand, if

“A,BCDEFG” stands for “seven” (count the letters and see)

then, since each symbol is different, only the last need be

written. You can’t confuse the fact that G is the seventh

letter of the alphabet and therefore stands for “seven.” In

this way, a one-component symbol does the work of a

seven-component symbol. Furthermore, ” (six) looks very

much like ”’ (seven); whereas F (six) looks n6th ing at all

like G (seven).

The Greeks used their own alphabet, of course, but let’s

use our own alphabet here for the complete demonstration:

A = one, B = two, C = three, D = four, E Five, F six, G =

seven, H = eight, I = nine, and J = ten.

We could let the letter K go on to equal “eleven,” but at

that rate our alphabet will only help us up through “twenty-

six.” The Greeks had a better system. The Baby lonian

notion of groups of ten had left its mark. If J ten, then J



equals not only ten objects but also one group of tens. Why

not, then, continue the next letters as numbering groups of

tens?

In other words J = ten, K twenty, L = thirty, M = forty, N

= fifty, 0 = sixty, P seventy, Q = eighty, R = ninety. Then we

can go on to number groups of hundreds:

S one hundred, T = two hundred, U = three hundred,

V four hundred, W = five hundred, X = six hundred,

Y seven hundred, Z = eight hundred. It would be con

venient to go on to nine hundred, but we have run out of

letters. However, in old-fashioned alphabets the amper

sand ( amp;) was sometimes placed at the end of the

alphabet, so we can say that amp; = nine hundred.

The first nine letters, in other words, represent the units

from one to nine, the second nine letters represent the tens

groups from one to nine, the third nine letters represent

the hundreds groups from one to nine. (The Greek alpha

bet, in classic times, had only twenty-four letters where

twenty-seven are needed, so the Greeks made use of three

archaic letters to fill out the list.)

This system possesses its advantages and disadvantages

over the Babylonian system. One advantage is that any

number under a thousand can be given in three symbols.

For instance, by the system I have just set up with our

alphabet, six hundred seventy-five is XPE, while eight hun

dred sixteen is ZJF.

One disadvantage of the Greek system, however, is that

the significance of twenty-seven different symbols must be

carefully memorized for the use of numbers to a thousand,

whereas in the Babylonian system only three different sym

bols must be memorized.

Furthermore, the Greek system cofnes to a natural end

when the letters of the alphabet are used up. Nine hun

dred ninety-nine ( amp;RI) is the largest number that can

be written without introducing special markings to indicate



that a particular symbol indicates groups of thousands,

tens of thousands, and so on. I will get back to this later.

A rather subtle disadvantage of the Greek system was

that the same symbols were used for numbers and words so

that the mind could be easily distracted. For instance, the

Jews of Graeco-Roman times adopted the Greek sys tem of

representing numbers but, of course, used the He brew

alphabet-and promptly ran into a difficulty. The number

“fifteen” would naturally be written as “ten-five.”

In the Hebrew alphabet, however, “ten-five” represents

a short version of the ineffable name of the Lord, and the

Jews, uneasy at the sacrilege, allowed “fifteen” to be repre

sented as “nine-six” instead.

Worse yet, words in the Greek-Hebrew system look like

numbers. For instance, to use our own alphabet, WRA is

“five hundred ninety-one.” In the alphabet system it doesn’t

usually matter in which order we place the symbols though,

as we shall see, this came to be untrue for the Roman

numerals, which are alphabetic, and WAR also means “five

hundred ninety-one.” (After all, we can say “five hundred

one-and-ninty” if we wish.) Consequently, it is easy to be

lieve that there is something warlike, martial, and of omi

nous import in the number “five hundred ninety-one.”

The Jews, poring over every syllable of the Bible in their

effort to copy the word of the Lord with the exactness that

reverence required, saw numbers in all the words, and in

New Testament times a whole system of mysticism rose

over the numerical interrelationships within the Bible. This

was the nearest the Jews came to mathematics, and they

called this numbering of words gematria, which is a distor-‘

tion of the Greek geometria. We now call it “numerology.”

Some poor souls, even today, assign numbers to the dif

ferent letters and decide which names are lucky and which

unlucky, and which boy should marry which girl and so on.

It is on’e of the more laughable pseudo-sciences.



In one case, a piece of gematria had repercussions in

later history. This bit of gematria is to be found in “The

Revelation of St. John the Divine,” the last book of the New

Testament-a book which is written in a mystical fashion

that defies literal understanding. The reason for the lack of

clarity seems quite clear to me. The author of Revelation

was denouncing the Roman government and was laying

himself open to a charge of treason and to sub sequent

crucifixion if he made his words too clear. Conse 153

quently, he made an effort to write in such a way as to be

perfectly clear to his “in-group” audience, while remaining

completely meaningless to the Roman authorities.

In the thirteenth chapter he speaks of beasts of diaboli

cal powers, and in the eighteenth verse he says, “Here is

wisdom. Let him that hath understandino, count the

number of the beast: for it is the number of a man; and his

number is Six hundred three-score and six.”

Clearly, this is designed not to give the pseudo-science

of gematria holy sanction, but merely to serve as a guide to

the actual person meant by the obscure imagery of the

chapter. Revelation, as nearly as is known, was written only

a few decades after the first great persecution of Chris

tians under Nero. If Nero’s name (“Neron Caesar”) is

written in Hebrew characters the sum of the numbers rep

resented by the individual letters does indeed come out to

be six hundred sixty-six, “the number of the beast.”

Of course, other interpretations are possible. In fact, if

Revelation is taken as having significance for all time as

well as for the particular time in which it was written, it

may also refer to some anti-Christ of the future. For this

reason, generation after generation, people have made at

tempts to show that, by the appropriate ju-glings of the

spelling of a name in an appropriate language, and by the

appropriate assignment of numbers to letters, some par

ticular personal enemy could be made to possess the num

ber of the beast.



If the Christians could apply it to Nero, the Jews them

selves might easily have applied it in the next century to

Hadrian, if they had wished. Five centuries later it could be

(and was) applied to Mohammed. At the time of the Ref

ormation, Catholics calculated Martin Luther’s name and

found it to be the number of the beast, and Protestants re

turned the compliment by making the same discovery in

the case of several popes.

Later still, when religious rivalries were replaced by na

tionalistic ones, Napoleon Bonaparte and William 11 were

appropriately worked out. What’s more, a few minutes’

work with my own system of alphabet-numbers shows me

that “Herr Adolif Hitler” has the number of the beast. (I

need that extra “I” to make it work.)

The Roman system of number symbols had similarities

to both the Greek and Babylonian systems. Like the Greeks,

the Romans used letters of the alphabet. However, they did

not use them in order, but use just a few letters which they

repeated as often as necessary-as in the Baby lonian

system. Unlike the Babylonians, the Romans did not invent

a new symbol for every tenfold increase of number, but

(more primitively) used new symbols for fivefold increases

as well.

‘Thus, to begin with, the symbol for “one” is 1, and

“two,” “three,” and “four,” can be written II, III, and IIII.

The symbol for five, then, is not 11111, but V. People

have amused themselves no end trying to work out the

reasons for the particular letters chosen as symbols, but

there are no explanations that are universally accepted.

However, it is pleasant to think that I represents the up

held fin-er and that V might symbolize the hand itself with

all five fingers-one branch of the V would be the out held

thumb, the other, the remaining fingers. For “six,” “seven,”

“eight,” and “nine,” we would then have VI, VII, ‘VIII, and

VIIII.



For “ten” we would then have X, which (some peo ple

think) represents both hands held wrist to wrist.

“Twenty-three” would be XXIII, “forty-eight” would be

XXXXVIII, and so on. 

The symbol for “fifty” is L, for “one hundred” is C, for

“five hundred” is D, and for “one thousand” is M. The C and

M are easy to understand, for C is the first letter of centum

(meaning “one hundred”) and M is the first letter of rnille

(one thousand).

For that very reason, however, those symbols are sus

picious. As initials they may have come to oust the original

less-meaningful symbols for those numbers. For instance,

an alternative symbol for “thousand” looks something like

this (1). Half of a thousand or “five hundred” is the right

half of the symbol, or (1), and this may have been con

verted into D. As for the L which stands for “fifty,” I don’t

know why it is used.

Now, then, we can write nineteen sixty-four, in Roman

numerals, as follows: MDCCCCLXIIII.

One advantage of writing numbers according to this sys

tem is that it doesn’t matter in which order the numbers

are written. If I decided to write nineteen sixty-four as

CDCLIIMXCICT, it would still represent nineteen sixty four

if I add up the number values of each letter. However, it is

not likely that anyone would ever scramble the letters in

this fashion. If the letters were written in strict order of

decreasing value, as I.did the first time, it would then be

much simpler to add the values of the letters. And, in fact,

this order of decreasing value is (except for special cases)

always used.

Once the order of writing the letters in Roman numerals

is made an established convention, one can make use of

deviations from that set order if it will help simplify mat

ters. For instance, suppose we decide that when a symbol

of smaller value follows one of larger value, the two are

added; while if the symbol of smaller value precedes one of



larger value, the first is subtracted from the second. Thus

VI is “five” plus “one” or “six,”’ while IV is “five” minus

“one” or “four.” (One might even say that IIV is “three,” but

it is conventional to subtract no more than one sym bol.) In

the same way LX is “sixty” while XL is “forty”; CX is “one

hundred ten,” while XC is “ninety”; MC is 44 one thousand

one hundred,” while CM is “nine hundred.”

The value of this “subtractive principle” is that two sym

bols can do the work of five. Why write VIIII il you can

write IX; or DCCCC if you can write CM? The year nine

teen sixty-four, instead of being written MDCCCCLXIIII

(twelve symbols), can be written MC@XIV (seven sym bols).

On the other hand, once you make the order of writing

letters significant, you can no longer scramble them even if

you wanted to. For instance, if MCMLXIV is scrambled to

MMCLXVI it becomes “two thousand one hundred sixty-

six.”

The subtractive principle was used on and off in ancient

times but was not regularly adopted until the Middle Ages.

One interesting theory for the delay involves the

simplest use of the principle-that of IV (“four”). These are

the first letters of IVPITER, the chief of the Roman gods,

and the Romans may have had a delicacy about writing

even the beginning of the name. Even today, on clockfaces

bear ing Roman numerals, “four” is represented as 1111

and never as IV. This is not because the clockf ace does not

ac cept the subtractive principle, for “nine” is represented

as IX and never as VIIII.

With the symbols already,given, we can go up to the

number “four thousand nine hundred ninety-nine” in Ro

man numerals. This would be MMMMDCCCCLXXXX VIIII

or, if the subtractive principle is used ‘ MMMM CMXCIX.

You might suppose that “five thousand” (the next number)

could be written MMMMM, but this is not quite right.

Strictly speaking, the Roman system never re quires a

symbol to be repeated more than four times. A new symbol



is always invented to prevent that: 11111 = V; XXXXX = L;

and CCCCC = D. Well, then, what is MMMMM?

No letter was decided upon for “five thousand.” In an

cient times there was little need in ordinary life for num

bers that high. And if scholars and tax collectors had oc

casion for larger numbers, their systems did not percolate

down to the common man.

One method of penetrating to “five thousand” and be

yond is to use a bar to represent thousands. Thus, V would

represent not “five” but “five thousand.” And sixty-seven

thousand four hundred eighty-two would be LX-VIICD

LXXXII.

But another method of writing large numbers harks

back to the primitive symbol (1) for “thousand.” By adding

to the curved lines we can increase the number by ratios of

ten. Thus “ten thousand” would be (1)), and “one hundred

thousand” would be (1) Then just as “five hundred” was 1)

or D, “five thousand” would be 1)) and “fifty thousand”

would be I))).

Just as the Romans made special marks to indicate tbou

sands, so did the Greeks. What’s more, the Greeks made

special marks for ten thousands and for millions (or at least

some of the Greek writers did). That the Romans didn’t

carry this to the logical extreme is no surprise. The Romans

prided themselves on being non-intellectual. That the

Greeks missed it also, however, will never cease to astonish

me.

Suppose that instead of making special marks for large

numbers only, one were to make special marks for every

type of group from the units on. If we stick to the system I

introduced at the start of the chapter-that is, the one in

which ‘ stands for units, - for tens, + for hundreds, and =

for thousands-then we could get by with but one set of nine

syrrbols. We could write every number with a little

heading, marking off the type of groups -+-‘. Then for “two



thousand five hundred eighty-one” we could get by with

only the letters from A to I and write it GEHA. What’s more,

for “five thousand five hundred fifty-five” we could write

EEEE. There would be no confusion with all the E’s, since

the symbol above each E would indicate that one was a

“five,” another a “fifty,” another a “five hundred,” and

another a “five thousand.” By using additional symbols for

ten thousands, hundred thousands, millions, and so on, any

number, however large, could be written in this same

fashion.

Yet it is not surprising that this would not be popular.

Even if a Greek had thought of it he would have been re

peucd by the necessity of writing those tiny symbols. In an

age of band-copying, additional symbols meant additional

labor and scribes would resent that furiously.

Of course, one might easily decide that the symbols

weren’t necessary. The Groups, one could agree, could al

ways be written right to left in increasing values. The units

would be at the right end, the tens next on the left, the hun

dreds next, and so on. In that case, BEHA would be “two

thousand five hundred eighty-one” and EEEE would be

“five thousand five hundred fifty-five” even without the

little symbols on top.

Here, though, a difficulty would creep in. What if there

were no groups of ten, or perhaps no units, in a particular

number? Consider the number “ten” or the number “one

hundred and one.” The former is made up of one group of

ten and no units, while the latter is made up of one group

of hundreds, no groups of tens, and ont unit. Using sym

bols over the columns, the numbers could be written A and

A A, but now you would not dare leave out the little sym

bols. If you did, how could you differentiate A meaning

“ten” from A meaning “one” or AA meaning “one hun dred

and one” from AA meaning “eleven” or AA meaning “one

hundred and ten”?



You might try to leave a gap so as to indicate “one hun

dred and one” by A A. But then, in an age of hand-copy ing,

how quickly would that become AA, or, for that mat ter,

how quickly might AA become A A? Then, too, how would

you indicate a gap at the end of a symbol? No, even if the

Greeks thought of this system, they must obviously have

come to the conclusion that the existence of gaps in

numbers made this attempted simplification impractical.

They decided it was safer to let J stand for “ten” and SA

for “one hundred and one” and to Hades with little sym

bols.

What no Greek ever thought of-not even Archimedes

himself-was that it wasn’t absolutely necessary to work

with gaps. One could fill the gap with a symbol by letting

one stand for nothing-for “no groups.” Suppose we use $ as

such a symbol. Then, if “one hundred and one”,is made up

of one group of hundreds, no groups of tens, an one + - I

unit, it can be written A$A. If we do that sort of thing, all

gaps are eliminated and we don’t need the little symbols on

top. “One” becomes A, “ten” becomes A$, “one hun dred”

becomes A$$, “one hundred and one” becomes A$A, “one

hundred and ten” becomes AA$, and so on.

Any number, however large, can be written with the use

of exactly nine letters plus a symbol for nothinc, Surely this

is the simplest thing in the world-after you think of it.

Yet it took men about five thousand years, counting from

the beginning of number symbols, to think of a sym bol for

nothing. The man who succeeded (one of the most creative

and original thinkers in history) is unknown. We know only

that he was some Hindu who lived no later than the ninth

century.

The Hindus called the symbol sunyo, meaning “empty.”

This symbol for nothing was picked up by the Arabs,

who termed it sifr, which in their language meant “empty.”

This has been distorted into our own words “cipher” and,

by way of zefirum, into “zero.”



Very slowly, the new svstem of numerals (called “Ara bic

numerals” because the Europeans learned of them from the

Arabs) reached the West and replaced the Roman sys tem.

Because the Arabic numerals came from lands which did

not use the Roman alphabet, the shape of the numerals was

nothing like the letters of the Roman alphabet and this was

good, too. It rerroved word-number confusion and reduced

gematria from the everyday occupation of anyone who

could read, to a burdensome folly that only a few would

wish to bother with.

The Arabic numerals as now used by us are, of course, 1,

2, 3, 4, 5, 6, 7, 8, 9, and the all-important 0. Such is our

reliance on these numerals (which are internationally

accepted) that we are not even aware of the extent to

which we rely on them. For instance, if this chapter has

seemed vaauely queer to you, perhaps it was because I had

delib eratclv refrained from using Arz.bic numerals all

through.

We ail know the great simplicity Arabic numerals have

lent ‘Lo arithmetical computation. The unnecessary load

they took off the human mind, all because of the presence

of t’ e zero, is simply incalculable. Nor has this fact gone

unnot.ccd in the Engl’sh language. Tle importance of the

zero is reflected in the fact that when we work out an

arithmetical computation we are (to use a term now slightly

old-fashioned) “ciphering.” And when we work out some

code, we are “deciphering” it.

So if you look once more at the title of this chapter, you

will see that I am not being cynical. I mean it literally.

Nothing counts! The symbol for nothing makes all the

dif ference in the world.



13. C For Celeritas

If ever an equation has come into its own it is Ein stein’s

e = mc 2. Everyone can rattle it off now, from the highest to

the lowest; from the rarefied intellectual height of the

science-fiction reader, through nuclear physicists, college

students, newspapers reporters, housewives, busboys, all

the way down to congressmen.

Rattling it off is not, of course, the same as understand

ing it; any more than a quick paternoster (from which, in

cidentally, the word “patter” is derived) is necessarily evi

dence of deep religious devotion.

So let’s take a look at the equation. Each letter is the

initial of a word representing the concept it stands for.

Thus, e is the initial letter of “energy” and m of “mass.”

As for c, that is the speed of light in a vacuum, and if you

ask why c, the answer is that it is the initial letter of celeri

tas, the Latin word meaning “speed.”

This is not all, however. For any equation to have mean

ing in physics, there must be an understanding as to the

units being used. It is meaningless to speak of a mass of

2.3, for instance. It is necessary to say 2.3 grams or 2.3

pounds or 2.3 tons; 2.3 alone is worthless.

Theoretically, one can choose whatever units are most

convenient, but as a matter of convention, one system used

in physics is to start with “grams” for mass, “centimeters”

for distance, and “seconds” for time; and to build up, as far

as possible, other units out of appropriate combinations of

these three fundamental ones.

Therefore, the m in Einstein’s equation is expressed in

grams, abbreviated gm. The c represents a speed-that is, a

distance traveled in a certain time. Using the fundamental

units, this means the number of centimeters traveled in a

certain number of seconds. The units of c are therefore

centimeters per second, or cm/sec.



(Notice that the word “per” is represented by a fraction

line. The reason for this is that to get a speed represented

in lowest terms, that is, the number of centimeters traveled

in one second, you must divide the number of centimeters

traveled by the number of seconds of traveling. _If you

travel 24 centimeters in 8 seconds, your speed is 24 centi

meters - 8 seconds, or 3 cm/sec.)

But, to get back to our subject, c occurs as its square in

the equation. If you multiply c by c, you get C2. It is, how

ever, insufficient to multiply the numerical value of c by it

self. You must also multiply the unit of c by itself.

A common example of this is in connection with meas

urements of area. If you have a tract of land that is 60 feet

by 60 feet, the area is not 60 x 60, or 3600 feet. It is 60 feet

x 60 feet, or 3600 square feet.

Similarly, in dealing with C2, you must multiply cm/sec

‘by cm/sec and end with the units CM2 /seC2 (which can be

read as centimeters squared per seconds squared).

The next question is: What is the unit to be used for e?

Einstein’s equation itself will tell us, if we remember to

treat units as we treat any other algebraic symbols. Since e

= mc 2, that means the unit of e can be obtained by mul

tiplying the unit of m by the unit Of C2. Since the unit of m

is gm and that of c2 is CM2 /seC2, the unit of e is gm x

CM2/seC2. In algebra we represent a x b as ab; conse

quently, we can run the multiplication sign out of the unit of

e and make it simply gm CM2/SCC2 (which is read “gram

centimeter squared per second squared).

As it happens, this is fine, because long before Einstein

worked out his equation it had been decided that the unit

of energy on the gram-centimeter-second basis had to be

gm CM2 /seC2. I’ll explain why this should be.

The unit of speed is, as I have said, cm/sec, but what

happens when an object changes speed? Suppose that at a

given instant, an object is traveling at 1 cm/sec, while a

second later it is travelling at 2 cm/sec; and another second



later it is traveling at 3 cm/sec. It is, in other words, “ac

celeratin ” (also from the Latin word celeritas).

In the case I’ve just cited, the acceleration is 1 centi

meter per secondevery second, since each successive sec

ond it is going I centimeter per second faster. You might

say that the acceleration is I emlsec per second. Since we

are letting the word “per” be represented by a fraction

mark, this may be represented as 1 cm/sec/sec.

As I said before, we can treat the units by the same

manipulations used for algebraic symbols. An expression

like alblb is equivalent to alb b, which is in turn equiva lent

to alb x Ilb, which is in turn equivalent to alb2. By the same

reasoning, I cm/sec/sec is equivalent to 1 cm/ seC2 and it is

CM/SCC2 that is therefore the unit of accelera tion.

A “force” is defined, in Newtonian physics, as some

thing that will bring about an acceleration. By Newton’s

First Law of Motion any object in motion, left to itself, will

travel at constant speed in a constant direction forever.

A speed in a particular direction is referred to as a

t’veloc ity,” so we might, more simply, say that an object in

mo tion, left to itself, will travel at constant velocity forever.

This velocity may well be zero, so that Newton’s

First’Law also says that an object at rest, left to itself, will

remain at rest forever.

As soon as a force, which may be gravitational, electro

magnetic, mechanical, or anything, is applied, however, the

velocity is changed. This means that its speed of travel or

its direction of travel or both is changed.

The quantity of force applied to an object is measured by

the amount of acceleration induced, and also by the mass

of the object, since the force applied to a massive ob ject

produces less acceleration than the same force applied to a

light object. (If you want to check this for yourself, kick a

beach ball with all your might and watch it accel erate from

rest to a good speed in a very short time. Next kick a

cannon ball with all your might and observe-while hopping



in agony-what an unimpressive acceleration you have

imparted to it.)

to assure yourself, first, of a supply of nine hundred quin

tiflion ergs.

This sounds impressive. Nine hundred quintillion ergs,

wow!

But then, if you are cautious, you might stop and think:

An erg is an unfamiliar unit. How large is it anyway?

After all, in Al Capp’s Lower Slobbovia, the sum of a

billion slobniks sounds like a lot-until you find that the rate

of exchange is ten billion slobniks to the dollar.

So-How large is an erg?

Well, it isn’t large. As a matter of fact, it is quite a small

unit. It is forced on physicists by the lo ‘c of the gram-cen

91 timeter-second system of units, but it ends in being so

small a unit as to be scarcely useful. For instance, consider

the task of lifting a pound weight one foot against gravity.

That’s not difficult and not much energy is expended.

You could probably lift a hundred pounds one foot without

completely incapacitating yourself. A professional strong

man could do the same for a thousand pounds.

Nevertheless, the energy expended in lifting one pound

one foot is equal to 13,558,200 ergs. Obviously, if any

trifling bit of work is going to involve ergs in the tens of

millions, we need other and larger units to keep the nu

merical values conveniently low.

For instance, there is an energy unit called a joule,

which is equal to 10,000,000 ergs.

This unit is derived from the name of the British physi

cist James Prescott Joule, who inherited wealth and a brew

ery but spent his time in research. From 1840 to 18 9 e ran

a series of meticulous experiments which demonstrated

conclusively the quantitative interconversion of heat and

work and brought physics an understanding of the law of

conservation of energy. However, it was the erman sci

entist Hermann Ludwig Ferdinand von Helmholtz who first



put the law into actual words in a paper presented in 1847,

so that he consequently gets formal credit for -,the discov

ery.

(The word “joule,” by the way, is most commonly pro

nounced “jowl,” although Joule himself probably pro 167

nounced his name “jool.” In any case, I have heard over

precise people pronounce the word “zhool” under the im

pression that it is a French word, which it isn’t. These are

the same people who pronounce “centigrade” and “centri

fuge” with a strong nasal twang as “sontigrade” and “son

trifugp,,” under the impression that these, too, are French

words. Actually, they are from the Latin and no pseudo

French pronunciation is required. There is some justifica

tion for pronouncing “centimeter” as “sontimeter,” since

that’is a French word to begin with, but in that case one

should either stick to English or go French all the way and

pronounce it “sontimettre,” with a light accent on the third

syllable.)

Anyway, notice the usefulness of the joule in everyday

affairs. Lifting a pound mass a distance of one foot against

gravity requires energy to the amount, roughly, of 1.36

joules-a nice, convenient figure.

Meanwhile, physicists who were studying heat had in

vented a unit that would be convenient for their purposes.

This was the “calorie” (from the Latin word color

meaning “heat”). It can be abbreviated as cal. A calorie is

the amount of heat required to raise the temperature of I

gram of water from 14.5’ C. to 15.5’ C. (The amount of heat

necessary to raise a gram of water one Celsius degree

varies slightly for different temperatures, which is why one

must carefully specify the 14.5 to 15.5 business.)

Once it was demonstrated that all other forms of energy

and all forms of work can be quantitatively converted to

heat, it could be seen that any unit that was suitable for

heat would be suitable for any other kind of energy or

work.



By actual measurement it was found (by Joule) that

4.185 joules of energy or work could be converted into pre

cisely I calorie of heat. Therefore, we can say that I cal

equals 4.185 joules equals 41,850,000 ergs.

Althouo the calorie, as defined above, is suitable for

physicists, it is a little too small for chemists. Chemical re

actions usually release or absorb heat in quantities that,

under the conventions used for chemical calculations, re

sult in numbers that are too large..For instance, I gram of

,carbohydrate burned to carbon dioxide and water (either

in a furnace or the human body, it doesn’t matter) liberates

roughly 4000 calories. A gram of fat would, on burning,

liberate roughly 9000 calories. Then again, a human being,

doing the kind of work I do, would use up about 2,500,000

calories per day.

The figures would be more convenient if a larger unit

were used, and for that purpose a larger calorie was in

vented, one that would represent the amount of heat re

quired to raise the temperature of 1000 grams (1 kilo

gram) of water from 14.50 C. to 15.5’ C. You see, I sup

pose, that this larger calorie is a thousand times as great as

the smaller one. However, because both units’are called

calorie,” no end of confusion has resulted.

Sometimes the two have been distinguished as “small

calorie” and “large calorie”; or “gram-calorie” and “kilo

gram-calorie”; or even “calorie” and “Calorie.” (The last

alternative is a particularly stupid one, since’ in speech and

scientists must occasionally speak-there is no way of

distinguishing a C and a c by pronunciation alone.)

My idea of the most sensible way of handling the matter

is this: In the metric system, a kilogram equals 1000 grams;

a kilometer equals 1000 meters, and so on. Let’s call the

large calorie a kilocalorie (abbreviated kcal) and set it

equal to 1000 calories.

In summary, then, we can say that 1 kcal equals 1000 cal

or 4185 joules or 41,850,000,000 ergs.



Another type of energy unit arose in a roundabout way,

via the concept of “power.” Power is the rate at which work

is done. A machine might lift a ton of mass one foot against

gravity in one minute or in one hour. In each case the

energy consumed in the process is the same, but it takes a

more powerful heave to lift that ton in one minute than in

one hour.

To raise one pound of mass one foot against gravity

takes one foot-pound (abbreviated I ft-lb) of energy. To

expand that energy in one second is to deliver 1 foot pound

per second (1 ft-lb/sec) and the ft-lb/sec is there fore a

permissible unit of power.

The first man to make a serious effort to measure power

accuratel was James Watt (1736-1819). He compared y the

power of the steam engine he had devised with the power

delivered by a horse, thus measuring his machine’s rate of

delivering energy in horsepower (or hp). In doing so, he

first measured the power of a horse in ft-lb/sec and decided

that I hp equals 550 ft-lb/sec, a conversion figure which is

now standard and official.

The use of foot-pounds per second and horsepower is

perfectly legitimate and, in fact, automobile and airplane

engines have their power rated in horsepower. The trouble

with these units, however, is that they don’t tie in easily

with the gram-centimeter-second system. A foot-pound is

1.355282 joules and a horsepower is 10.688 kilocalories

per minute. These are inconvenient numbers to deal with.

The ideal am centimeter-second unit of power would be

ergs per on@ (erg/sec). However, since the erg is such a

small unit, it is more convenient to deal with joules per

second (joule/sec). And since I joule is equal to 10, 000,000

ergs, 1 joule/sec equals 10,000,000 erg/sec, or 10,000,000

gM CM2/sec3.

Now we need a monosyllable to express the unit joule/

see, and what better monosyllable than the monosyllabic

name of the gentleman who first tried to measure power.



So 1 joule/sec was set equal to 1 watt. The watt may be

defined as representing the delivery of I joule of energy per

second.

Now if power is multiplied by time, you are back to

energy. For instance, if 1 watt is multipled by 1 second, you

have I watt-sec. Since 1 watt equals 1 joule/sec, 1 watt-sec

equals I joule/sec x see, or I joule sec/sec. The sees can cel

as you would expect in the ordinary algebraic manipu

lation tG which units can be subjected, and you end with

the statement that I watt-sec is equal to 1 joule and is,

therefore, a unit of energy.

A larger unit of energy of this sort is the kilowatt-,hour

(or kw-hr). A kilowatt is equal to 1000 watts and an hour

-  is equal to 3600 seconds. Therefore a kw-hr is equal to

1000 x 3600 watt-sec, or to 3,600,000 joules, or to 36,

000,000,000,OGO ergs.

Furthermore, since there are 4185 joules in a kilocalorie

(kcal), 1 kw-hr is equal to 860 kcal or to 860,000 cal.

A human being who is living on 2500 kcal/day is de

livering (in the form of heat, eventually) about 104 kcal/ hr,

which is equal to 0.120 kw hr/hr or 120 watts. Next tirhe

you’re at a crowded cocktail party (or a crowded sub way

train or a crowded theater audience) on a hot evening in

August, think of that as each additional person walks in.

Each entrance is equivalent to turning on another one

hun dred twenty-watt electric bulb. It will make you feel a

lot hotter and help you appreciate the new light of

understand ing that science brings.

But back to the subject. Now, you see, we have a variety

of units into which we can translate the amount of energy

,resulting from the complete conversion of I gram of mass.

That gram of mass will liberate:

900,000,000,000,000,000,000 ergs, or

90,000,000,000,000 joules, or 21,500,000,000,000 calories,

or 21,500,000 000 kilocalories, ‘600 kilowatt-hours. or

25,000, Which brings us to the conclusion that although the



erg is indeed a tiny unit, nine hundred quintillion of them

still mount up most impressively. Convert a mere one gram

of mass into energy and use it with perfect efficiency and

you can keep a thousand-watt electric light bulb running

for 25,000,000 hours, which is equivalent to 2850 years, or

the time from the days of Homer to, the present.

How’s that for solving the fuel problem?

We could work it the other way around, too. We might

ask: How much mass need we convert to produce I kilo

watt-hour oi energy?

Well, if I gram of mass produces 25,000,000 kilowatt

hours of energy, then 1 kilowatt-hour of energy is produced

by 1/25,000,000 gram.

You can see that this sort of calculation is going to take

us into small mass units indeed. Suppose we choose a unit

smaller than the gram, say the microgram. This is equal to

a millionth of a gram, i.e., 10-11 gram. We can then say

that I kilowatt-hour of energy is produced by the conver

sion of 0.04 micrograms of mass.

Even the microgram is an inconveniently large unit of

mass if we become interested in units of energy smaller

than the kilowatt-hour. We could therefore speak of a

micromicrogram (or, as it is now called, a picogram). This is

a millionth of a millionth of a gram (10-12 gram) or a

trillionth of a gram. Using that as a unit, we can say that:

1 kilowatt-hour is equivalent to 40,000 picograms

I kilocalorie fl, 46.5

1 calorie 0.0465

1 joule 0.0195

I erg 0.00000000195

To give you some idea of what this means, the mass of a

typical human cell is about 1000 picograms. If, under

conditions of dire emergency, the body possessed the abil

ity to convert mass to energy, the conversion of the con

tents of 125 selected cells (which the body, with 50,000,



000,000 000 cells or so, could well afford) would supply the

boY; with 2500 kilocalories and keep it going for a full day.

The amount of mass which, upon conversion, yields 1

erg of energy (and the erg, after all, is the proper unit of

energy in the gram-centimeter-second system) is an incon

veniently small fraction even in terms of picograms.

We need units smaller still, so suppose we turn to the

picopicogram (10-24 gram), which is a trillionth of a tril

lion of a gram, or a septillionth of a gram. Using the pico

picogram, we find that it takes the conversion of 1950

picopicograms of mass to produce an erg of energy.

And the significance? Well, a single hydrogen atom has a

mass of about 1.66 picopicograms. A uranium-235 atom has

a mass of about 400 picopicograms. Consequently, an erg

of energy is produced by the total conversion of 1200

hydrogen atoms or by 5 uranium-235 atoms.

In ordinary fission, only 1/1000 of the mass is converted

to energy so it takes 5000 fissioning uranium atoms to

produce I erg of energy. In hydrogen fusion, 1/100 of the

mass is converted to energy, so it takes 120,000 fusing

hydrogen atoms to produce 1 erg of energy.

And with that, we can let e mc,2 rest for the nonce.



14. A Piece Of The Action

When my book 1, Robot was reissued by the estimable

gentlemen of Doubleday amp; Company, it was with a great

deal of satisfaction that I noted- certain reviewers (posses

sing obvious intelligence and good taste) beginning to refer

to it as a “classic.”

“Classic” is derived in exactly the same way, and has

precisely the same meaning, as our own “first-class” and

our colloquial “classy”; and any of these words represents

my own opinion of 1, Robot, too; except that (owing to my

modesty) I would rather die than admit it. I mention it here

only because I am speaking confidentially.

However, “classic” has a secondary meaning that dis

pleases me. The word came into its own when the literary

men of the Renaissance used it to refer to those works of

the ancient Greeks and Romans on which they were model

ing their own efforts. Consequently, “classic” has come to

mean not only good, but also old.

Now 1, Robot first appeared a number of years -ago and

some of the material in it was written… Well, never mind.

The point is that I have decided to feel a little hurt at being

considered old enough to have written a classic, and

therefore I will devote this chapter to the one field where

“classic” is rather a term of insult.

Naturally, that field must be one where to be old is,

almost automatically, to be wrong and incomplete. One may

talk about Modem Art or Modern Literature or Modem

Furniture and sneer as one speaks, comparing each, to

their disadvantage, with the greater work of earlier ages.

When one speaks of Modem Science, however, one removes

one’s hat and places it reverently upon the breast.

In physics, particularly, this is the case. There is Modern

Physics and there is (with an offhand, patronizing half

smile) Classical Physics. To put it into Modern Terrninol



ogy, Modern Physics is in, man, in, and Classical Physics is

like squaresvhle.

What’s more, the division in physics is sharp. Everything

after 1900 is Modern; everything before 1900 is Classical.

That looks arbitrary, I admit; a strictly parochial

twentieth-century outlook. Oddly enough, though, it is per

fectly legitimate. The year 1900 saw a major physical

theory entered into the books and nothing has been quite

the same since.

By now you have guessed that I am going to tell you

about it.

The problem began with German physicist Gustav

Robert Kirchhoff who, with Robert Wilhelm Bunsen

(popularizer of the Bunsen burner), pioneered in the de

velopment of spectroscopy in 1859. Kirchhoff discovered

that each element, when brought to incandescence, gave

off certain characteristic frequencies of light; and that the

vapor of that element, exposed to radiation from a source

hotter than itself, absorbed just those frequencies it itself

emitted when radiating. In short, a material will absorb

those frequencies which, under other conditions, it will

radiate; and will radiate those frequencies which, under

other conditions, it will absorb.’

But su Ippose that we consider a body which will absorb

all frequencies of radiation that fall upon it-absorb them

completely. It will then reflect none and will therefore ap

pear absolutely black. It is a “black body.” Kirchhoff

pointed out that such a body, if heated to incandescence,

would then necessarily have to radiate all frequencies of

radiation’ Radiation over a complete range in this manner

would be “black-body radiation.”

Of course, no body was absolutely black. In the 1890s,

however, a German physicist named Wilhelm Wien thought

of a rather interesting dodge to get around tiat.

Suppose you had a furnace with a small opening. Any

radiation that passes through the opening is either ab



sorbed by the rough wall opposite or reflected. The re 175

flected radiation strikes another wall and is again partially

absorbed. What is reflected strikes another wall, and so on.

Virtually none of the radiation survives to find its way out

the small opening again. That small opening, then, absorbs

the radiation and, in a manner of speaking, reflects none. It

is a black body. If the furnace is heated, the radia tion that

streams out of that small opening should be black-body

radiation and should, by Kircbhoff’s reasoning, contain all

frequencies.

Wien proceeded to study the characteristics of this

black-body radiation. He found that at any temperature, a

wide spread of frequencies was indeed included, but the

spread was not an even one. There was a peak in the mid

dle. Some intermediate frequency was radiated to a greater

extent than other frequencies either higher or lower than

that peak frequency. Moreover, as the temperature was

increased, this peak was found to move toward the higher

frequencies. If the absolute temperature were doubled, the

frequency at the peak would also double.

But now the question arose: Why did black-body radia

tion distribute itself like this?

To see why the question was puzzling, let’s consider

infrared light, visible light, and ultraviolet light. The fre

quency range of infrared light, to begin with, is from one

hundred billion (100,000,000,000) waves per second to four

hundred trillion (400,000,000,000,000) waves per second.

In order to make the numbers easier to handle, let’s divide

by a hundred billion and number the frequency not in

individual waves per second but in hundred-billion wave

packets per second. In that case the range of infrared

would be from 1 to 4000.

Continuing to use this system, the range of visible licht

would be from 4000 to 8000; and the range of ultraviolet

light would be from 8000 to 300,000.



Now it might be supposed that if a black body absorbed

all radiation with equal ease, it ought to give off all radia

tion with equal case. Whatever its temperature, the energy

it had to radiate might be radiated at any frequency, the

particular choice of frequency being purely random.

But suppose you were choosing numbers, any numbers

with honest radomness, from I to 300,000. If you did this

repeatedly, trillions of times, 1.3 per cent of your numbers

would be less than 4000; another 1.3 per cent would be

between 4000 and 8000 ‘ and 97.4 per cent would be

between 8000 and 300,000.

This is like saying that a black body ought to radiate

1.3 per cent of its energy in the infrared, 1.3 per cent in

visible light, and 97.4 per cent in the ultraviolet. If the

temperature went up and it had more energy to radiate, it

ought to radiate more at every frequency but the relative

amounts in each range ought to be unchanged.

And this is only if we confine ourselves to nothing of still

higher frequency than ultraviolet. If we include the x-ray

frequencies, it would turn out that just about nothing

should come off in the visible light at any temperature.

Everything would be in ultraviolet and x-rays.

An English physicist, Lord Rayleigh (1842-1919), worked

out an equation which showed exactly this. The radiation

emitted by a black body increased steadily as one went up

the frequencies. However, in actual practice, a frequency

peak was reached after which, at higher fre quencies still,

the quantity of radiation decreased again.

Rayleigh’s equation was interesting but did not reflect

reality.

Physicists referred to this prediction of the Rayleigh

equation as the “Violet Catastrophe”-the fact that every

body that bad energy to radiate ought to radiate practically

all of it in the ultraviolet and beyond.

Yet the whole point is that the Violet Catastrophe does

not take place. A radiating body concentrated its radiation



in the low frequencies. It radiated chiefly in the infrared at

temperatures below, say, 1000’ C., and radiated mainly in

the visible region even at a temperature as high as

6000’ C., the temperature of the solar surface.

Yet Rayleigh’s equation was worked out according to the

very best principles available anywhere in physical theory-

at the time. His work was an ornament of what we now call

Classical Physics.

Wien himself worked out an equation which described

the frequency distribution of black-body radiation in the

bigh-frequency range, but he had no explanation for why it

worked there, and besides it only worked for the high

frequency range, not for the low-frequency.

Black, black, black was the color of the physics mood all

through the later 1890s.

Bt4t then arose in 1899 a champion, a German physicist,

Max Karl Ernst Ludwig Planck. He reasoned as fol -lows…

If beautiful equations worked out by impeccable reason

ing from highly respected physical foundations do not de

scribe the truth as we observe it, then either the reason ing

or the physical foundations or both are wrong.

And if there is nothing wrong about the reasoning (and

nothing wrong could be found in it), then the physical

foundations had to be altered.

The physics of the day required that all frequencies of

light be radiated with equal probability by a black body,

and Planck therefore proposed that, on the contrary, they

were not radiated with equal probability. Since the equal

probability assumption required that more and more light

of higher and higher frequency be radiated, whereas the

reverse was observed, Planck further proposed that the

probability of radiation ought to decrease as frequency

increased.

In that case, we would now have two effects. The first

effect would be a tendency toward randomness which

would favor high frequencies and increase radiation as



frequency was increased. Second, there was the new

Planck effect of decreasing probability of radiation as

frequency went up. This would favor low frequencies and

decrease radiation as frequency was increased.

In the low-frequency range the first effect is dominant,

but in the high-frequency range the second effect increas

ingly overpowers the first. Therefore, in black-body tadia

tion, as one goes up the frequencies, the amount of radia

tion first increases, reaches a peak, then decreases again

exactly as is observed.

Next, suppose the temperature is raised. ‘ne first effect

can’t be changed, for randomness is randomness. But sup

178 pose that as the temperature is raised, the probability

of emitting high-frequency radiation increases. The second

effect, then, is steadily weakened as the temperature goes

up. In that case, the radiation continues to increase with

increasing frequency for a longer and longer time before it

is overtaken and repressed by the gradually weakening

second effect. The peak radiation, consequently, moves into

higher and higher frequencies as the temperature goes up-

precisely as Wien had discovered.

On this basis, Planck was able to work out an equation

that described black-body radiation very nicely both in the

low-frequency and high-frequency range.

However, it is all very well to say that the higher the

frequency the lower the probability of radiation, but why?

There was nothing in the physics of the time to explain

that, and Planck had to make up something new.

Suppose that energy did not flow continuously, as

physicists had, always assumed, but was given off in pieces.

Suppose there were “energy atoms” and these increased

in size as frequency went up. Suppose, still further, that

light of a particular frequency could not be emitted unless

enough energy had been accumulated to make up an

“energy atom” of the size required by that frequency.



The higher the frequency the larger the “energy atom”

and the smaller the probability of its accumulation at any

given instant of time. Most of the energy would be lost as

radiation of lower frequency, where the “energy atoms”

were smaller and more easily accumulated. For that rea

son, an object at a temperature of 400’ C. would radiate its

heat in the infrared entirely. So few “energy atoms” of

visible light size would be accumulated that no visible glow

would be produced.

As temperature went up, more energy would be gen

erally available and the probabilities of accumulating a

high-frequency “energy atom” would increase. At 6000’ C.

most of the radiation would be in “energy atoms” of visible

light, but the still larger “energy atoms” of ultraviolet

would continue to be formed only to a minor extent.

But how big is an “energy atom”? How much energy

does it contain? Since this “how much” is a key question,

Planck, with admirable directness, named the “energy

atom” a quantum, which is Latin for “how much?” the

plural is quanta.

For Planck’s equation for the distribution of black-body

radiation to work, the size of the quantum had to be

directly proportional to the frequency of the radiation. To

express this mathematically, let us represent the size of the

quantum, or the amount of energy it contains, by e (for

energy). The frequency of radiation is invariably repre

sented by physicists by means of the Greek letter nu (v).

If energy (e) is proportional to frequency (v), then e

must be equal to v multiplied by some constant. This con

stant, called Planck’s constant, is invariably represented as

h. The equation, giving the size of a quantum for a par

ticular frequency of radiation, becomes: e = hv (Equation

1)

It is this equation, presented to the world in 1900, which

is the Continental Divide that separates Classical Physics

from Modern Physics. In Classical Physics, energy was



considered continuous; in Modern Physics it is con sidered

to be composed of quanta. To put it another way, in

Classical Physics the value of h is considered to be 0; in

Modern Physics it is considered to be greater than 0.

It is as though there were a sudden change from con

sidering motion as taking place in a smooth glide, to mo

tion as taking place in a series of steps.

There would be no confusion if steps were long ga

lumphing strides. It would be easy, in that case, to dis

tinguish steps from a glide. But suppose one minced along

in microscopic little tippy-steps, each taking a tiny frac tion

of a second. A careless glance could not distinguish that

from a glide. Only a painstaking study would show that

your head was bobbing slightly with each step. The smaller

the steps, the harder to detect the difference from a glide.

In the same way, everything would depend on just how

big individual- quanta were; on how “grainy” energy was.

The size of the quanta depends on ‘the size of Planck’s

constant, so let’s consider that for a while.

If we solve Equation I for h, we get: h = elv (Equation 2)

Energy is very frequently measured in ergs (see Chapter

13). Frequency is measured as “so many per second” and

its units are therefore “reciprocal seconds” or “I/second.”

We must treat the units of h as we treat h itself. We get h

by dividing e by v; so we must get the units of h by dividing

the units of e by the units of v. When we divide ergs by

I/second we are multiplying ergs by sec onds, and we find

the units of h to be “erg-seconds.” A unit which is the result

of multiplying energy by time is said, by physicists, to be

one of “action.” Therefore, Planck’s constant is expressed

in units of action.

Since the nature of the universe depends on the size of

Planck’s constant, we are all dependent on the size of the

piece of action it represents. Planck, in other words, had

sought and found the piece of the action. (I understand that



others have been searching for a piece of the action ever

since, but where’s the point since Planck has found it?)

And what is the exact size of h? Planck found it had to

be very small indeed. The best value, currently ac cepted,

is: 0.0000000000000000000000000066256 erg seconds,or

6.6256 x 10-2” erg-seconds.

Now let’s see if I can find a way of expressing just how

small this is. The human body, on an average day, con

sumes and expends about 2500 kilocalories in maintaining

itself and performing its tasks. One kilocalorie is equal to

1000 calories, so the daily supply is 2,500,000 calories.

One calorie, then, is a small quantity of energy from the

human standpoint. It is 1/2,500,000 of your daily store. It is

the amount of energy contained in 1/113,000 of an ounce of

sugar, and so on.

Now imagine you are faced with a book weighing one

pound and wish to lift it from the floor to the top of a

bookcase three feet from the ground. The energy expended

in lifting one pound through a distance of three feet against

gravity is just about 1 calorie,.

Suppose that Planck’s constant were of the order of a

calorie-second in size. The universe would be a very

strange place indeed. If you tried to lift the book, you would

have to wait until enough energy had been accumu lated to

make up the tremendously sized quanta made necessary by

so large a piece of action. Then, once it was accumulated,

the book would suddenly be three feet in the air.

But a calorie-second is equal to 41,850,000 erg-seconds,

and since Planck’s constant is ‘Such a minute fraction of

one erg-secoiid, a single calorie-second equals 6,385,400,

000,000,000,000,000,000,000,000,000 Planck’s constants,

or 6.3854 x 10:1@’ Planck’s constants, or about six and a

third decillion Planck’s constants. However you slice it, a

calorie-second is equal to a tremendous number of Planck’s

constants.



Consequently, in any action such as the lifting of a one

pound book, matters are carried through in so many tril

lions of trillions of steps, each one so tiny, that motion

seems a continuous glide.

When Planck first introduced his “quantum theory 91 in

1900, it caused remarkably little stir, for the quanta

seemed to be pulled out of midair. Even Planck himself was

dubious-not over his equation describing the dis tribution

of black-body radiation, to be sure, for that worked well;

but about the quanta he had introduced to explain the

equation.

Then came 1905, and in that year a 26-year-old theo

retical physicist, Albert Einstein, published fivo separate

scientific papers on three subjects, any one of which would

have been enough to establish him as a first-magnitude star

in the scientific heavens.

In two, he worked out the theoretical basis for “Brown

ian motion” and, incidentally, produced the machinery by

which the actual size of atoms could be established for the

first time. It was one of these papers that earned him his

Ph.D.

In the third paper, he dealt with the “photoelectric

effect” and showed that although Classical Physics could

not explain it, Planck’s quantum theory could.

This really startled physicists. Planck had invented

quanta merely to account for black-body radiation, and

here it turned out to explain the photoelectric effect, too,

something entirely different. For quanta to strike in two

different places like this, it seemed suddenly very reason

able to suppose that they (or something very like them)

actually existed.

(Einstein’s fourth and fifth papers set up a new view of

the universe which we call “The Special Theory of Rela

tivity.” It is in these papers that he introduced his famous

equation e = MC2; see Chapter 13.



These papers on relativity, expanded into a “General

Theory” in 1915, are the achievements for which Einstein is

known to people outside the world of physics. Just the

same, in 1921, when he was awarded the Nobel Prize for

Physics, it was for his work on the photoelectric effect and

not for his theory of relativity.)

The value of h is so incredibly small that in the ordinary

world we can ignore it. The ordinary gross events of

everyday life can be considered as though energy were a

continuum. This is a good “first approximation.”

However, as we deal with smaller and smaller energy

changes, the quantum steps by which those changes’must

take place become larger and larger in comparison. Thus, a

flight of stairs consisting of treads 1 millimeter high and 3

millimeters deep would seem merely a slightly roughened

ramp to a six-foot man. To a man the size of an ant, how

ever, the steps would seem respectable individual obstacles

to be clambered over with difficulty. And to a man the size

of a bacterium, they would be mountainous precipices lin

the same way, by the time we descend into the world within

the atom the quantum step has become a gigantic thing.

Atomic physics cannot, therefore, be described in Classical

terms, not even as an approximation.

The first to realize this clearly was the Danish physicist

Niels Bohr. In 1913 Bohr pointed out that if an electron

absorbed energy, it had to absorb it a whole quantum at a

time and that to an electron a quantum was a large piece of

en ‘ergy that forced it to change its relationship to the rest

of the atom drastically and all at once.

Bohr pictured the electron as circling the atomic

nucleus in a fixed orbit. When it absorbed a quantum of

energy, it suddenly found itself in an orbit farther from the

nucleus -  there was no in-between, it was a one-step

proposition.

Since only certain orbits were possible, according to

Bohr’s treatment of the subject, only quanta of certain size



could be absorbed by the atom-only quanta large enoug to

raise an electron from one permissible orbit to another.

When the electrons dropped back down the line of per

missible orbits, they emitted radiations in quanta. They

emitted just those frequencies which went along with the

size of quanta they could emit in going from one orbit to

another.

In this way, the science of spectroscopy was rational

ized. Men understood a little more deeply why each ele

ment (consisting of one type of atom with one type of

energy relationships among the electrons making up that

type of atom) should radiate certain frequencies, and cer

tain frequencies only, when incandescent. They also under

stood why a substance that could,absorb certain frequen

cies should also emit those same frequencies under other

circumstances.

In other words, Yirchhoff had started the whole problem

and now it had come around fuil-circle to place his em

pirical discoveries on a rational basis.

Bohr’s initial picture was oversimple; but he and other

men gradually made it more complicated, and capable of

explaining finer and finer points of observation. Finally, in

1926, the Austrian physicist Erwin Schri3dinger worked

out a mathematical treatment that was adequate to an

alyze the workings of the particles making up the interior

of the atom according to the principles of the quantum

theory. This was called “quantum mechanics,” as opposed

to the “classical mechanics” based on Newton’s three laws

of motion and it is quantum mechanics that is the founda-

tion of Modern Physics.



15. Welcome, Stranger!

There are fashions in science as in everything else. Con

duct an experiment that brings about an unusual success

and before you can say, “There are a dozen imitations!”

there are a dozen imitations!

Consider the element xenon (pronounced zee’non), dis

covered in 1898 by William Ramsay and Morris William

Travers. Like other elements of the same type it was iso

lated from liquid air. The existence of these elements in air

had remained unsuspected through over a century of

ardent chemical analysis of the air, so when they finally

dawned upon the chemical consciousness they were

greeted as strange and unexpected newcomers. Indeed, the

name, xenon, is the neutral form of the Greek word for

“strange,” so that xenon is “the strange one” in all

literalness.

Xenon belongs to a group of elements commonly known

as the “inert gases” (because they are chemically inert) or

the “rare gases” (because they are rare), or “noble gases”

because the standoffishness that results from chemi cal

inertness seems to indicate a haughty sense of seff

importance.

Xenon is the rarest of the stable inert gas and, as a

matter of fact, is the rarest of all the stable elements on

Earth. Xenon occurs only in the atmosphere, and there it

makes up about 5.3 parts per million by weight. Since the

atmosphere weighs about 5,500,000,000,000,000 (five and

a half quadrillion) tons, this means that the planetary

supply of xenon comes to just about 30,000,000,000 (thirty

billion) tons. This seems ample, taken in full, but picking

xenon atoms out of the overpoweringly more corn,mon

constituents of the atmosphere is an arduous task and so

xenon isn’t a common substance and never will be.



What with one thing and another, then, xenon was not a

popular substance in the chemical laboratories. Its chem

ical, physical, and nuclear properties were worked out, but

beyond that there seemed little worth doing with it. It

remained the little strange one and received cold shoulders

and frosty smiles.

Then, in 1962, an unusual experiment involving xenon

was announced whereupon from all over the world broad

smiles broke out across chemical countenances, and little

xenon was led into the test tube with friendly solicitude.

“Welcome, stranger!” was the cry everywhere, and now

you can’t open a chemical journal anywhere without find

ing several papers on xenon.

What happened?

If you expect a quick answer, you little know me. Let me

take my customary route around Robin Hood’s barn and

begin by stating, first of all, that xenon is a gas.

Being a gas is a matter of accident. No substance is a

gas intrinsically, but only insofar as temperature dictates.

On Venus, water and ammonia are both gases. On Earth,

ammonia is a gas, but water is not. On Titan, neither am

monia nor water are gases.

So I’ll have to set up an arbitrary criterion to suit my

present purpose. Let’s say that any substance that remains

a gas at -1000 C. (-148’ F.) is a Gas with a capital letter, and

concentrate on those. This is a temperature that is never

reached on Earth, even in an Antarctic winter of

extraordinary severity, so that no Gas is ever anything but

gaseous on Earth (except occasionally in chemical lab

oratories).

Now why is a Gas a Gas?

I can start by saying that every substance is made up of

atoms, or of closely knit groups of atoms, said groups being

called molecules. There are attractive forces between

atoms or molecules which make them “sticky” and tend to

hold them together. Heat, however, lends these atoms or



molecules a certain kinetic energy (energy of motion)

which tends to drive them apart,.since each atom or mole

cule has its own idea of where it wants to go. [I enjoy sin]

The attractive forces among a given set of atoms or

molecules are relatively constant, but the kinetic energy

varies with the temperature. Therefore, if the temperature

is raised high enough, any group of atoms or molecules will

fly apart and the material becomes a gas. At tempera tures

over 60000 C. all known substances are gases.

Of course, there are only a, few exceptional substances

with interatomic or intermolecular forces so strong that it

takes 6000’ C. to overcome them. Some substances, on the

other hand, have such weak intermolecular attractive

forces that the warmth of a summer day supplies enough

kinetic energy to convert them to gas (the common anes

thetic, ether, is an example).

Still others have intermolecular attractive forces so

much weaker still that there is enough heat at a tempera

ture of -I 00’ C. to keep them gases, and it is these that are

the Gases I am talking about.

The intermolecular or interatomic forces arise out of the

distribution of electrons within the atoms or molecules.

The electrons are distributed among various “electron

shells,” according to a system we can,accept without de

tailed explanation. For instance, the aluminum atom con

tains 13 electrons, which are distributed as follows: 2 in the

innermost shell, 8 in the next shell, and 3 in the next shell.

We can therefore signify the electron distribution in the

aluminum atom as 2,8,3.

The most stable and symmetrical distribution of the

electrons among the electron shells is that distribution in

which the outermost shell holds either all the electrons it

can hold, or 8 electrons-whichever is less. The innermost

electron shell can hold only 2, the next can hold 8, and

each of the rest can hold more than 8. Except for the situ

ation where only the innermost shell contains electrons, *



No, I am not implying that atoms know what they are doing

and have consciousness. This is just my teleological way of

talk ing. Teleology is forbidden in scientific’articies, 1-ut it

s’o happens then, the stable situation consists of 8

electrons in the outermost shell.

There are exactly six elements known in which this situ

ation of maximum stability exists:

Electron Electron Element Symbol Distribution Total

helium He 2 2 neon Ne 2,8 10 argon Ar 2,8,8 is krypton Kr

2,8,18,8 36 xenon Xe 2,8,18,18,8 54 radon Rn

2,8,18,32,18,8 86

Other atoms without this fortunate electronic distribu

tion are forced to attempt to achieve it by grabbing addi

tional electrons, or getting rid of some they already pos

sess, or sharing electrons. In so doing, they undergo chem

ical reactions. The atoms of the six elements listed above,

however, need do nothing of this sort and are sufficient

unto themselves. They have no need to shift electrons in

any way and that means they take part in no chemical

reactions and are inert. (At least, this is what I would have

said prior to 1962.)

The atoms of the inert gas family listed above are so self-

sufficient, in fact, that the atoms even ignore one another.

There is little interatomic attraction, so that all are gases at

room temperature and all but radon are Gases.

To be sure, there is some interatomic attraction (for no

atoms or molecules exist among which there is no attrac

tion at all). If one lowers the temperature sufficiently, a

point is reached where the attractive forces become dom

inant over the disruptive effect of kinetic energy, and every

single one of the inert gases will, eventually, become an

inert liquid.

What about other elements? As I said, these have atoms

with electron distributions of less than maximum stability

and each has a tendency to alter that distribution in the

direction of stability. For instance, the sodium atom (Na)



has a distribution of 2,8, I. If it could get rid of the outer

most electron, what would be left would have the stable 2 8

configuration of neon. Again, the chlorine atom (CI) b@s a

distribution of 2,8,7. If it could gain an electron, it would

have the 2,8,8 distribution of argon.

Consequently, if a sodium atom encounters a chlorine

atom, the transfer of an electron from the sodium atom to

the chlorine atom satisfies both. However, the loss of a

negatively charged electron leaves the sodium atom with a

deficiency of negative charge or, which is the same thing,

an excess of positive charge. It becomes a positively

charged sodium ion (Na+). The chlorine atom, on the other

band, gaining an electron, gains an excess of nega tive

charge and becomes a negatively charged chloride

ion  [“chlorine ion” as a convention of chemi amp;al

nomenclature we might just as well accept with a weary

sigh. Anyway, the “d” is not a typographical error] (CI-).

Opposite charges attract, so the sodium ion attracts all

the chloride ions within reach and vice versa. These strong

attractions cannot be overcome by the kinetic energy in

duced at ordinary temperatures, and so the ions hold to

gether firmly enough for “sodium chloride” (common salt)

to be a solid. It does not become a gas, in fact, until a

temperature of 1413’ C. is reached. .Next, consider the

carbon atom (C). Its electron dis tribution is 2,4. If it lost 4

electrons, it would gain the 2 helium configuration; if it

gained 4 electrons, it would gain the 2,8 neon

configuration. Losing or gaining that many electrons is not

easy,_so the carbon atom shares electrons instead. It can,

for instance, contribute one of its electrons to a “shared

pool” of two electrons, a pool to which a neighboring

carbon atom also contributes an elec tron. With its second

electron it can form another shared pool with a second

neighbor, and with its third and fourth, two more pools with

two more neighbors. Each neighbor * The charged chlorine

atom is called “chloride ion” and not ran set up additional



pools with other neighbors. In this way, each carbon atom

is surrounded by four other carbon atoms.

These shared electrons fit into the outermost electron

shells of each carbon atom that contributes. Each carbon

atom has 4 electrons of its own in that outermost shell and

4 electrons contributed (one apiece) by four neighbors.

Now, each carbon atom has the 2,8 configuration of

neon, but only at the price of remaining close to its

neighbors.

The result is a strong interatomic attraction, even

though electrical charge is not involved. Carbon is a

solid’and is not a gas until a temperature of 42000 C. is

reached.

The atoms of metallic elements also stick together

,strongly, for similar reasons, so that tungsten, for instance,

is not a gas until a temperature of 59000 C. is reached.

We cannot, then, expect to have a Gas when atoms

achieve stable electron distribution by transferring elec

trons in such a manner as to gain an electric charge; or by

sharing electrons in so complicated a fashion that vast

numbers of atoms stick together in one piece.

What we need is something intermediate. We need a

situation where atoms achieve stability by sharing

electrons (so that no electric charge arises) but where the

total number of atoms involved in the sharing is very small

so that only small molecules result. Within the molecules,

attractive forces may be large, and the molecules may not

be shaken apart without extreme temperature. The attrac

tive forces between one molecule and its neighbor, how

ever, may be smafl-and that will do.

Let’s consider the hydrogen atom, for instance. It has

but a single electron. Two hydrogen atoms can each con

tribute its single electron to form a shared pool. As long as

they stay together, each can count both electrons in its

outermost shell and each will have the stable helium

configuration. Furthermore, neither hydrogen atom will



have any electrons left to form pools with other neighbors,

hence the molecule will end there. Hydrogen gas will con

sist of two-atom molecules (H2) The attractive force

between the atoms in the molecule is large, and it takes

temperatures of more than 20001 C. to shake even a small

fraction of the hydrogen molecules into single atoms. There

will, however, be only weak at tractions among separate

hydrogen molecules, each of which, under the new

arrangement, will have reached a satisfactory pitch of self-

sufficiency. Hydrogen, therefore, will be a Gas not made up

of separate atoms as is the case with the inert gases, but of

two-atom molecules.

Something similar will be true in the case of fluorine

(electronic distribution 2,7), oxygen (2,6) and nitrogen

(2,5). The fluorine atom can contribute an electron and

form a shared pool of two electrons with a,neighboring

fluorine atom which also contributes an electron. Two

oxygen atoms can contribute two electrons apiece to form a

shared pool of four electrons, and two nitrogen atoms can

contribute three electrons each and form a shared pool of

six electrons.

I In each case, the atoms will achieve the 2,8

distribution of neon at the cost of forining paired

molecules. As a result, enough stability is achieved so that

fluorine (F2). oxygen (02), and nitrogen (N2) are all Gases.

The oxygen atom can also form a shared pool of two

electrons with each of two neighbors, and those two neigh

bors can form another shared pool of two electrons among

themselves. The result is a combination of three oxygen

atoms (O:j), each with a neon configuration. This com

bination, 03, is called ozone, and it is a Gas too.

Oxygen, nitrogen, and fluorine can form mixed mole

cules, too. For instance, a nitrogen and an oxygen atom can

combine to achieve the necessary stability for each.

Nitrogen may also form shared pools of two electrons

with each of three fluorine atoms, while oxygen may do so



with each of two. The resulting compounds: nitrogen oxide

(NO), nitroen trifluoride (NF3), and oxygen di fluoride

(OF2) are all Gases.

Atoms which, by themselves, will not form Gases may do

so if combined with either hydrogen, oxygen, nitrogen, or

fluorine. For instance, two chlorine atoms (2,8,7, re

member) will form a shared pool of two electrons so that

,both achieve the 2,8,8 argon configuration. Chlorine (CI2)

is therefore a gas at room temperature-with intermolecu lar

attractions, however, large enough to keep it from be ing a

Gas, Yet if a chlorine atom forms a shared pool of two

electrons with a fluorine atom, the result, chlorine fluoride

(CIF), is a.Gas.

The boron atom (2,3) can form a shared pool of two

electrons with each of three fluorine atoms, and the carbon

atom a shared pool of two electrons with each of four

fluorine atoms. The resulting compounds, boron trifluoride

(BF3) and carbon tetrafluoride (CF4), are Gases.

A carbon atom can form a shared pool of two elec trons

with each of four hydrogen atoms, or a shared pool of four

electrons with an oxygen atom, and the resulting

compounds, methane (CH-4) and carbon monoxide (CO),

are gases. A two-carbon combination may set up a shared

pool of two electrons with each of four hydrogen atoms

(and a shared pool of four electrons with one another); a

silicon atom may setup a shared pool of two electrons with

each of four hydrogen atoms. The compounds, ethylene

(C2H4) and silane (SiH4), are Gases.

Altogether, then, I can list twenty Gases which fall into

the following categories:

(1) Five elements made up of single atoms: helium,

neon, argon, krypton, and xenon.

(2) Four elements made up of two-atom molecules:

hydrogen, nitrogen, oxygen, and fluorine.

(3) One element form made up of three-atom mole cules:

ozone (of oxygen).



(4) Ten compounds, with molecules built up of two

different elements, at least one of which falls into category

(2).

The twenty Gases are listed in order of increasing boil

ing point in the accompanying table, and that boiling point

is given in both the Celsius scale (‘ C.) and the Absolute

scale (‘ K.).

The five inert gases on the list are scattered among the

fifteen other Gases. To be sure, two of the three lowest 192

boiling Gases are helium and neon, but argon is seventh,

krypton is tenth, and xenon is seventeenth. It would not be

surprising if all the Gases, then, were as inert as the inert

gases.

The Twenty Gases

Substance Fori ula B.P. (C.-) B.P. (K.-)

Helium He -268.9 4.2

Hydrogen H, -252.8 20.3

Neon Ne -245.9 27.2

Nitrogen N, -195.8 77.3 f

Carbon monoxide ‘-O -192 81

Fluorine F2 -188 85

Argon Ar -185.7 87.4

Oxygen 0, -183.0 90.1

Methane CH4 -161.5 111.6

Krypton Kr -152.9 120.2

Nitrogen oxide NO -151.8 121.3

Oxygen difluoride OF, -144.8 128.3

Carbon tetrafluoride CF, -128 145

Nitrogen trifluoride NF3 -120 153

Ozone 0, -111.9 161.2

Silane SiH, -111.8 161.3

Xenon Xe -107.1 166.0

Ethylene C,H, -103.9 169.2

Boron trifluoride BF, -101 172

Chlorine fluoride CIF -100.8 172.3



Perhaps they might be at that, if the smug, self-sufficient

molecules that made them up were permanent, unbreak

able affairs, but they are not. All the molecules can be

broken down under certain conditions, and the free atoms

(those of fluorine and oxygen particularly) are active in

deed.

This does not show up in the Gases themselves. Sup

pose a fluorine molecule breaks up,into two fluorine atoms,

and these find themselves surrounded only by fluorine

molecules? The only possible result is the re-formation of a

fluorine molecule, and nothing much has happened. If,

however, there are molecules other than fluorine present, a

new molecular combination of greater stability than F2 is

possible (indeed, almost certain in the case of fluorine), and

a chemical reaction results.

The fluorine molecule does have a tendency to break

apart (to a very small extent) even at ordinary tempera

tures, and this is enough. The free fluorine atom will attack

virtually anything n.on-fluorine in sight, and the heat of

reaction will raise the temperature, which will bring about

a more extensive split in fluorine molecules, and so on. The

result is that molecular fluorine is the most chemically

active of all the Gases (with chlorine fluoride almost on a

par with it and ozone making a pretty good third).

The oxygen molecule is torn apart with greater diffi

culty and therefore remains intact (and inert) under con

ditions where fluorine will not. You may think that oxygen

is an active element, but for the most part this is only true

under elevated temperatures, where more energy is avail

able to tear it apart. After all, we live in a sea of free

oxygen without damage. Inanimate substances such as pa

per, wood, coal, and gasoline, all considered flammable,

can be bathed by oxygen for indefinite periods without

perceptible chemical reaction-until heated.

Of course, once heated, oxygen does become active and

combines easily with other Gases such as hydrogen, carbon



monoxide, and methane which, by that token, can’t be

considered particularly inert either.

The nitrogen molecule is torn apart with still more diffi

culty and, before the discovery of the inert gases, nitrogen

was the inert gas par excellence. It and carbon

tetrafluoride are the only Gases on the list, other than the

inert gases themselves, that are respectably inert, but even

they can be torn apart.

Life depends on the fact that-certain bacteria can split

the nitrogen molecule; and important industrial processes

arise out of the fact that man has learned to do the same

thing on a large scale. Once the nitrogen molecule is torn

apart, the individual nitrogen atom is quite active, bounces

around in all sorts of reactions and- in fact, is the fourth

most common atom in living tissue and is essential to all its

workings.

In the case of the inert gases, all is different. There are

no molecules to pull apart. We are dealing with the self

sufficient atom itself, and there seemed little likelihood that

combination with any other atom would produce a situa

tion of greater stability. Attempts to get inert gases to form

compounds, at the time they were discovered, failed, and

chemists were quickly satisfied that this made sense.

To be sure, chemists continued to try, now and again,

but they also continued to fail. Until 1962, then, the only

successes chemists had had in tying the inert.gas atoms to

other atoms was in the formation of “clathrates.” In a

clathrate, the atoms making up a molecule form a cage like

structure and, sometimes, an extraneous atom-even an

inert gas atom-is trapped within the cage as it forms.

The inert gas is then tied to the substance and cannot be

liberated without breaking down the molecule. However,

the inert gas atom is only physically confined; it has not

formed a chemical bond.

And yet, let’s reason things out a bit. The boiling point of

helium is 4.2’ K.; that of neon is 27.20 K., that of argon



87.4’ K., that of krypton 120.2’ K., that of xenon 166.0’ K.

The boiling point of radon, the sixth and last inert gas and

the one with the most massive atom, is 211.3- K. (-61.8- C.)

Radon is not even a Gas, but merely a gas.

Furthermore, as the mass of the inert gas atoms in

creases, the ionization potential (a quantity which meas

ures the ease with which an electron can be removed alto

gether from a particular atom) decreases. The increasing

boiling point and decreasing ionization potential both indi

cate that the inert gases become less inert as the mass of

the individual atoms rises.

By this reasoning, radon would be the least inert of the

inert gases and efforts to form compounds should concen

trate upon it as offering the best chance. However, radon is

a radioactive element with a half-life of less than four days,

and is so excessively rare that it can be worked with only

under extremely specialized conditions. The next best bet,

then, is xenon. This is very rare, but it is available and it is,

at least, stable.

Then, if xenon is to form a chemical bond, with what

other atom might it be expected to react? Naturally, the

most logical bet would be to choose the most reactive sub

stance of all-fluorine or some fluorine-containing com

pound. If xenon wouldn’t react with that, it wouldn’t react

with anything.

(This may sound as though I am being terribly wise after

the event, and I am. However, there are some who were

legitimately wise. I am told that Linus Pauling rea soned

thus in 1932, well before the event, and that a gentleman

named A. von Antropoff did so in 1924.)

In 1962, Neil Bartlett and others at the University of

British Columbia were working with a very unusual com

pound, platinum hexafluoride (PtF6). To their surprise, they

discovered that it was a particularly active compound.

Naturally, they wanted to see what it’could be made to

do, and one of the thoughts that arose was that here might



be something that could (just possibly) finally pin down an

inert gas atom.

So Bartlett mixed the vapors of PtF6 with xenon and, to

his astonishment, obtained a compound which seemed to

be XePtFc,, xenon platinum hexafluoride. The announce

ment of this result left a certain area of doubt, however.

Platinum hexafluoride was a sufficiently complex

compound to make it just barely possible that it had formed

a clath rate and trapped the xenon.

A group of chemists at Argonne National Laboratory in

Chicago therefore tried the straight xenon-plus-fluorine

experiment, heating one part of xenon with five parts of

fluorine under pressure at 400’ C. in a nickel container.

They obtained xenon tetrafluoride (XeF4), a straightfor

ward compound of an inert gas, with no possibility of a

clathrate. (To be sure, this experiment could have been

tried years before, but it is no disgrace that it wasn’t. Pure

xenon is very hard to get and pure fluorine is very danger

ous to handle, and no chemist could reasonably have been

expected to undergo the expense and the risk for so slim-

chanced a catch as an inert gas compound until after

Bartlett’s experiment had increased that “slim chance”

tremendously.)

And once the Argonne results were announced, all

Hades broke loose. It.looked as though every inorganic

chemist in the world went gibbering into the inert gas field.

A whole raft of xenon compounds, including not only XeF4,

but also XeF., XeF6, XeOF2, XeOF3, XeOF4, XeO3,

H4XeO4, and H,XeO,, have been reported.

Enough radon was scraped together to form radon tetra

fluoride (RnF4). Even krypton, which is more inert than

xenon, has been tamed, and krypton difluoride (KrF2) and

krypton tetrafluoride (KrF4) have been formed.

The remaining three inert gases, argon, neon, and

helium (in order of increasing inertness), as yet remain

untouched.



They are the last of the bachelors, but the world of

chemis try has the sound of wedding bells ringing in its

ears, and it is a bad time for bachelors.

As an old (and cautious) married man, I can only say to

this-no comment.



16. The Haste-Makers

When I first began writing about science for the general

public-far back in medieval times-I coined a neat phrase

about the activity of a “light-fingered magical catalyst.”

My editor stiffened as he came across that phrase, but

not with admiration (as had been my modestly confident

expectation). He turned on me severely and said, “Nothing

in science is magical. It may be puzzling, mysterious, in

expbeable-but it is never magical.”

It pained me, as you can well imagine, to have to learn a

lesson from an editor, of all people, but the lesson seemed

too good to miss and, with many a wry grimace, I learned

That left me, however, with the problem of describing

the workings of a catalyst, without calling upon magical

power for an explanation.

Thus, one of the first experiments conducted by any

beginner in a high school chemistry laboratory is to pre

pare oxygen by heating potassium chlorate. If it were only

potassium chlorate he were heating, oxygen would be

evolved but slowly and only at comparatively high temper

atures. So he is instructed to add some manganese dioxide

first. When he heats the mixture, oxygen comes off rapidly

at comparatively low temperatures.

What does the manganese dioxide do? It contributes no

oxygen. At the conclusion of the reaction it ‘is all still there,

unchanged. Its mere presence seems sufficient to hasten

the evolution of oxygen. It is a haste-maker or, more

properly, a catalyst.

And how can one explain influence by mere presence?

Is it a kind of molecular action at a distance, an extra

sensory perception on the part of potassium chlorate that

the influential aura of manganese dioxide is present? Is it

telekinesis, a para-natural action at a distance on the part

of the manganese dioxide? Is it, in short, magic?



Well, let’s see…

To begin at the beginning, as I almost invariably do, the

first and most famous catalyst in scientific history never

existed.

The alchemists of old sought methods for turning base

metals into gold. They failed, and so it seemed to them that

some essential ingredient was missing in their recipes. The

more imaginative among them conceived of a substance

which, if added to the mixture they were heating (or what

ever) would bring about the production of gold. A small

quantity would suffice to produce a great deal of gold and it

could be recovered and used again, no doubt.

No one had ever seen this substance but it was de

scribed, for some reason, as a drv, earthy material. The

ancient alchemists therefore called it xenon, from a Greek

word meaning “dry.”

In the eighth century the Arabs took over alchemy and

called this gold-making catalyst “the xerion” or, in Arabic,

at-iksir. When West Europeans finally learned Arabic

alchemy in the thirteenth century, at-iksir became “elixir.”

As a further tribute to its supposed dry, earthy prop

erties, it was commonly called, in Europe, “the philos

opber’s stone.” (Remember that as late as 1800, a “natural

philosopher” was what we would now call a “scientist.”)

The amazing elixir was bound to have other marvelous

properties as well, and the notion arose that it was a cure

for all diseases and might very well confer immortality.

Hence, alchemists began to speak of “the elixir of life.”

For centuries, the philosopher’s stone and/or the elixir

of life was searched for but not found. Then, when finally a

catalyst was found, it brought about the formation not of

lovely, shiny gold, but messy, dangerous sulfuric acid.

Wouldn’t you know?

Before 1740, sulfuric acid was hard to prepare. In the*

That’s all right, though. Sulfuric acid may not be as costly



as gold, but it is conservatively speaking-a trillion times as

in trinsically useful.

ory, it was easy. You bum sulfur, combining it with

oxygen to form sulfur dioxide (SO2)- You burn sulfur

dioxide further to make sulfur trioxide (SO3)- You dissolve

sulfur trioxide in water to make sulfuric acid, (H2SO4) -

The trick, though, was to make sulfur dioxide combine with

oxygen.

That could only be done slowly and with difficulty.

In the 1740s, however, an English sulfuric acid man

ufacturer named Joshua Ward must have reasoned that

saltpeter (potassium nitrate), though nonflammable itself,

caused carbon and sulfur to burn with great avidity. (In

fact, carbon plus sulfur plus saltpeter is gunpower.) Con

sequently, he added saltpeter to his burning sulfur and

found that he now obtained sulfur tri’oxide without much

trouble and could make sulfuric acid easily and cheaply.

The most wonderful thing about the process was that, at

the end, the saltpeter was still present, unchanged. It could

be used over and over again. Ward patented the process

and the price of sulfuric acid dropped to 5 per cent of what

it was before.

Magic? - Well, no.

In 1806, two French chemists, Charles Bernard

Ddsormes and Nicholas C16ment, advanced an explanation

that contained a principle which is accepted to this day.

It seems, you see, that when sulfur and saltpeter bum

together, sulfur dioxide combines with a portion of the

saltpeter molecule to form a complex. The oxygen of the

saltpeter portion of the complex transfers to the sulfur

dioxide portion, which now breaks away as sulfur tri oxide.

What’s left (the saltpeter fragment minus oxygen) pro

ceeds to pick up that missing oxygen, very readily, from the

atmosphere. The saltpeter fragment, restored again, is

ready to combine with an additional molecule of sulfur

dioxide and pass along oxygen. It is the saltpeter’s task



simply to pass oxygen from air to sulfur dioxide as fast as it

can. It is a middleman, and of course it remains un changed

at the end of the reaction.

In fact, the wonder is not that a catalyst hastens a re

action while remaining apparently unchanged, but that

anyone should suspect even for a moment that anything

“magical” is involved. If we were to come across the same

phenomenon in the more ordinary affairs of life, we would

certainly not make that mistake of assuming magic.

For instance, consider a half-finished brick wall and, five

feet from it, a heap of bricks and some mortar. If that were

all, then you would expect no change in the situation

between 9 A.m. and 5 P.m. except that the mortar would

dry out.

Suppose, however, that at 9 A.M. you observed one fac

tor in addition-a man, in overalls, standing quietly be tween

the wall and the heap of bricks with his hands empty. You

observed matters again at 5 P.m. and the same man is

standing there, his hands still empty. He has not changed.

However, the brick wall is now completed and’ the heap of

bricks is gone.

The man clearly fulfills the role of catalyst. A reaction

has taken place as a result, apparently, of his mere pres

ence and without any visible change of diminution in him.

Yet would we dream for a moment of saying “Magic!”?

We would, instead, take it for granted that had we ob

served the man in detail all day, we would have caught him

transferring the bricks from the heap to the wall one at a

time. And what’s not magic for the bricklayer is not magic

for the saltpeter, either.

With the birth and progress of the nineteenth century,

more examples of this sort of thing were discovered. In

1812, for instance, the Russian chemist Gottlieb Sigis mund

Kirchhoff…

And here I break off and begin a longish digression for

no other reason than that I want to; relying, as I always do,



on the infinite patience and good humor of the Gentle

Readers.

It may strike you that in saying “the Russian chemist,

Gottlieb Sig7ismund Kirchhoff” I have made a humorous

error. Surely no one with a name like Gottlieb Sigismund

Kirchhoff can be a Russian! It depends, however, on

whether you mean a Russian in an ethnic or in a

geographic sense.

To explain what I mean, let’s go back to the beginning of

the thirteenth century. At that time, the regions of our land

and Livonia, along the southeastern shores of the Baltic

Sea (the modem Latvia and Estonia) were in habited by

virtually the last group of pagans in Europe. It was the time

of the Crusades, and the Germans to the southeast felt it a

pious duty to slaughter the poorly armed and disorganized

pagans for the sake of their souls.

The crusading Germans were of the “Order of the

Knights of the Sword” (better known by the shorter and

more popular name of “Livonian Knights”). They were

joined in 1237 by the Teutonic Knights, who had first

established themselves in the Holy Land. By the end of the

thirteenth century the Baltic shores had been conquered,

with the German expeditionary forces in control.

The Teutonic Knights, as a political organization, did not

maintain control for more than a couple of centuries.

They were defeated by the Poles in the 1460s. The

Swedes, under Gustavus Adolphus, took over in the 1620s,

and in the 1720s the Russians, under Peter the Great,

replaced the Swedes.

Nevertheless, however the political tides might shift and

whatever flag flew and to whatever monarch the loyal in

habitants might drink toasts, the land itself continued to

belong to the “Baltic barons” (or “Balts”) who were the

German-speaking descendants of the Teutonic Knights.

Peter the Great was an aggressive Westernizer who built

a new capital, St. Petersburg* at the very edge of the



Livonian area, and the Balts were a valued group of sub

jects indeed.

This remained true all through the eighteenth and nine

teenth centuries when the Balts possessed an influence

within the Russian Empire out of all proportion to their

numbers. Their influence in Russian science was even more

lopsided.

The trouble was that public education within Russia

lagged far behind its status in western Europe. The Tsars

saw no reason to encourage public education and make

trouble for themselves. No doubt they felt instinctively that

The city was named for his name-saint and not for himself.

Whatever Tsar Peter was, a saint he was not a corrupt

and stupid government is only really safe with an

uneducated populace.

This meant that even elite Russians who wanted a

secular education had to go abroad, especially if they

wanted a graduate education in science. Going abroad was

not easy, either, for it meant leaming a new language and

new ways. What’s more, the Russian Orthodox Church

viewed all Westerners as heretics and little better than

heathens. Contact with heathen ways (such as science) was

at best dangerous and at worst damnation. Consequently,

for a Russian to travel West for an education meant the

overcoming of religious scruples as well.

The Balts, however, were German in culture and Lu

theran in religion and had none of these inhibitions. They

shared, with the Germans of Germany itself, in the,height

ening level of education-in particular, of scientific educa

tion-through the eighteenth and nineteenth centuries.

So it follows that among the great Russian scientists of

the nineteenth century we not only have a man with a name

like Gottlieb Sigismund Kirchhoff, but also others with

names like Friedrich Konrad Beilstein, Karl Ernst von Baer,

and Wilhelm Ostwald.



This is not to say that there weren’t Russian scientists in

this period with Russian names. Examples are Mikhail

Vasilievich Lomonosov, Aleksandr Onufrievich Kovalev ski,

and Dmitri Ivanovich Mendel6ev.

However, Russian officialdom actually preferred the

Balts (who supported the Tsarist government under which

they flourished) to the Russian intelligentsia itself (which

frequently made trouble and had vague notions of reform).

In addition, the Germans were the nineteenth-century

scientists par excellence, and to speak Russian with a

German accent probably leiit distinction to a scientist.

(And before you sneer at this point of view, just think of

the American stereotype of a rocket scientist. He has a

thick German accent, nicht wahr?-And this despite the fact

that the first rocketman, and the one whose experi ments

started the Germans on the proper track [Robert Goddard],

spoke with a New England twang.)

So it happened that the Imperial Academy of Sciences of

the Russian Empire (the most prestigious scientific

organization in the land) was divided into a “German party”

and a “Russian party,” with the former dominant.

In 1880 there was a vacancy in the chair of chemical

technology at the Academy, and two names were proposed.

The German party proposed Beilstein, and the Russian

party proposed Mende]6ev. There was no comparison

really. Beilstein spent years of his life preparing an encyclo

pedia of the properties and methods of preparation of many

thousands of organic compounds which, with nu merous

supplements and additions, is still a chemical bible.

This is a colossal monument to his thorough, hard-work

ing competence-but’ it is no more. Mendel6ev, who worked

out the periodic table of the elements, was, on the other

hand, a chemist of the first magnitude-an un doubted

genius in the field.

Nevertheless, government officials threw,their weight be

bind Beilstein, who was elected by a vote of ten to nine.



It is no wonder, then, that in recent years, when the

Russians have finally won a respected place in the scientific

sun, they tend to overdo things a bit. They’ve got a great

deal of humiliation to make up for.

That ends the digression, so I’ll start over As the

nineteenth century wore on, more examples of baste-

making were discovered. In 1812, for instance, the Russian

chemist Gottlieb Sigismund Kirchhoff found that if he

boiled starch in water to which a small amount of sulfuric

acid had been added, the starch broke down to a simple

form of sugar, one that is now called glucose. This would

not happen in the absence of acid. When it did happen in

the presence of acid, that acid was not consumed but was

still present at the end.

Then, in 1816, the English chemist Humphry Davy found

that certain organic vapors, such as those of alcohol,

combined with oxygen more easily in the presence of

metals such as platinum. Hydrogen combined more easily

with oxygen in the presence of platinum also.

Fun and games with platinum started at once. In 1823 a

German chemist, Johann Wolfgang Debereiner, set up a

hydrogen generator which, on turning an appropriate stop

cock, would allow a jet of hydrogen to shoot out against a

strip of platinum foil. The hydrogen promptly burst into

flame and “Dbbereiner’s lamp” was therefore the first

cigarette lighter. Unfortunately, impurities in the hydrogen

gas quickly “poisoned” the expensive bit of platinum and

rendered it useless.

In 1831 an English chemist, Peregrine Phillips, reasoned

that if platinum could bring about the combination of

hydrogen and of alcohol with oxygen, why should it not do

the same for sulfur dioxide? Phillips found it would and

patented the process. It was not for years afterward, how

ever, that methods were discovered for delaying the

poisoning of the metal, and it was only after that that a



platinum catalyst could be profitably used in sulfuric acid

manufacture to replace Ward’s saltpeter.

In 1836 such phenomena were brought to the attention

of the Swedish chemist J6ns Jakob Berzelius who, during

the first half of the nineteenth century, was the uncrowned

king of chemistry. It was he who suggested the words

“catalyst” and “catalysis” from Greek words meaning “to

break down” or “to decompose.” Berzelius had in mind

such examples of catalytic action as the decomposition of

the large starch molecule into smaller sugar molecules by

the action of acid.

But platinum introduced a new glamor to the concept of

catalysis. For one thing, it was a rare and precious metal.

For another, it enabled people to begin suspecting magic

again.

Can platinum be expected to behave as a middleman as

saltpeter does?

At first blush, the answer to that would seem to be in the

negative. Of all substances, platinum is one of the most

inert. It doesn’t combine with oxygen or hydrogen under

any normal circumstances. How, then, can it cause the two

to combine?

If our metaphorical catalyst is a bricklayer, then plati

num can only be a bricklayer tightly bound in a strait

jacket.

Well, then, are we reduced to magic? To molecular

action at a distance?

Chemists searched for something more prosaic. The

suspicion grew during the nineteenth century that the inert

ness of platinum is, in one sense at least, an illusion. In the

body of the metal, platinum atoms are attached to each

other in all directions and are satisfied to remain so. In

bulk, then, platinum will not react with oxygen or hydro

gen (or most other chemicals, either).

On the surface of the platinum, however, atoms on the

metal boundary and immediately adjacent to the air have



no other platinum atoms, in the air-direction at least, to

attach themselves to. Instead, then, they attach themselves

to whatever atoms or molecules they find handy oxygen

atoms, for instance. This forms a thin film over the surface,

a film one molecule thick. It is completely invisible, of

course, and all we see is a smooth, shiny, platinum sur face,

which seems completely nonreactive and inert.

As parts of a surface film, cixygen and hydrogen react

more readily than they do when making up bulk gas.

Suppose, then, that when a water molecule is formed by

the combination of hydrogen and oxygen on the platinum

surface, it is held more weakly than an oxygen molecule

would be. The moment an oxygen molecule struck that

portion of the surface it would replace the water molecule

in the film. Now there would be the chance for the forma

tion of another water molecule, and so on.

The platinum does act as a middleman after all, through

its formation of the monomolecular gaseous film.

Furthermore, it is also easy to see how a platinum

catalyst can be poisoned. Suppose there are molecules to

which the platinum atoms will cling even more tightly than

to oxygen. Such molecules will replace oxygen wherever it

is found on the film and will not themselves be replaced by

any gas in the atmosphere. They are on the, platinum sur

face to stay, and any catalytic action involving hydrogen or

oxygen is killed.

Since it takes very little substance to form a layer

merely one molecule thick over any reasonable stretch of

surface, a catalyst can be quickly poisoned by impurities

that are present in the working mixture of gases, even

when those impurities are present only in trace amounts. .

If this is all so, then anything which increases the amount

of surface in a given weight of metal will also increase the

catalytic efficiency. Thus, powdered platinum, with a great

deal of surface, is a much more effective catalytic agent



than the same weight of bulk platinum. It is perfectly fair,

therefore, to speak of “surface catalysis.”

But what is there about a surface film that hastens the

process of, let us say, hydrogen-oxygen combination? We

still want to remove the suspicion of magic.

To do so, it helps to recognize what catalysts can’t do.

For instance, in the 187Ws, the American physicist

Josiah Willard Gibbs painstakingly worked out the applica

tion of the laws of thermodynamics to chemical reactions.

He showed that there is a quantity called “free energy”

which always decreases in any chemical reaction that is

spontaneous-that is, that proceeds without any input of

energy.

Thus, once hydrogen and oxygen start reacting, they

keep on reacting for as long as neither gas is completely

used up, and as a result of the reaction water is formed. We

explain this by saying that the free energy of the water is

less than the free energy of the hydrogen-oxygen mixture.

The reaction of hydrogen and oxygen to form water is

analogous to sliding down an “energy slope.”

But if that is so, why don’t hydrogen and oxygen mole

cules combine with’each other as soon as they are mixed.

Why do they linger for indefinite periods at the top of

the energy slope after being mixed, and react and slide

down ward only after being heated?

Apparently, before hydrogen and oxygen molecules

(each composed of a pair of atoms) can react, one or the

other must be pulled apart into individual atoms. That

requires an energy input. It represents an upward energy

slope, before the downward slope can be entered. It is an

“energy hump,” so to speak. The amount of energy that

must be put into a reacting system to get it over that

energy hump is called the “energy of activation,” and the

con 207 cept was first advanced in 1889 by the Swedish

chemist Svante August Arrhenius.



When hydrogen and oxygen molecules are colliding at

ordinary temperature, only the tiniest fraction happen to

possess enough energy of motion to break up on collision.

That tiniest fraction, which does break up and does

react, then liberates enough energy, as it slides down the

energy slope, to break up additional molecules. However,

so little energy is produced at any one-time that it is

radiated away before it can do any good. ‘ne net result is

that hydrogen and oxygen mixed at room temperature do

not react. ff the temperature is raised, molecules move

more rapidly and a larger proportion of them possess the

nec essary energy to break up on collision. (More, in other

words, can slide over the energy hump.) More and more

energy is released, and there comes a particular tempera

ture when more energy is released than can be radiated

away. The temperature is therefore further raised, which

produces more energy, which raises the temperature still

further-and hydrogen and oxygen proceed to react with an

explosion.

In 1894 the Russian chemist Wilhelm Ostwald pointed

out that a catalyst could not alter the free energy relation

ships. It cannot really make a reaction go, that would not

go without it-though it can make a reaction go rapidly that

in its absence would prciceed with only imperceptible

speed.

In other words, hydrogen and oxygen combine in the

absence of platinum but at an imperceptible rate, and the

platinum baste-maker accelerates that combination. For

water to decompose to hydrogen and oxygen at room tem

perature (without the input of energy in the form of an

electric current, for instance) is impossible, for that would

mean spontaneously moving up an energy slope. Neither

platinum nor any other catalyst could make a chemical

reaction move up an energy slope. If we found one that did

so, then that would be magic.



Or else we would have to modify the laws of

thermodynamics.

But how does platinum hasten the reaction it does

hasten? What does it do to the molecules in the film?

Ostwald’s suggestion (accepted ever since) is that cata

lysts hasten reactions by lowering the energy of activation

of the reaction-flattening out the hump. At any given tem

perature, then, more molecules can cross over the hump

and slide downward, and the rate of the reaction increases,

sometimes enormously.

For instance, the two oxygen atoms m an oxygen mole

cule hold together with a certain, rather strong,

attachment, and it is not easy to split them apart. Yet such

splitting is necessary if a water molecule is to be formed.

When an oxygen atom is attached to a platinum atom

and forms part of a surface film, however, the situation

changes. Some of the bond-forming capabilities of the

oxygen molecule are used up in forming the attachment to

the platinum, and less is available for holding the two

oxygen atoms together. The oxygen atom might be said to

be “strained.”

If a hydrogen atom happens to strike such an oxygen

atom, strained in the film, it is more likely to knock it apart

into individual oxygen atoms (and react with one of them)

than would be the case if it collided with an oxygen atom

free in the body of a gas. The fact that the oxygen molecule

is strained means thaf it is easier to break apart, and that

the energy of activation for the hyqrogen-oxygen

combination has been lowered.

Or we can try a metaphor again. Imagine a brick resting

on the upper reaches of a cement incline. The brick should,

ideally, slide down the incline. To do so, however, it must

overcome frictional forces which hold it in place against the

pull of gravity. The frictional forces are here analogous to

the forces holding the oxygen molecule together.



To overcome the frictional force one must give the brick

an initial push (the energy of activation), and then it slides

down.

Now, however, we will try a little “surface catalysis.” We

will coat the slide with wax. If we place the brick on top of

such an incline, the merest touch will start it moving

downward. It may move downward without any help from

us at all.

In waxing the cement incline we haven’t increased the

force of gravity, or added energy to the system. We have

merely decreased the frictional forces (that is, the energy,

hump), and bricks can be delivered down such a waxed

incline much more easily and much more rapidly than down

an unwaxed incline.

So you see that on inspection, the magical clouds of

glory fade into the light of common day, and the wonderful

word “catalyst” loses all its glamor. In fact, notlfing is left

to it but to serve as the foundation for virtually all of

chemical industry and, in the form of enzymes, the founda

tion of all of life, too.

And, come to think of it, that ought to be glory enough

for any reasonable catalyst.



17. The Slowly Moving Finger

Alas, the evidences of mortality are all about us; the

other day our little parakeet died. As nearly as we could

make out, it was a trifle over five years old, and we had

always taken the best of care of it. We had fed it, watered

it, kept its cage clean, allowed it to leave the cage and fly

about the house, taught it a small but disreputable

vocabulary, perrffltted it to ride about on our shoulders and

eat at will from dishes at the table. In short, we encouraged

it to think of itself as one of us humans.

But alas, its aging process remained that of a parakeet.

During its last year, it slowly grew morose and sullen;

men tioned its improper words but rarely; took to walking

rather than flying. And finally it died. And, of course, a

similar process is taking place within me.

This thought makes me petulant. Each year I break my

own previous record and enter new high ground as far as

age is concerned, and it is remarkably cold comfort to think

that everyone else is doing exactly the same thing.

The fact of the matter is that I resent growing old. In my

time I was a kind of mild infant prodigy-you know, the kind

that teaches himself to read before he is five and enters

college at fifteen and is writing for publication at eighteen

and all like that there. As you might expect, I came in for

frequent curious inspection as a sort of ludicrous freak, and

I invariably interpreted this inspection as admiration and

loved it.

But such behavior carries its own punishment, for the

moving finger writes, as Edward Fitzgerald said Omar

Khayyam said, and having writ, moves on. And what that

means is that the bright, young, bouncy, effervescent infant

prodigy becomes a flabby, paunchy, bleary, middle-aged

non-prodigy, and age sits twice as heavily on such as these.



It happens quite often that some huge, hulking, raw

boned fellow, checks bristling with black stubble, comes to

me and says in his bass voice, “I’ve been reading you ever

since I learned to read; and I’ve collected all the stuff you

wrote before I learned to read and I’ve read that, too.”,

My impulse then is to hit him a stiff right cross to the

side of the jaw, and I might do so if only I were quite sure

he would respect my age and not hit back.

So I see nothing for it but to find a way of looking at the

bright side, if any exists…

How long do organisms live anyway? We can only guess.

Statistics on the subject have been carefully kept only in

the last century or so, and then only for Homo sapiens, and

then only in the more “advanced” parts of the world.

So most of what is said about longevity consists of quite

rough estimates. But then, if everyone is guessing, I can

guess, too; and as lightheartedly as the next person, you

can bet.

In the first place, what do we mean. by length of life?

There are several ways of looking at this, and one is to

consider the actual length of time (on the average) that

actual organisms live under actual conditions. This is the

“life expectancy-)I

One thing we can be certain of is that life expectancy is

quite trifling for all kinds of creatures. If a codfish or an

oyster produces millions or billions of eggs and only one or

two happen to produce young thal are still alive at the end

of the first year, then the average life expectancy of all the

coddish or oysterish youngsters can be measured in weeks,

or possibly even days. I imagine that thousands upon

thousands of them live no more than minutes.

Matters are not so extreme among birds and mammals

where there is a certain amount of infant care, but I’ll bet

relatively few of the smaller ones live out a single year.

From the cold-blooded view of species survival, this is

quite enough, however. Once a creature has reached sexual



maturity, and contributed to the birth of a litter of young

which it sees through to puberty or near-puberty, it has

done its bit for species survival and can go its way. If it

survives and produces additional litters, well and good, but

it doesn’t have to.

There is, obviously, considerable survival value in reach

ing sexual maturity as early as possible, so that there is

time to produce the next generation before the first is

gone.

Meadow mice reach puberty in three weeks and can

bear their first litter six weeks after birth. Even an animal

as large as a horse or cow reaches the age of puberty after

one year, and the largest whales reach puberty at two.

Some large land animals can afford to be slower about

it.

Bears are adolescent only at six and elephants only at

ten.

The large carnivores can expect to live a number of

years, if only because they have relatively few enemies (al

ways excepting man) and need not expect to be anyone’s

dinner. The largest herbivores, such as elephants and hip

popotami, are also safe; while smaller ones such as

baboons and water buffaloes achieve a certain safety by

traveling in herds.

Early man falls into this category. He lived in small

herds and he cared for his young. He had, at the very least,

primitive clubs and eventually gained the use of fire. The

average man, therefore, could look forward to a number of

years of life. Even so, with undernourishment, disease, the

hazards of the chase, and the cruelty of man to man, life

was short by modern standards. Naturally, there was a limit

to how short life could be. If men didn’t live long enough,

on the average, to replace themselves, the race would die

out. However, I should guess that in a primitive society a

life expectancy of 18 would be ample for species survival.



And I rather suspect that the actual life ex pectancy of man

in the Stone Age was not much greater.

As mankind developed agriculture and as he domesti

cated animals, he gained a more dependable food supply.

As he learned to dwell within walled cities and to live

under a rule of law, he gained oTeater security against hu

man enemies from without and within. Naturally, life ex

pectancy rose somewhat. In fact, it doubled.

However, throughout ancient and medieval times, I

doubt that life expectancy ever reached 40. In medieval

England, the life expectancy is estimated to have been

35, so that if you did reach the age of 40 you were a

revered sage. What with early marriage and early

childbirth, you were undoubtedly a grandfather, too.

This situation still existed into the twentieth century in

some parts of the world. In India, for instance, as of 1950,

the life expectancy was about 32; in Egypt, as of 1938, it

was 36; in Mexico, as of 1940, it was 38.

The next great step was medical advance, which brought

infection and disease under control. Consider the United

States. In 1850, life expectancy for American white

males was 38.3 (not too much different from the situation

in medieval England or ancient Rome). By 1900, however,

after Pasteur and Koch had done their work, it was up to

48.2; then 56.3 in 1920; 60.6 in 1930; 62.8 in 1940; 66.3

in 1950; 67.3 in 1959; and 67.8 in 1961.

All through, females had a bit the better of it (being the

tougher sex). In 1850, they averaged two years longer life

than males; and by 1961, the edge had risen to nearly

seven years. Non-whites in the United States don’t do quite

as well-not for any inborn reason, I’m sure, but because

they generally occupy a position lower on the economic

scale. They run some seven years behind whites in life ex

pectancy. (And if anyone wonders why Negroes are rest

less these days, there’s seven years of life apiece that they

have coming to them. That might do as a starter.)



Even if we restrict ourselves to whites, the United States

does not hold the record in life expectancy. I rather think

Norway and Sweden do. The latest figures I can find (the

middle 1950s) give Scandinavian males a life expectancy of

71, and females one of 74.

This change in life expectancy has introduced certain

changes in social custom. In past centuries, the old man

was a rare phenomenon-an unusual repository of long

memories and a sure guide to ancient traditions. Old age

was revered, and in some societies where life expectancy is

still low and old men still exceptional, old age is still

revered.

It might also be feared. Until the nineteenth century

there were particular hazards to childbirth, and, few

women survived the process very often (puerperal fever

and all that). Old women were therefore even rarer than

old men, and with their wrinkled cheeks and toothless

gums were strange and frightening phenomena. The witch

mania of early modern times may have been a last

expression of that.

Nowadays, old men and women are very common and

the extremes of both good and evil are spared them. Per

haps that’s just as well.

One might suppose, what with the steady rise in life

expectancy in the more advanced portions of the globe,

that we need merely hold on another century to find men

routinely living a century and a half. Unfortunately, this is

not so. Unless there is a remarkable biological break

through in geriatrics, we have gone just about as far as we

can go in raising, the life expectancy.

I once read an allegory that has haunted me all my adult

life. I can’t repeat it word for word; I wish I could. But it

goes something like this. Death is an archer and life is a

bridge. Children begin to cross the bridge gaily, skipping

along and growing older, while Death shoots at them. Ms

aim is miserable at first, and only an occasional child is



transfixed and falls off the bridge into the cloud-

enshrouded mists below. But as the crowd moves farther

along, Death’s aim improves and the numbers thin. Finally,

when Death aiins at the aged who totter nearly to the end

of the bridge, his aim is perfect and he never misses. And

not one man ever gets across the bridge to see what lies on

the other side.

This remains true despite all the advances in social struc

ture and medical science throughout history. Death’s aim

has worsened through early and middle life, but those last

perfectly aimed arrows are the arrows of old age, and even

now they never miss. All we have done to wipe out war,

famine, and disease has been to allow more people the

chance of experiencing old age. When life expectancy was

35, perhaps one in a hundred reached old age;

nowadays nearly half the population reaches it-but it is the

same old old age. Death gets us all, and with every scrap of

his ancient efficiency.

In short, putting life expectancy to one side, there is a

“specific age” which is our most common time of death

from inside, without any outside push at all; the age at

which we would die even if we avoided accident, escaped

disease, and took every care of ourselves.

Three thousand years ago, the psalmist testified as to

the specific age of man (Ps. 90:10), saying: “The days of our

years are threescore years and ten; and if by reason of

strength they be fourscore years, yet is their strength labor

and sorrow; for it is soon cut -off, and we fly away.”

I And so it is today; three millennia of civilization and

three centuries of science have not changed it. The com

monest time of death by old age lies between 70 and 80.

But that is just the commonest time. We don’t all die on

our 75th birthday; some of us do better, and it is un

doubtedly the hope of each one of us that we ourselves,

personally, will be one of those who will do better. So what



we have our eye on is not the specific age but the maximum

age we can reach.

Every species of multicellular creature has a specific age

and a maximum age; and of the species that have been

studied to any degree at all, the maximum age would seem

to be between 50 and 100 per cent longer than the specific

age. Thus, the maximum age for man is considered to be

about II S.

There have been reports of older men, to be sure. The

most famous is the case of Thomas Parr (“Old Parr”), who

was supposed to have been born in 1481 in England and to

have died in 1635 at the age of 154. The claim is not

believed to be authentic (some think it was a put-up job

involving three generations of the Parr family), nor are any

other claims of the sort. The Soviet Union reports

numerous centenarians in the Caucasus, but all were born

in a region and at a time when records were not kept. The

old man’s age rests only upon his own word, therefore, and

ancients are notorious for a tendency to lengthen their

years. Indeed, we can make it a rule, almost, that the

poorer the recording of vital statistics in a particular

region, the older the centenarians claim to be.

In 1948, an English woman named Isabella Shepheard

died at the reported age of 115. She was the last survivo ‘r,

within the British Isles, from the period before the com

pulsory registration of births, so one couldn’t be certain to

the year. Still, she could not have been younger by more

than a couple of years. In 1814, a French Canadian named

Pieffe Joubert died and he, apparently, had reliable records

to show that he was bom in 1701, so that he died at 113. 

Let’s accept 115 as man’s maximum age, then, and ask

whether we have a good reason to complain about this.

How does the figure stack up against maximum ages for

other types of living organisms? if we compare plants with

animals, there is no question that plants bear off the palm



of victory. Not all plants generally, to be sure. To quote the

Bible again (Ps. 103:

15-16), “As for man his days are as grass: as a flower of

the field, so he flourisheth. For the wind passeth over it,

and it is gone; and the place thereof shall know it no more.”

This is a spine-tingling simile representing the evanes

cence of human life, but what if the psalmist had said that

as for man. his days are as the oak tree; or better still, as

the giant sequoia? Specimens of the latter are believed to

be over three thousand years old, and no maximum age is

known for them.

However, I don’t suppose any of us wants long life at the

cost of being a tree. Trees live long, but they live slowly,

passively, and in terribly, terribly dull fashion. Let’s see

what we can do with animals.

Very simple animals do surprisingly well and there are

reports of sea-anemones, corals, and such-like creatures

passing the half-century mark, and even some tales (not

very reliable) of centenarians among them. Among more

elaborate ‘invertebrates, lobsters may reach an age of 50

and clams one of 30. But I think we can pass invertebrates,

too. There is no reliable tale of a complex invertebrate liv

ing to be 100 and even if giant squids, let us say, did so, we

don’t want to be giant squids.

What about vertebrates? Here we have legends, par

ticularly about fish. Some tell us that fish never grow old

but live and grow forever, not dying till they are killed. In

dividual fish are reported with ages of several centuries.

Unfortunately, none of this can be confirmed. The oldest

age reported for a fish by a reputable observer is that of a

lake sturgeon which is supposed to be well over a century

old, going by a count of the rings on the spiny ray of its

pectoral fin.

Among amphibia the record holder is the giant sala

mander, which may reach an age of 50. Reptiles are better.



Snakes ma reach an aoe of 30 and crocodiles may attain

y t,

60, but it is the turtles that hold the record for the

animal kingdom. Even small turtles may reach the century

mark, and at least one larger turtle is known, with

reasonable certainty, to have lived 152 years. It may be that

the large Galapagos turtles can attain an age of 200.

But then turtles live slowly and dully, too. Not as slowly

as plants, but too slowly for us. In fact, there are only two

classes of living creatures that live intensely and at peak

level at all times, thanks to their warm blood, and these are

the birds and the mammals. (Some mammals cheat a little

and hibernate through the winter and probably ex tend

their life span in that nianner.) We might envv a tiger or an

eagle if they. lived a long, long time and even

— as the shades of old age closed in-wish we could trade

places with them. But do they live a long, long time?

Of the two classes, birds on the whole do rather better

than mammals as far as maximum age is concerned. A

pigeon can live as long as a lion and a herring gull as long

as a hippopotamus. In fact, we have long-life legends about

some birds, such as parrots and swans, which are supposed

to pass the century mark with ease.

Any devotee of the Dr. Dolittle stories (weren’t you?)

must remember Polynesia, the parrot, who was in her third

century. Then there is Tennyson’s poem Tithonus, about

that mythical character who was granted immortality but,

through an oversight, not freed from the incubus of old age

so that he grew older and older and was finally, out of pity,

turned into a grasshopper. Tennyson has him lament that

death comes to all but him. He begins by pointing out that

men and the plants of the field die, and his fourth line is an

early climax, going, “And after many a summer dies the

swan.” In 1939, Aldous Huxley used the line as a title for a

book that dealt with the striving for physical im mortalit y



However, as usual, these stories remain stories. The

oldest confirmed age reached by a parrot is 73, and I

imagine that swans do not do much better. An age of 115

has been reported for carrion crows and for some vultures,

but this is with a pronounced question mark.

Mammals interest us most, naturally, since we are mam

mals, so let me list the maximum ages for some mammalian

types. (I realize, of course, that the word “rat” or “deer”

covers dozens of species, each with its own aging pattern,

but I can’t help that. Let’s say the typical rat or the typical

deer.)

Elephant 77 Cat 20

Whale 60 pig 20

Hippopotamus 49 Dog 1 8

Donkey 46 Goat 17

Gorilla 45 Sheep 16

Horse 40 Kangaroo 16

Chimpanzee 39 Bat 15

Zebra 38 Rabbit 15

Lion 35 Squirrel 15

Bear 34 Fox 14

Cow 30 Guinea Pig 7

Monkey 29 Rat 4

Deer 25 Mouse i

Seal 25 Shrew 2

The maximum age, be it remembered, is reached only by

exceptional individuals. While an occasional rabbit may

make 15, for instance, the average rabbit would die of old

age before it was 10 and might have an actual life ex

pectancy of only 2 or 3 years.

In general, among all groups of organisms sharing a

common plan of structure, the large ones live longer than

the small. Among plants, the giant sequoia tree lives longer

than the daisy. Among animals, the giant sturgeon lives

longer than the herring, the giant salamander lives longer.

than the frog, the giant alligator lives longer than the



lizard, the vulture lives longer than the sparrow, and the

elephant lives longer than the shrew.

Indeed, in mammals particularly, there seems to be a

strong correlation between longevity and size. There are

exceptions, to be sure-some startling ones. For instance,

whales are extraordinarily short-lived for their size. The

age of 60 1 have given is quite exceptional. Most cetaceans

are doing very well indeed if they reach 30. This may be

because life in the water, with the continuous loss of beat

and the never-ending necessity of swimming, shortens life.

But much more astonishing is the fact that man has a

longer life than any other mammal-much longer than the

elephant or even than the closely allied gorilla. When a

human centenarian dies, of all the animals in the world

alive on the day that he was born, the only ones that re

main alive on the day of his death (as far as we know) are a

few sluggish turtles, an occasional ancient vulture or

sturgeon, and a number of other human centenarians. Not

one non-human mammal that came into this world with him

has remained. All, without exception (as far as we know),

are dead.

If you think this is remarkable, wait! It is more re

markable than you suspect.

The smaller the mammal, the faster the rate of its

metabolism; the more rapidly, so to speak, it lives. We

might well suppose that while a small mammal doesn’t live

as long as a large one, it lives more rapidly and more

intensely. In some subjective manner, the small mammal

might be viewed as living just as long in terms of sensation

as does the more sluggish large mammal. As concrete

evidence of this difference in metabolism among mammals,

consider the heartbeat rate. The following table lists some

rough figures for the average number of heartbeats per

minute in different types of mammal.

Shrew 1000 Sheep 75

Mouse 550 Man 72



Rat 430 Cow 60

Rabbit 150 Lion 45

Cat 130 Horse 38

Dog 95 Elephant 30

Pig 75 Whale 17

For the fourteen types of animals listed we have the

heartbeat rate (approximate) and the maximum age (ap

proximate), and by appropriate multiplications, we can

determine the maximum age of each type of creature, not

in years but in total heartbeats. The result follows:

Shrew 1,050,000,000

Mouse 950,000,000

Rat 900,000,000

Rabbit 1,150,000,000

Cat 1,350,000,000

Dog 900,000,000

Pig 800,000,000

Sheep 600,000,000

Lion 830,000,000

Horse 800,000,000

Cow 950,000,000

Elephant 1,200,000,000

Whale 630,000,000

Allowing for the approximate nature of all my figures,

I look at this final table through squinting eyes from a

dis tance and come to the following conclusion: A mammal

can, at best, live for about a billion heartbeats and when

those are done, it is done.

But you’ll notice that I have left man out of the table.

That’s because I want to treat him separately. He lives at

the proper speed for his size. His heartbeat rate is about

that of other animals, of similar weight. It is faster than the

heartbeat of larger animals, slower than the heartbeat of

smaller animals. Yet his maximum age is 115 years, and

that means his maximum number of heartbeats is about

4,350,000,000.



An occasional man can live for over 4 billion heartbeats!

In fact, the life expectancy of the American male these

days is 2.5 billion heartbeats. Any man- who passes the

quarter-century mark has gone beyond the billionth heart

beat mark and is still young, with the prime of life ahead.

Why? It is not just that we live longer than other mam

mals. Measured in heartbeats, we live four times as long!

Why??

Upon what meat doth this, our species, feed, that we are

grown so great? Not even our closest non-buman rela tives

match us in this. If we assume the chimpanzee to have our

heartbeat rate and the gorilla to have a slightly slower one,

each lives for a maximum of about 1.5 billion heartbeats,

which isn’t very much out of line for mammals generally.

How then do we make it to 4 billion?

What secret in our hearts makes those organs work so

much better and last so much longer than any other mam

malian heart in existence? Why does the moving finger

write so slowly for us, and for us only?

Frankly, I don’t know, but whatever the answer, I am

comforted. If I were a member of any other mamxnalian

species my heart would be stilled long years since, for it

has gone well past its billionth beat. (Well, a little past.)

But since I am Homo sapiens, my wonderful heart beats

even yet with all its old fire; and speeds up in proper

fashion at all times when it should speed up, with a verve

and efficiency that I find completely satisfying.

Why, when I stop to think of it, I am a young fellow, a

child, an infant prodigy. I am a, member of the most un

usual species on earth, in longevity as well as brain power,

and I laugh at birthdays.

(Let’s see now. How many years to 115?)
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