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A - The Problem of Left and

Right



1 - ODDS AND EVENS

I have just gone through a rather unsettling experience.

Ordinarily it is not very difficult to think up a topic for these

chapters. Some interesting point will occur to me, which will

quickly lead  my mind to a particular line of development,

beginning in one  place and ending in another. Then, I get

started.

Today, however, having determined to deal with

asymmetry (in more than one chapter, very likely) and to

end with life and antilife, I found that two possible starting

points occurred to me.  Ordinarily, when this happens, one

starting point seems so much superior to me that I choose it

over the other with a minimum of hesitation.

This time, however, the question was whether to start

with even numbers or with double refraction, and the

arguments raging  within my head for each case were so

equally balanced that I couldn’t make up my mind. For two

hours I sat at my desk, pondering first one and then the

other and growing steadily un-happier.

Indeed, I became uncomfortably aware of the

resemblance of my case to that of “Buridan’s ass.”

The reference, here, is to a fourteenth-century French

philosopher, Jean Buridan, who was supposed to have

stated the following: “If a hungry ass were placed exactly

between two haystacks in every respect equal, it would

starve to death, because there would be no motive why it

should go to one rather than to the other.”

Actually, of course, there’s a fallacy here, since the

statement does not recognize the existence of the random

factor. The ass,  no logician, is bound to turn his head

randomly so that one haystack comes into better view,



shuffle his feet randomly so that one haystack comes to be

closer; and he would end at the haystack better seen or

more closely approached.

Which haystack that would be, one could not tell in

advance. If one had a thousand asses placed exactly

between a thousand  sets of haystack pairs, one could

confidently expect that about  half would turn to the right

and half to the left. The individual  ass, however, would

remain unpredictable.

In the same way, it is impossible to predict whether an

honest coin, honestly thrown, will come down heads or tails

in any one  particular case, but we can confidently predict

that a very large number of coins tossed simultaneously (or

one coin tossed a very  large number of times) will show

heads just about half the time and tails the other half.

And so it happens that although the chance of the fall of

heads or tails is exactly even, just fifty-fifty, you can

nevertheless call  upon the aid of randomness to help you

make a decision by tossing one coin once.

At this point, I snapped out of my reverie and did what a

lesser mind would have done two hours before. I tossed a

coin.

Shall we start with even numbers, Gentle Readers?

I suspect that some prehistoric philosopher must have

decided that there were two kinds of numbers: peaceful

ones and warlike ones. The peaceful numbers were those of

the type 2, 4, 6, 8, while  the numbers in between were

warlike.

If there were 8 stone axes and two individuals

possessing equal claim, it would be easy to hand 4 to each

and make peace. If there were 7, however, you would have

to give 3 to each and then either toss away the 1 remaining

(a clear loss of a valuable object) or  let the two disputants

fight over it.



The fact that the original property that marked out the

significance of what we now call even and odd numbers was

something like this is indicated by the very names we give

them.

The word “even” means fundamentally, “flat, smooth,

without unusual depressions or elevations.” We use the

word in this sense

when we say that a person says something “in an even

tone of voice.” An even number of identical coins, for

instance, can be divided into two piles of exactly the same

height. The two piles  are even in height and hence the

number is called even. The even number is the one with the

property of “equal shares.”

“Odd,” on the other hand, is from an old Norse word

meaning “point” or “tip.” If an odd number of coins is

divided into two piles as nearly equal as possible, one pile is

higher by one coin and therefore rears a point or tip into the

air, as compared with the other. The odd number possesses

the property of “unequal shares,” and it is no accident that

the expression “odds” in betting  implies the wagering of

unequal amounts of money by the two participants.

Since even numbers possess the property of equal

shares, they were said to have “parity,” from a Latin word

meaning “equal.“  Originally, this word applied (as logic

demanded) to even numbers only, but mathematicians

found it convenient to say that if  two numbers were both

even or both odd, they were, in each case  “of the same

parity.” An even number and an odd number,  grouped

together, were “of different parity.”

To see the convenience of this convention, consider the

following:

If two even numbers are added, the sum is invariably

even. (This can be expressed mathematically by saying that

two even numbers can be expressed as zm and zn where m

and n are whole numbers and that the sum, zm + zn, is still

clearly divisible by two. However, we are friends, you and I,



and I’m sure we can dispense with mathematical reasoning

and that I will find you willing to accept my word of honor as

a gentleman in such matters. Besides, you are welcome to

search for two even numbers whose sum isn’t even.)

If two odd numbers are added, the sum is also invariably

even.

If an odd number and an even number are added,

however, the sum is invariably odd.

We can express this more succinctly in symbols, with E

standing for even and O standing for odd:

E + E = E 

0 + 0 = E 

E + 0 = 0 

0 + E = 0

Or, if we are dealing with pairs of numbers only, the

concept of parity enables us to say it in two statements,

rather than four:

1)    Same parities add to even.

2)    Different parities add to odd.

A very similar state of affairs exists with reference to

multiplication, if we divide numbers into two classes:

positive numbers (+)• and negative numbers (—). The

product of two positive numbers is invariably positive. The

product of two negative numbers is invariably positive. The

product of a positive and a negative  number is invariably

negative. Using symbols:

+ X + = +

- X - = +

+ x - = -

- x + = -



Or, if we consider all positive numbers as having one

kind of parity and all negative numbers as another, we can

say, in connection with the multiplication of two numbers:

1)    Same parities multiply to positive.

2)    Different parities multiply to negative.

The concept of parity—that is, the assignment of all

objects of a particular class to one of two subclasses and

then finding two opposing results when objects of the same

or of different subclasses are manipulated—can be applied

to physical phenomena.

For instance, all electrically charged particles can be

divided into two classes: positively charged and negatively

charged. Again,

all magnets possess two points of concentrated

magnetism of opposite properties: a north pole and a south

pole. Let’s symbolize these as +, —, N and S.

It turns out that:

+ and + or N and N = repulsion

—    and — or S and S = repulsion

+ and — or N and S = attraction

—    and + or S and N = attraction

Again, we can make two statements:

1)      Like electric charges, or magnetic poles, repel

each other.

2)       Opposite electric charges, or magnetic poles,

attract each other.

The similarity in form to the situation with respect to the

summing of odd and even, or the multiplying of positive and

negative, is obvious.

When, in any situation, same parities always yield one

result and different parities always yield the opposite result,

we say that  “parity is conserved.” If two even numbers



sometimes added up  to an odd number; or if a positive

number multiplied by a negative one sometimes yielded a

positive product; or if two positively  charged objects

sometimes attracted each other; or if a north magnetic pole

sometimes repelled a south magnetic pole, we  would say

that, “The law of conservation of parity is violated.”

Certainly in connection with numbers and with

electromagnetic phenomena, no one has ever observed the

law of conservation of parity to have been violated, and no

one seriously expects to observe a case in the future.

What about other cases?

Well, electromagnetism involves a field. That is, any

electrically charged particle, or any magnet, is surrounded

by a volume of space within which its properties are made

manifest on other  objects of the same sort. The other

objects are also surrounded  by a volume of space within

which their properties are made manifest on the original

object. One speaks, therefore,of an “electromagnetic

interaction” involving pairs of objects carrying electric

charge or magnetic poles.

Up through the first years of the twentieth century, the

only other kind of interaction known was the gravitational.

At first blush, there seems no easy way of involving

gravitation with parity. There is no way of dividing objects

into two groups, one with one kind of gravitational property

and the other with the opposite kind.

All objects of a given mass possess the same intensity

of gravitational interaction of the same sort. Any two objects

with mass attract each other. There seems no such thing as

“gravitational  repulsion” (and, according to Einstein’s

General Theory of Relativity there can’t be such a thing). It

is as though, in gravity, we can say only that E + E = Eor +

X + = -k

To be sure, there is a chance that in the field of

subatomic physics there might be some objects with mass

that possess the  usual gravitational properties and other



objects with mass that  possess gravitational properties of

the opposite kind (“antigravity”). In that case, the chances

are that it would turn out that two antigravitational objects

attract each other just as two gravitational objects do; but

that an antigravitational and a gravitational object would

repel each other. The situation with respect  to the

gravitational interaction would be the reverse of the

electromagnetic one (like gravities would attract and unlike

gravities would repel) but, allowing for that reversal, parity

would still be conserved.

The trouble is, though, that the gravitational interaction

is so much more feeble than the electromagnetic interaction

that gravitational interactions of subatomic particles are as

yet impossible to measure and a sub-tiny attraction can’t be

differentiated from a sub-tiny repulsion. —So the question of

parity and the gravitational field remains in abeyance.

As the twentieth century wore on, it came to be

recognized that the gravitational and electromagnetic

interactions were not the only ones that existed. Subatomic

particles involved something else. To be sure, electrons had

negative charges and protons had positive charges and with

respect to this, they behaved in accordance with the rules of

electromagnetic interaction. There were other events in the

subatomic world, however, that had nothing to do with

electromagnetism. There was, for instance, some sort of

interaction involving particles, whether with or without

electric charge, that showed itself only in the super-close

quarters to be found within the atomic nucleus.

Did this “nuclear interaction” involve parity?

Every subatomic particle has a certain quantum-

mechanical property which can be expressed in a form

involving three quantities, x, y, and z. In some cases, it is

possible to change the sign of  all three quantities from

positive to negative without changing the  sign of the

expression as a whole. Particles in which this is true are said



to have “even parity.” In other cases, changing the signs of

the three quantities does change the sign of the entire

expression and a particle of which this is true is said to have

“odd parity.”

Why even and odd? Well, an even-parity particle can

break up into two even-parity particles or two odd-parity

particles, but never into one even-parity plus one odd-parity.

An odd-parity particle, on the other hand, can break up into

an odd-parity particle plus  an even-parity one, but never

into two odd-parity particles or two  even-parity particles.

This is analogous to the way in which an even number can

be the sum of two even numbers or of two odd  numbers,

but never the sum of an even number and an odd number,

while an odd number can be the sum of an even number

and an odd number, but can never be the sum of two even

numbers or of two odd numbers.

But then a particle called the “K-meson” was discovered.

It was unstable and quickly broke down into “pi-mesons.”

Some  K-mesons gave off two pi-mesons in breaking down

and some gave off three pi-mesons and that was instantly

disturbing. If a K-meson did one, it ought not to be able to

do the other. Thus an even number can be the sum of two

odd numbers (10= 3 + 7) and an odd number can be the

sum of three odd numbers (11 = 3 + 7 + 1), but no number

can be the sum of two odd numbers in one case and three

odd numbers in another. It would be like expecting a

number to be both odd and even. It would, in short,

represent a violation of the law of conservation of parity.

Physicists therefore reasoned there must be two kinds of

K-meson; an even-parity variety (“theta-meson”) that broke

down  to two pi-mesons, and an odd-parity variety (“tau-

meson”) that broke down to three pi-mesons.

This did not turn out to be an altogether satisfactory

solution, since there seemed to be no possible distinction

one could make  between the theta-meson and the tau-

meson except for the number of pi-mesons it broke down



into. To invent a difference in  parity for two particles

identical in every other respect seemed poor practice.

By 1956, a few physicists had begun to wonder if it

weren’t possible that the law of conservation of parity might

not be broken in some cases. If that were so, maybe it

wouldn’t be necessary to try to make a distinction between

the theta-meson and the tau-meson.

The suggestion roused the interest of two young

Chinese-American physicists at Columbia, Chen Ning Yang

and Tsung Dao Lee, who took into consideration the

following—

There is, as a matter of fact, not one nuclear interaction,

but two. The one that holds protons and neutrons together

within the  nucleus is an extremely strong one, about 130

times as strong as  the electromagnetic interaction, so it is

called the “strong nuclear interaction.”

There is a second, “weak nuclear interaction” which is

only about a hundred-trillionth the intensity of the strong

nuclear interaction (but still some trillion-trillion times as

intense as the unimaginably weak gravitational interaction).

This meant that there were four types of interaction in

the universe (and there is some theoretical reason for

arguing that a fifth of any sort cannot exist, but I would hate

to commit myself  to that): 1) strong nuclear, 2)

electromagnetic, 3) weak nuclear, and 4) gravitational.

We can forget about the gravitational interaction for

reasons

I mentioned earlier in the article. Of the other three, it

had been well established by 1956 that parity was

conserved in the strong  nuclear interaction and in the

electromagnetic interaction. Numerous cases of such

conservation were known and the matter  was considered

settled.

No one, however, had ever systematically checked the

weak nuclear interaction with respect to parity, and the



breakdown of the K-mescn involved a weak nuclear

interaction. To be sure, all physicists assumed that parity

was conserved in the weak nuclear interaction but that was

only an assumption.

Yang and Lee published a paper pointing this out—and

suggested experiments that might be performed to check

whether the weak nuclear interactions conserved parity or

not. Those experiments were quickly carried out and the

Yang-Lee suspicion that parity would not be conserved was

shown to be correct. There was very little delay in awarding

them shares in the Nobel prize in physics in 1957, at which

time Yang was thirty-four and Lee, thirty-one.

You might ask, of course, why parity should be

conserved in some interactions and not in others—and

might not be satisfied with the answer “Because that’s the

way the universe is.”

Indeed, by concentrating too hard on those cases where

parity is conserved, you might get the notion that it is

impossible, inconceivable, unthinkable to deal with a case

where it isn’t conserved. If the conservation of parity is then

shown not to hold in some cases, the notion arises that this

is a tremendous revolution  that throws the entire structure

of science into a state of collapse.

None of that is so.

Parity is not so essential a part of everything that exists

that it must be conserved in all places, at all times, and

under all conditions. Why shouldn’t there be conditions

where it isn’t conserved or, as in the case of gravitational

interaction, where it might not even apply?

It is also important to understand that the discovery of

the fact that parity was not conserved in weak nuclear

interactions

did not “overthrow” the law of conservation of parity,

even though that was certainly the way in which it was

presented in the newspapers and even by scientists



themselves. The law of conservation  of parity, in those

cases in which its validity had been tested by experiment,

remained and is still as much in force as ever.

It was only in connection with the weak nuclear

interactions, where the validity of the law of conservation of

parity had never been tested prior to 1956 and where it had

merely been rather carelessly assumed that it applied, that

there came the change. The  final experiment merely

showed that physicists had made an assumption they had

no real right to make and the law of conservation of parity

was “overthrown” only where it had never been  shown to

exist in the first place.

It might help if we look at some familiar, everyday case

where a law of conservation of parity holds, and then on

another where it is merely assumed to hold by analogy, but

doesn’t really. We can then see what happened in physics,

and why an overthrow of something that really isn’t there to

begin with, improves the structure of science and does not

damage it.

Human beings can be divided into two classes: male (M)

and female (F). Neither two males by themselves nor two

females by themselves can have children (no C). A male and

a female  together, however, can have children (C). So we

can write:

M and M = no C 

F and F = no C 

M and  F = C 

F and M = C

There is thus the familiar parity situation:

1)    Like sexes cannot have children

2)    Opposite sexes can have children.



To be sure, there are sexually immature individuals,

barren females, sterile or impotent men, and so on, but

these matters are details that don’t affect the broad

situation. As far as the sexes and children are concerned, we

can say that the human species (and, indeed, many other

species) conserves parity.

Because the human species conserves sexual parity

with respect to childbirth, it is easy to assume it conserves it

with respect to love and affection as well, so that the feeling

arises that sexual love ought to exist only between men and

women. The fact is,  though, that parity is not conserved in

that respect and that both male homosexuality and female

homosexuality do exist and have  always existed. The

assumption that parity ought to be conserved  where, in

actual fact, it isn’t, has caused many people to find

homosexuality immoral, perverse, abhorrent, and has

created oceans of woe throughout history.

Again, in Judeo-Christian culture, the institution of

marriage is closely associated with childbirth and therefore

strictly observes the law of conservation of parity that holds

for childbirth. A marriage can take place only between one

man and one woman because, ideally, that is the simplest

system that makes childbirth possible.

Now, however, there is an increasing understanding that

parity, which is rigidly conserved with respect to childbirth,

is not necessarily conserved with respect to sexual relations.

Increasingly,  homosexuality is treated not as a sin or a

crime, but as, at most, a misfortune (if that).

There is the further attitude, slowly growing in our

society, that there is no need to force the institution of

marriage into the tight grip of parity conservation. We hear,

more and more frequently, of homosexual marriages and of

group marriages. (The old-fashioned institution of polygamy

is an example of one kind of marriage, enjoyed by many of

the esteemed men of the Old Testament, in which sexual

parity was not conserved.)



In the next chapter, then, we’ll go on with the nature of

the experiment that established the non-conservation of

parity in the  weak nuclear interaction and consider what

happened afterward.



2 - THE LEFT HAND OF THE

ELECTRON

I received a letter yesterday which criticized my writing

style. It complained, “you avoid the poetic to the extent that

when a cryptic, glowing, ‘charged’ phrase occurs to you, I’d

be willing to bet  that you deliberately put it aside and opt

for a clearer but more pedestrian one.”

All I can say to that is that you bet your sweet life I do.

As all who read my volumes of science essays must

surely be aware, I have a dislike for the mystical approach

to the universe, whether in the name of science, philosophy,

or religion. I also have a dislike for the mystical approach to

literature.

I dare say it is possible to evoke an emotional reaction

through a “cryptic, glowing, ‘charged’ phrase” but you show

me a cryptic phrase and I’ll show you any number of readers

who, not knowing  what it means but afraid to admit their

ignorance, will say, “My,  isn’t that poetic and emotionally

effective.”

Maybe it is, and maybe it isn’t; but a vast number of

literary incompetents get by on the intellectual insecurity of

their readers,  and a vast number of hacks write a vast

quantity of bad “poetry” and make a living at it.

For myself, I manage to retain a certain amount of

intellectual security. When I read a book that is intended

(presumably) for the general public and find that I can make

neither head nor tail of it, it never occurs to me that this is

because I am lacking in  intelligence. Rather, I reach the

calmly assured opinion that the  author is either a poor

writer, a confused thinker, or, most likely, both.

Holding these views, it is not surprising that I “opt for a

clearer but more pedestrian” style in my own writing.



For one thing, my business and my passion (even in my

fiction  writing) is to explain. Partly it is the missionary

instinct that makes me yearn to make my readers see and

understand the universe as I see and understand it, so that

they may enjoy it as I do. Partly, also, I do it because the

effort to put things on paper clearly enough to make the

reader understand, makes it possible for me to understand,

too.

I try to teach because whether or not I succeed in

teaching others, I invariably succeed in teaching myself.

Yet I must admit that sometimes this self-imposed task

of mine is harder than other times. Continuing the

exposition on parity and related topics begun in Chapter 1 is

one of the harder times, but then no one ever promised me

a rose garden, so let’s continue—

The conservation laws are the basic generalizations of

physics and of the physics aspects of all other sciences. In

general, a conservation law says that some particular

overall measured property  of a closed system (one that is

not interacting with any other part of the universe) remains

constant regardless of any changes taking place within the

system. For instance, the total quantity  of energy within a

closed system is always the same regardless  of changes

within the system and this is called “the law of conservation

of energy.”

The law of conservation of energy is a great

convenience to physicists and is probably the most

important single conservation  law, and therefore the most

important single law of any kind in all of science. Yet it does

not seem to carry a note of overwhelming necessity about

it.

Why should energy be conserved? Why shouldn’t the

energy of a closed system increase now and then, or

decrease?



Actually, we can’t think of a reason, if we think of

energy only. We simply have to accept the law as fitting

observation.

The conservation laws, however, seem to be connected

with symmetries in the universe. It can be shown, for

instance, that if  one assumes time to be symmetrical, one

must expect energy to  be conserved. That time is

symmetrical means that any portion of  it is like any other

and that the laws of nature therefore display “invariance

with time” and are the same at any time.

In a rough and ready way, this has always been

assumed by mankind—for closed systems. If a certain

procedure lights a fire or smelts copper ore or raises bread

dough on one day, the same procedure should also work the

next day or the next year under  similar conditions. If it

doesn’t, the assumption is that you no longer have a closed

system. There may be interference from the outside in the

form (mystics would say) of a malicious witch or  an evil

spirit, or in the form (rationalists would say) of unexpected

moisture in the wood, impurities in the ore, or coolness

in the oven.

If we avoid complications by considering the simplest

possible forms of matter—subatomic particles moving in

response to the various fields produced by themselves and

their neighbors—we readily assume that they will obey the

same laws at any moment in time. If a system of subatomic

particles were to be transferred by some time machine to a

point in time a century ago or a  million years ago, or a

million years in the future, the change in time could not be

detected by studying the behavior of the subatomic

particles only. And if that is true, the law of conservation of

energy is true.

Of course, invariance with time is just as much an

assumption as the conservation of energy is, and

assumptions may not square with observation. Thus, some

theoretical physicists have speculated that the gravitational



interaction may be weakening in  intensity very slowly with

time. In that case, you could tell an abrupt change in time

by noting (in theory) an abrupt change in the strength of the

gravitational field produced by the particles  being studied.

Such a change in gravitational intensity with time  has not

yet been actually demonstrated, but if it existed, the law of

conservation of energy would be not quite true.

Putting that possibility to one side, we end with two

equivalent assumptions: 1) energy is conserved in a closed

system, and 2) the laws of nature are invariant with time.

Either both statements are correct or both are incorrect,

but it  is the second, it seems to me, that seems more

intuitively necessary to us. We might not be bothered by

having a little energy created or destroyed now and then,

but we would somehow feel very uncomfortable with a

universe in which the laws of nature changed from day to

day.

Consider, next, the law of conservation of momentum.

The total momentum (mass times velocity) of a closed

system does not vary with changes within the system. It is

the conservation of momentum that allows billiard sharps to

work with mathematical  precision. (There is also an

independent law of conservation of  angular momentum,

where circular movement about some point  or line is

considered.)

Both conservation laws, that of momentum and that of

angular momentum, depend on the fact that the laws of

nature are invariant with position in space. In other words, if

a group of subatomic particles is instantaneously shifted

from here to the  neighborhood of Mars, or of a distant

galaxy, you could not tell  by observing the subatomic

particles alone that such a shift had taken place. (Actually,

the gravitational intensity due to neighboring masses of

matter would very likely be different, but we are  dealing

with the ideal situation of fields originating only with



the particles within the closed system, so we ignore outside

gravitation.)

Again, the necessity of invariance with space is more

easily accepted than the necessity of the conservation of

momentum or of angular momentum.

Most other conservation laws also involve invariances of

this sort, but not of anything that can be reduced to such

easily intuitive concepts as the symmetry of space and

time. —Parity is an exception.

In 1927, the Hungarian physicist Eugene P. Wigner

showed that conservation of parity is equivalent to right-left

symmetry.

This means that for parity to be conserved there must

be no reason to prefer the right direction to the left or vice

versa in  considering the laws of nature. If one billiard ball

hits another to the right of center and bounces off to the

right, it will bounce off to the left in just the same way if it

hits the other ball to the left of center.

If a ball bouncing off to the right is reflected in a mirror

that is held parallel to the original line of travel, the moving

ball in the mirror seems to bounce off to the left. If you were

shown diagrams of the movement of the real ball and of the

movement of the mirror-image ball, you could not tell from

the diagrams alone,  which was real and which the image.

Both would be following the laws of nature perfectly well.

If a billiard ball is itself perfectly spherical and unmarked

it would show left-right symmetry. That is, its image would

also be perfectly spherical and unmarked, and if you were

shown a photograph of both the ball itself and the image,

you couldn’t tell  which was which from the appearance

alone. Of course, if the  billiard ball had some asymmetric

marking on it, like the number 7, you could tell which was

real and which was the image, because the number 7 would

be “backward” on the image.



The trickiness of the mirror-image business is confused

because we ourselves are asymmetric. Not only are certain

inner organs  (the liver, stomach, spleen, and pancreas) to

one side or the other  of the central plane, but some

perfectly visible parts (the part  in the hair, as an example,

or certain skin markings) are also. This means we can easily

tell whether a picture of ourselves (or  some other familiar

individual) is of us as we are or of a mirror image by noting

that the part in the hair is on the “wrong side,“ for instance.

This gives us the illusion that telling left from right is an

easy thing, when actually it isn’t. Suppose you had to

identify left and  right to some stranger where the human

body could not be used  as reference, to a Martian who

couldn’t see you, for instance. You might do it by reference

to the Earth itself, if the Martian could make out its surface,

for the continental configurations are asymmetric, but what

if you were talking with someone far out near  Alpha

Centauri.

The situation is more straightforward if we consider

subatomic particles and assume them (barring information

to the contrary)  to be left-right symmetric, like perfectly

spherical unmarked billiard balls. In that case if you took a

photograph of the particle and of its mirror image, you could

not tell from the appearance alone which was particle and

which mirror image.

If the particle were doing something toward our left,

then the mirror image would be doing the equivalent toward

our right. If,  however, both the leftward act and the

rightward act were equally  possible by the laws of nature,

you still couldn’t tell which was  particle and which was

mirror image. —And that is precisely the  situation that

prevails when the law of conservation of parity holds true.

But what if the law of conservation of parity is not true

under certain conditions. Under those conditions, then, the

particle is asymmetric or is working asymmetrically; that is,

doing something leftward which can’t be done rightward, or



vice versa. In that  case, you can say, “This is the particle

and this is the image. I can  tell because the image is

backward (or because the image is doing something which

is impossible).”

This is equivalent to recognizing that a representation of

a friend of ours is actually a mirror image because his hair

part is on the wrong side or because he seems to be writing

fluently with  his left hand when you know he is actually

right-handed.

When Lee and Yang (see Chapter 1) suggested that the

law of conservation of parity didn’t hold in weak nuclear

interactions,  that meant one ought to be able to

differentiate between a weak  nuclear event and its mirror

image. —And one common weak  nuclear event is the

emission of an electron by an atomic nucleus.

The atomic nucleus can be considered as a spinning

particle, which is symmetrical east and west and also north

and south (just as the Earth is). If we take the mirror image

of the particle (the  “image-particle”), it seems to be

spinning in the “wrong direction,” but are you sure? If you

turn the image-particle upside  down, it is then spinning in

the right direction and it still looks just like the particle. You

can’t differentiate between the particle and the image-

particle by the direction of its spin because you can’t tell

whether the particle or the image-particle is right side up or

upside down. As far as spin is concerned, an upside-down

image-particle looks just like a right-side-up particle.

Of course, a spinning particle has two poles, a north

pole and a south pole, and to all appearances we can tell

which is which. By  lining the particle up with a strong

magnetic field we can compare the direction of the

particle’s axis of rotation with that of the Earth and identify

the north and south pole. In that way we could tell whether

the particle was right side up or upside down.



Ah, but we are using the Earth as a reference here and

the Earth is asymmetric thanks to the position and shape of

the continents. If we didn’t use the Earth as reference (and

we shouldn’t because we ought to be able to work out the

behavior of subatomic particles in deep space far from the

Earth) there would  be no way of telling north pole from

south pole. Whether we considered spin or poles, we

couldn’t tell a symmetrical particle from its mirror image.

But suppose the particle gives off an electron. Such an

electron tends to fly off from one of the poles, but from

which? Suppose  it could fly off from either pole with equal

ease. In that case, if we were dealing with a trillion nuclei

giving off a trillion electrons, half would fly off one pole and

half off the other. We could not distinguish one pole from the

other and we still couldn’t distinguish the particle from the

image-particle.

On the other hand, if the electrons tended to come off

from one pole more often than from the other, we would

have a marker for one of the poles. We could say, “Viewing

the particle from a point above the pole that gives off the

electrons, it rotates counterclockwise. That means that this

other particle is actually an image-particle, because viewed

in that manner it rotates clockwise.”

This is exactly what should be true if the law of

conservation of parity does not hold in the case of electron

emission by nuclei.

But is it true? When atomic nuclei (trillions of them) are

shooting off electrons, the electrons come off in every

direction equally—but that is only because the nuclear poles

are facing in every direction, in which case electrons would

shoot off in all ways alike whether they were coming from

one pole only or from both poles equally.

In order to check whether the electrons are coming from

both poles or from one pole only, the nuclei must be lined

up so that  all the north poles are pointing in the same

direction. To do this,  the nuclei must be lined up by a



powerful magnetic field and must  be cooled to nearly

absolute zero so that they have no energy that will vibrate

them out of line.

After Lee and Yang made their suggestion, Madame

Chien-Shiung Wu, a fellow physics professor at Columbia

University, performed exactly this experiment. Cobalt-6o

nuclei, lined up appropriately, shot electrons off the south

pole, not the north pole.

In this way, it was proven that the law of conservation of

parity did not hold for weak nuclear interactions. This meant

one could distinguish between left and right in such cases,

and the electron,  when involved in weak nuclear

interactions, tended to act leftward rather than rightward,

so that it can be said to be “lefthanded.”

The electron, which carries a unit negative electric

charge, has another kind of “image.” There is a particle

exactly like the electron, but with a unit positive electric

charge. It is the “positron.”

Indeed every charged particle has a twin with an

opposite charge, an “antiparticle.” There is a mathematical

operation which  converts the expression that describes a

particle into one that describes the equivalent antiparticle

(or vice versa). This operation  is called “charge

conjugation.”

As it happens, if a particle is left-handed, its antiparticle

is right-handed, and vice versa.

Observe then, that if an electron is doing something left-

handedly, its mirror image would seem to be an electron

doing it right-handedly, which is impossible—and the

impossibility would serve to distinguish the image from the

particle.

On the other hand, if you employed the charge

conjugation  operation, you would change a left-handed

electron into a lefthanded positron. The latter is also



impossible and this impossibility would serve to distinguish

the image from the particle.

In weak nuclear interactions, then, not only does the law

of conservation of parity break down, but also the law of

conservation of charge conjugation.*

However, suppose you not only alter the right-left of the

electron by imagining its mirror image, but also imagine

that at the same time you have altered the charge from

negative to positive. You have effected both a parity change

and a charge conjugation change. The result of this double

shift would be the conversion of a left-handed electron into

a right-handed positron. Since lefthanded electrons and

right-handed positrons are both possible, you cannot tell by

simply looking at a diagram of each, which is  the original

particle and which the image.

In other words, although neither parity nor charge

conjugation is conserved in weak nuclear interactions, the

combination of the two is conserved. Using abbreviations we

say that there is neither P conservation nor C conservation

in weak nuclear interactions,  but there is, however, CP

conservation.

It may not be clear to you how it is possible for two

items to be individually not conserved, yet to be conserved

together. Or (to  put it in equivalent fashion) you may not

see how two objects,  each easily distinguishable from its

mirror image, are no longer so  distinguishable if taken

together.

Well, then, consider—

The letter b, reflected in the mirror is d. The letter d,

reflected in the mirror is b. Thus, both b and d are easily

distinguished from their mirror images.

On the other hand, if the combination bd is reflected in

a mirror, the image is also bd. Both b and d are individually

inverted and the order in which they occur is inverted, too.

All the inversions cancel and the net result is that although



b and d are altered by reflection, the combination bd is not.

(Try it yourself with printed lower-case letters and a mirror.)

* Both conservation laws are true in strong nuclear interactions,

however. In strong nuclear interactions, not only are leftward and

rightward equally natural at all times, but anything a charged particle

can do, the oppositely charged antiparticle can also do.

Let’s point out one more thing about left-right reflection.

Suppose the solar system were reflected in a mirror. If we

observed the image, we would see that all the planets were

circling the Sun  the “wrong way” and that the Moon was

circling the Earth the “wrong way,” and that the Sun and all

the planets were rotating on their axes the “wrong way.”

If you ignored the asymmetry of the surface structure of

the planets, and just considered each world in the solar

system to be a featureless sphere, then you could not tell

the image from the real thing from their motions alone. The

fact that everything was  turning the “wrong way” means

nothing, for if you observe the image while standing on your

head, then everything is turning the “right way” again, and

in outer space there is no way of distinguishing between

standing “upright” and standing “on your head.”

And certainly the gravitational interaction, which is the

predominant factor in the solar system’s working, is

unaffected by the reversal of right and left. If all the

revolutions and rotations in the solar system were suddenly

reversed, gravitational interactions would account for the

reversed motions as adequately and as  neatly as for the

originals.

But consider this—

Suppose that we didn’t use a mirror at all. Imagine,

instead, that the direction of time reversed itself. The result

would be like  that of running a movie film backward. With



time reversed, the  Earth would seem to be going

“backward” about the Sun. All the planets would seem to be

going “backward” about the Sun, and the Moon to be going

“backward” about the Earth. All the bodies  of the solar

system would be spinning “backward” about their axis.

But notice that the “backward” that takes place on

reversing time, is just the same as the “wrong way” that

takes place in the

mirror image. Reversing the direction of time flow and

mirrorimaging space produce the same effect. And there is

no way of telling from observing the motions of the solar

system alone whether time is flowing forward or backward.

This inability to tell the direction of time flow is also true in

the case of subatomic reactions (T conservation).*

Or consider this—

An electron moving through a magnetic field pointing in

a particular direction will veer to the right. The positron,

with an opposite charge, would, when moving in the same

direction through the same magnetic field, veer to the left.

The two motions are mirror images, so that in this case the

shift from a charge to its opposite also produces the same

effect as a left-right shift.

Or suppose we reverse the direction of time flow. An

electron moving through a magnetic field may veer to its

right, but if a picture is taken of the motion and the film is

reversed and projected, the electron will seem to be moving

backward and, in doing so, will veer to its left. Again, time

flow and left-right symmetry are connected.

It would seem then that charge conjugation (C), parity

(P), and time reversal (T) are all rather closely related and

all somehow connected with left-right symmetry. If, then,

left-right symmetry breaks down in weak nuclear interaction

with respect to one of these, the symmetry can be restored

with one or both others.



* We can tell the direction of time flow under ordinary conditions easily

enough because of entropy-change effects. This produces the equivalent

of an asymmetry in time. Where entropy change is zero, however, as in

planetary motions and subatomic events, T is conserved.

If a particle is doing something leftward, and its image is

doing something rightward, which is impossible (so that the

image can be spotted through a breakdown in P

conservation), you can reverse the charge on the image-

particle and convert the action into a possibility. If the action

is impossible even with the reversed charge (so that the

image can be spotted through a breakdown in CP

conservation), you can reverse the direction of time

flow, and then you will find the action is possible. In other

words, there is “CPT conservation” in the weak nuclear

interaction.*

The result is that the universe is symmetrical, as it has

always been thought to be, with respect to strong nuclear

interactions,  electromagnetic interactions and gravitational

interactions.

Only weak nuclear interactions have been in question

and there the failure of the law of conservation of parity

seemed to introduce a basic asymmetry to the universe.

The broadening of the concept to CPT conservation restored

the symmetry—but only in theory.

Does CPT conservation actually present us with a

symmetrical universe in practice? As far as P (parity) is

concerned, there is an  equal supply of Tightness and

leftness in the universe. As far as  T (time reversal) is

concerned, there is also an equal supply of  pastness and

futureness. But where C (charge conjugation) is concerned,

symmetry in practice breaks down.

The most common subatomic particles to be involved in

weak nuclear interactions are the electron and the neutrino.



For symmetry to exist in practice, then, there should be

equal supplies of electrons and positrons and equal supplies

of neutrinos and antineutrinos. This, however, is not so.

Certainly on Earth, almost certainly throughout our

Galaxy, and, for anything we know to the contrary,

throughout the  entire universe, there are vast numbers of

electrons and neutrinos,  and hardly any positrons and

antineutrinos.

The universe then—at least our universe—or at the very

least our section of our universe—is electronically left-

handed and that may have had an interesting effect on the

development of life.

In order to explain that, I must change the subject

radically, however, and make a new start. That I will do in

the next chapter.

* Actually, there was some indication in recent years that CPT is not

invariably conserved in weak nuclear interactions and physicists have

been examining the possible consequences in rather perturbed fashion.

However, all the returns don’t seem to be in Jiere- and we’ll have to wait

and see.



3 - SEEING DOUBLE

I currently do my writing in a two-room suite in a hotel,

and about a month ago I became aware of someone

banging loudly  against the wall in the corridor outside.

Naturally, I was furious. Did whoever it was not realize that

within my rooms the most delicate work of artistic creation

was going on?

I stepped into the corridor and there, on a ladder, at the

elevators, was an honest workingman banging a hole into

the wall for some arcane purpose of his own.

“Sir,” I said, with frowning courtesy, “how long do you

intend to make the world hideous with your banging at that

hole?”

And the horny-handed son of toil turned his sweat-

streaked face in my direction and answered jauntily, “How

long did it take Michelangelo to do the ceiling in the Sistine

Chapel?”

What could I do? I burst out laughing, went back to my

cell, and worked cheerfully along to the tune of banging

which I no  longer resented since it was produced by an

artist who knew his own worth.

Things take as long as they take, in other words. And

even Michelangelo’s long stint on his back, painting that

fresco, pales into insignificance in comparison to the length

of the intervals it took to build some corner or other of the

majestic structure of science.

In the seventeenth century, for instance, a question

arose about light which wasn’t answered for 148 years,

despite the fact that,  till it was answered, no theory as to

the nature of light could possibly hold water.

The story begins with Isaac Newton, who, in 1666,

passed a beam of sunlight through a prism and found that



the beam was spread out into a rainbowlike band which he

called a “spectrum.” Newton felt that since light traveled in

a straight path, it must be made up of a stream of very fine

particles, moving at an enormous speed. These particles

differed among themselves in some way so that they

produced the sensations of different colors. In sunlight, all

the different particles were mixed evenly and the effect was

to impress our eye as white light.

In passing obliquely into glass, however, the light

particles bent sharply in their path; that is, they were

“refracted.” Particles differing in their color nature were

refracted by different amounts  so that the colors in white

light were separated within the glass. In an ordinary sheet of

glass, with two parallel faces, the effect was reversed when

the light emerged once more from the other side,  so that

the colors were again merged into white light.

In a prism, it was different. The light particles bent

sharply when they entered one side of the triangular piece

of glass, and then bent a second time in the same direction

on emerging through a second, non-parallel side. The colors,

separated on entering the prism, were even farther

separated on emerging.

All this made excellent sense, and Newton backed it up

with careful experimentation and reasoning. And yet exactly

what was different about the particles that gave rise to the

various colors, Newton couldn’t say.

His contemporary the Dutch physicist Christiaan

Huygens suggested in 1678 that light was a wave

phenomenon. This made it possible to explain the different

colors easily. A light wave would  have to have some

particular length, and light of different wavelengths might

well impress the eyes as of different colors (just as sound of

different wavelengths impresses the ears as of

different pitch).

Still, waves had their own problems. All man’s

experience with waves (water waves, for instance, and



sound waves) made it clear  that waves curved around

obstructions. Light on the other hand traveled in a straight

line past obstructions and cast sharp shadows.

Huygens tried to explain that away by presenting a

mathematical line of reasoning that showed that the ability

to curve about an obstruction depended on the length of the

wave. If light waves were much shorter than sound waves or

water waves, they would then not bend, detectably, about

ordinary obstructions.

Newton recognized the convenience of the wave theory,

but could not go along with the suggestion of waves so tiny

they  would cast sharp shadows. He stuck to particles and

such was his eventual prestige that scientists, by and large,

went along with the particle theory of light in order not to

place themselves in disagreement with Newton.

But in 1669, a Danish physician, Erasmus Bartholinus—a

thoroughly obscure individual—made an observation which

assured him a place in the history of science, for it raised a

question the giants could not answer.

Bartholinus had received a transparent crystal which

had been obtained in Iceland, so that it became known as

“Iceland spar,“ where “spar” is an old-fashioned term for a

non-metallic mineral.*

The crystal was shaped like a rhombohedron (a kind of

slanted cube), with six flat faces, each one parallel to the

one on the opposite side. Bartholinus was studying the

properties of this crystal  and I presume he placed it on a

piece of paper with writing or  printing on it, on one

occasion. When he picked it up, he noticed that the writing

or printing was double when viewed through the crystal.

In fact, when one looked through the crystal, it turned

out one was seeing double. Apparently each beam of light

entering the crystal was refracted, but not all to the same

extent. Part of the light was refracted a certain amount and

the remainder another and greater amount, so that though



one beam entered the crystal,  two beams emerged. The

phenomenon was called “double refraction.”

Any theory of light had to explain double refraction, and

neither Huygens nor Newton could do so. Apparently, the

waves,  or particles, of light must fall into two sharply

defined classes so  that one class can behave in one way

and the other class in another. The two-way difference can

have nothing to do with color, for all colors of light were

equally double-refracted by Iceland spar.

* Actually, Iceland spar is a transparent variety of calcium carbonate, if

that helps any.

Huygens’ view of light waves was that they were

“longitudinal waves”; that is, similar to sound waves in

structure (though much  shorter in length) and that they

represented a series of compressions and rarefactions in the

ether they passed through. Huygens did not see how such

longitudinal waves could fall into two  sharply different

classes.

Nor could Newton see how light particles could be

divided into two sharp classes. He speculated, rather

vaguely, that the particles might differ among themselves in

some fashion analogous to the  two opposed poles of a

magnet, but he didn’t follow that up, since he was at a loss

for any way of finding evidence for the suggestion.

Physicists were forced to back away. Bartholinus’

observation didn’t fit either of the current theories of light,

so, as far as possible, it was to be ignored.

This was not wickedness on the part of scientists; nor

the obtuse workings of a conspiratorial “establishment.” On

the contrary, it makes sense.



Suppose a piece doesn’t seem to fit a jigsaw puzzle. If

you stop everything and start worrying exclusively about

that troublesome  piece, you may never get anywhere. If,

however, you ignore the  piece and continue working at

other parts of the jigsaw, using  whatever system seems

convenient, you may eventually reach a  point where,

through the other work, new understandings are  reached,

and suddenly the old piece that was once so

troublesome fits into place with no trouble at all.

Double refraction was not forgotten altogether, of

course. Even as late as 1808, it was still sticking in the

scientific gizzard, and the Paris Academy offered a prize for

the best mathematical treatment of the subject. A twenty-

three-year-old French army engineer, named Etienne Louis

Malus (who accepted Newton’s  particle theory) decided to

see what he could do in that direction.

He got some doubly refracting crystals and began to

experiment with them. As it happened, he did not win the

prize, but he made an interesting observation and coined a

phrase that entered the scientific vocabulary.

From his room he could see out on the Luxembourg

Palace and, at one time, sunlight was reflected from a

window of that  palace into his room. Idly, Malus pointed a

doubly refracting crystal in that direction, expecting to look

through it and see two  windows. He did not! He saw only

one window.

Apparently what happened was that the window, in

reflecting the sunlight, reflected only one of the two classes

of light particles.

Malus remembered that Newton had said that the light

particle varieties might be analogous to the opposing poles

of a  magnet. Thinking along those lines, he felt that only

one pole of  light had been reflected, and that the beam

shining into his room contained only particles with that one

pole.



Malus therefore spoke of the light beam that entered his

room as consisting of “polarized light.” The phrase stands to

this day, even though it is based on a false speculation, and

even though the notion of poles of light was, in actual fact,

being killed dead  even before Malus had made his

observation.

In 1801, you see, an English physician, Thomas Young,

began a series of experiments in which he showed that one

beam of light could somehow cancel another intermittently,

so that the two would not combine to give a smooth field of

light, but rather a series of bands, alternately light and dark.

If light consisted of particles, such “interference” was

extremely difficult to explain. How could one particle cancel

another?

If light consisted of waves, however, interference was

childishly easy to explain. If light consisted of alternate

rarefactions and compressions, for instance, then if two light

beams fitted together  so that the compressed area in one

beam fell on the rarefied area  in the other and vice versa,

the two lights would indeed cancel out into darkness.

Young was able to explain every characteristic of his

interference pattern by Huygens’ wave theory. To be sure,

many physicists (especially English physicists) tried to

object, in the name of Newton. However, not even the most

glorious name can long resist observations that anyone can

confirm and explanations that  explain perfectly. —So the

wave theory won out.

Yet Young could not explain double refraction any better

than Huygens had.

But then, in 1817, a French physicist, Augustin Jean

Fresnel, suggested that perhaps the light waves were not

longitudinal  after the fashion of sound waves, and did not

represent alternate compressions and rarefactions in the

ether. Perhaps, instead,  they were “transverse waves,” like

those on water surfaces; waves which moved up and down

at right angles to the line of propagation of the wave.



Transverse waves could explain interference just as well

as longitudinal waves did. If two light beams merged, and

one was waving up where the other was waving down, and

vice versa, the two would cancel, and two lights would make

darkness.

Water waves, which serve as a model for light waves,

can only move up and down at right angles to the two-

dimensional water  surface. A ray of light, however, has

greater freedom. Imagine such a ray moving toward you. It

could wave up and down, or  right and left, or anything in

between and always be waving at  right angles to the

direction in which it was moving. (You can see  what this

means concretely, if you tie one end of a long rope to a post

and make waves in it, up and down, right and left,

or obliquely.)

Once such transverse waves were proposed, they were

accepted with remarkably little trouble, for through them,

the phenomenon of double refraction could finally be

explained, 148 years after the problem had arisen.

To see that, consider that the light waves in an ordinary

beam of light could be waving in all possible directions at

right angles to the direction of travel—up and down, left and

right, and all degrees of in-betweenness. That would

represent ordinary or “unpolarized” light

Suppose, though, there were some way of dividing the

light into two varieties, one in which all the waves move up

and down,  and the other in which all the waves move left

and right.

For each wave in unpolarized light which vibrates

obliquely, there would be a division into two waves, of lesser

energy, of the permitted classes.

If a particular wave were just at forty-five degrees to the

vertical, just halfway between the up and down and the left

and right, it would be divided into two waves, one up and

down and the other left and right, each with half the energy



of the original. If the  oblique wave were nearer horizontal

than vertical, then it would  be broken up into two waves,

with the left and right having the greater supply of energy. If

it were nearer the vertical, then the up and down would end

with the greater supply of energy.

It is easy to show, in fact, that a beam of unpolarized

light can be divided into two beams of equal energy, in one

of which all the transverse waves are in one direction, while

in the other all the transverse waves are in a plane at right

angles to the first. Since in each case all the waves move in

a single plane, the unpolarized beam of light can be viewed

as broken up into two  mutually perpendicular “plane-

polarized” beams.

But what causes light to break up into plane-polarized

beams? Certain crystals do. Crystals are made up of serried

ranks and  files of atoms arranged in very orderly array.

Light, in passing  through, is sometimes compelled to take

up waves in certain planes only.

(You can see a crude analogy of this if you pass a rope

through a picket fence and tie it to a pole somewhere on the

other side. If you make up-and-down waves in the rope, they

will pass  through the opening between the pickets, so that

the rope on the other side of the fence also waves. If you

make waves left and right, the pickets on either side of the

opening stop those waves and the rope on the other side of

the pickets does not wave. If you  make the rope wave in

every which way, only those waves which  will fit between

the pickets at least partly will get through, and on the other

side of the fence, whatever you do, there will only  be up-

and-down waves. The picket fence polarizes the “rope

waves.”)

Crystals such as Iceland spar will permit only two planes

of vibration, one perpendicular to the other. Unpolarized

light entering Iceland spar breaks up into two mutually

perpendicular plane-polarized beams within. The two beams

of polarized light  interact differently with the atoms, travel



at different velocities  and the slower beam is refracted

through a greater angle. The  two beams take separate

paths within the crystal and emerge in different places. It is

for that reason that looking through Iceland spar causes you

to see double, and Bartholinus’ puzzle is solved.

Plane polarization can also take place on reflection. If an

unpolarized beam strikes a reflecting surface at an angle, it

often happens that those particular waves which occupy a

certain plane  are more efficiently reflected than those in

other planes. The reflected beam is then heavily or even

entirely plane-polarized and Malus’ puzzle is solved.

In 1828, a Scottish physicist, William Nicol, introduced a

new refinement to Iceland spar. He sawed a crystal in half in

a certain  fashion* and cemented the halves together with

Canadian balsam. When light enters the crystal, it splits up

into two plane-polarized  beams, which travel in slightly

different directions and hit the  Canadian balsam seam at

slightly different angles. The one that  hits it at the lesser

angle to the perpendicular passes through into  the other

half of the crystal and eventually emerges into open air. The

one that hits it at the greater angle is reflected and

never enters the other half of the crystal.

In other words, a beam of unpolarized light enters the

“Nicol prism” at one end and a single beam of plane-

polarized light emerges at the other end.

Now imagine two Nicol prisms lined up in such a way

that a  beam of light passing through one will continue on

into the second. If the two Nicol prisms are lined up parallel,

that is, with the atom arrangements oriented in identical

fashion in both, the beam of polarized light emerging from

the first passes also through the second without trouble.

* I am tempted every once in a while to present diagrams, and on rare

occasions I do. I am, however, primarily a word-man and I try not to



lean on pictorial crutches. In this case, the exact manner of dividing the

crystal doesn’t affect the argument, so the heck with it.

(It is like a rope passing through two picket fences in

both of which the pickets are up and down. An up-and-down

rope wave that passes between the pickets in the first fence

will also pass between the pickets in the second.)

But what if the two Nicol prisms are oriented

perpendicularly to each other? The plane-polarized beam

emerging from the first  Nicol prism is refracted through a

greater angle by the second one and is reflected from the

Canadian balsam seam in it. No light at  all emerges from

the second prism. (If we go back to the picket  fence

analogy, and have the pickets in the second fence

arranged  horizontally, you will see that any up-and-down

waves that get through the first fence will be stopped by the

second. No rope  waves of any kind can go through two

fences in one of which the  pickets are vertical and in the

other horizontal.)

Suppose, next, that you arrange to have the first Nicol

prism fixed in place, but allow the second Nicol prism to be

rotated freely. Arrange also an eyepiece through which you

can look and  see the light that passes through both Nicol

prisms.

Begin with the two Nicol prisms arranged in parallel

fashion. You will see a bright light in the eyepiece. Slowly

rotate the second prism, which is nearer your eye. Less and

less of the light emerging from the first prism can get

through the second, since more and more of it is reflected at

the second’s Canadian balsam seam.  The light you see

becomes dimmer and dimmer as you rotate the  second

prism, until, when you have turned through ninety degrees,

you see no light at all. The same thing happens whether

you rotate the prism clockwise or counterclockwise.



Using such a pair of Nicol prisms you can determine the

plane of vibration of a beam of polarized light. Suppose such

a beam emerges from the fixed Nicol prism, but you are not

sure as to  exactly how that prism is oriented. That means

you don’t know the location of the plane of vibration of the

light emerging. In that case, you need only turn the rotating

Nicol prism until the beam of light you see through it is at its

brightest.* At that point, the second prism is oriented

parallel to the first and from the position of the second you

know the plane of vibration of the polarized light.

For this reason the first, fixed, Nicol prism is called the

“polarizer,” and the second, rotating, one, the “analyzer.”

Now imagine an instrument in which there is a space

between polarizer and analyzer into which a standard tube

can be placed containing some liquid transparent to light. To

make sure conditions are always the same, the temperature

is kept at a fixed level, light of a single fixed wavelength is

used, and so on.

If the tube contains distilled water, nothing happens to

the plane of polarized light emerging from the polarizer. The

air, the  glass, the water all may and do absorb a trifle of

light, but the  analyzer continues to mark the plane at the

same point. If a salt  solution is used in place of distilled

water, the same thing is true.

But place sugar solution in the tube, and something new

happens. The light you see through the analyzer is now

greatly dimmed and this is not the result of absorption.

Sugar solution  doesn’t absorb light significantly more than

water itself does.

Besides, if you rotate the analyzer, the light brightens

again. You can eventually get it as bright as it was originally,

provided  you completely alter the orientation of the

analyzer. What it amounts to is that the sugar solution has

rotated the plane of  polarized light. Anything which does

this is said to display “optical activity.” The instrument used



to detect optical activity and measure its extent is called a

“polarimeter.”

* It isn’t so easy to tell when the light is brightest, but there is a device

whereby the circle of light you see is divided into two half-circles and

you turn the prism until the two half-circles are equally bright,

something easy to determine.

A useful polarimeter was first devised in 1840 by the

French physicist Jean Baptiste Biot. He had pioneered in the

study of  optical activity long before he devised the

polarimeter (to make his work easier and more precise) and

even before Nicol had first constructed his prism.

As early as 1813, for instance, Biot reported certain

observations that were eventually interpreted according to

the new transverse-wave theory. It turned out that a quartz

crystal, correctly cut, rotated the plane of polarized light

passing through it. What’s more,  the thicker the piece of

quartz, the greater the angle through which  the plane was

rotated. And still further, some pieces of quartz rotated the

plane clockwise and some rotated it counterclockwise.

The usual way of reporting the clockwise rotation was to

say that the plane of polarization had been rotated to the

right. Actually, this is a careless and ambiguous way of

reporting it. If the plane is viewed as straight up and down,

then the upper end of it is indeed rotated to the right when

it is twisted clockwise, but  the lower end is rotated to the

left. Vice versa, in the case of counterclockwise rotation.

However, once a phrase enters the literature it is hard

to change no matter how poor, inappropriate, or downright

wrong it is.  (Look at the phrase “polarized light” itself, for

instance.) Consequently, something that rotates the plane

of polarized light  clockwise, is said to be “dextrorotatory”



(“right-rotating”) and  something that rotates it

counterclockwise is “levorotatory” (“left-rotating”).

What Biot had shown was that there were two kinds of

quartz crystals, dextrorotatory and levorotatory. Using

initials, we can speak of d-quartz and Z-quartz.

As it happens, quartz crystals are rather complicated in

shape. In certain varieties of those crystals, just those

varieties which  show optical activity, it can be seen that

there are certain small  faces that occur on one side of the

crystal, but not the other, introducing an asymmetry. What’s

more, there are two varieties of such crystals, one of which

has the odd face on one side, the other of which has it on

the other.

The two asymmetric varieties of quartz crystals are

minor images. There is no way in which you can twist one

variety through three-dimensional space in order to make it

look like the other, any more than you can twist a right shoe

so as to make it fit a left foot. And one of these varieties is

dextrorotatory, while its mirror image is levorotatory.

It was quite convincing to suppose that an asymmetric

crystal will rotate the plane of polarized light. The

asymmetry of the crystal must be such that the light beam,

traveling through, must be  constantly exposed to an

asymmetric force, one which pulls, so  to speak, more

strongly in one direction than the other. So the plane twists

and keeps on twisting at a steady rate the greater

the  distance it must pass through such a crystal. What’s

more, if a crystal twists the plane of light in one direction, it

is inevitable  that, all else being equal, the mirror-image

crystal will twist the plane in the opposite direction.

You might even argue further that any substance which

will crystallize in either of two mirror-image forms will be

optically  active. Furthermore, if two mirror-image crystals

are taken of the same substance and of the same thickness,

and if all the circumstances are equal (such as temperature

and wavelength of light),  then the two crystals will show



optical activity to precisely the same extent—one clockwise,

the other counterclockwise.

And, indeed, all evidence ever gathered shows all of this

to be perfectly correct.

But then, Biot went on to spoil the whole thing by

discovering that certain liquids, such as turpentine, and

certain solutions, such as camphor in alcohol and sugar in

water, are also optically active.

This presents a problem. Optical activity is tied in firmly

with asymmetry in all work on crystals, but where is the

asymmetry in the liquid state. None that any chemist could

see in 1840.

Once again, then, the solution of one problem in science

served to raise another. (And thank heaven for that, or

where would  there be any interest in science?) Having

solved Bartholinus’ problem and Malus’ problem by

establishing the existence of transverse light waves, science

found itself with Biot’s problem—how a liquid which seemed

to have no asymmetry about it could produce an effect that

seemed to be logically produced only by asymmetry.

Which brings us to Louis Pasteur’s first great adventure

in science—next chapter.



4 - THE 3-D MOLECULE

In the days when I was actively teaching, full time, at a

medical school, there was always the psychological difficulty

of facing a  sullen audience. The students had come to

school to study medicine. They wanted white coats, a

stethoscope, a tongue depressor, and a prescription pad.

Instead, they found that for the first two years (at least,

as it was in the days when I was actively teaching) they

were subjected  to the “basic sciences.” That meant they

had to listen to lectures very much in the style of those they

had suffered through in college.

Some of those basic sciences had, at least, a clear

connection with what they recognized as the doctor

business, especially anatomy, where they had all the fun of

slicing up cadavers. Of all the  basic sciences, though, the

one that seemed least immediately “relevant,” farthest

removed from the game of doctor-and-patient,  most

abstract, most collegiate, and most saturated with

despised  Ph.D.‘s as professors was biochemistry. —And, of

course, it was biochemistry that I taught.

I tried various means of counteracting the natural

contempt of medical student for biochemistry. The device

which worked best  (or, at least, gave me most pleasure)

was to launch into a spirited account of “the greatest single

discovery in all the history of medicine”—that is, the germ

theory of disease. I can get very dramatic when pushed, and

I would build up the discovery and its consequences to the

loftiest possible pinnacle.

And then I would say, “But, of course, as you probably

all take for granted, no mere physician could so

fundamentally revolutionize medicine. The discoverer was

Louis Pasteur, Ph.D., a biochemist.”



Pasteur’s first great discovery, however, had nothing to

do with medicine, but was a matter of straight chemistry. It

involved the matter of optically active substances, a subject

I discussed in the  previous chapter. To see how he

contributed, let’s start at the beginning.

In the wine-making process of the fermentation of grape

juice, a sludgy substance separates and is called “tartar,” a

word of unknown origin. From this substance, the Swedish

chemist Karl Wilhelm Scheele in 1769 isolated a compound

which had acid  properties and which he naturally called

“tartaric acid.”

In itself this wasn’t terribly important, but then in 1820,

a German manufacturer of chemicals, Charles Kestner,

prepared something he felt ought to be tartaric acid and yet

didn’t seem to be. For one thing, it was distinctly less

soluble than tartaric acid. A  number of chemists obtained

samples and studied it curiously.  Eventually, the French

chemist Joseph Louis Gay-Lussac named  this substance

“racemic acid” from the Latin word for a “cluster of grapes.”

The more closely racemic acid and tartaric acid were

studied, the more puzzling were the differences in

properties. Analysis showed that each acid had exactly the

same proportion of exactly  the same elements in their

molecules. Using modern symbols, the  formula for each

compound was C4H606.

In the early nineteenth century, when the atomic theory

had only been in existence for a quarter of a century or so,

chemists  had decided that every different molecule had a

different atomic content, that it was, in fact, the difference

of atomic content that was responsible for the difference of

properties. Yet here were two  substances, quite

distinguishable, with molecules made up of the  same

proportions of the same elements. It was very

disturbing, especially since this was not the first time such a

thing had been reported.



In 1830, the staunchly conservative Swedish chemist

Jons Jakob Berzelius,* who didn’t believe that molecules with

equal structures  but different properties were possible,

examined both tartaric acid and racemic acid in detail. With

considerable chagrin, he decided that even though he didn’t

believe it, it was nevertheless so. He bowed to the

necessary, accepted the finding, and called such equal-

structure-different-property compounds “isomers” from

Greek words meaning “equal proportions” (of elements, that

is).

* I have a tendency (as you may occasionally have noticed) to mention

large numbers of scientists and to give the contribution of each

whenever I get science-historical. This is not a matter of name-dropping.

Every advance in science is the result of the co-operative labor of a

number of people, and I like to demonstrate that. And I am careful to

mention nationalities because it is also important to recognize the fact

that science is international in scope.

But how could isomers have the same atomic

composition and yet be different substances? One possibility

is that it is not just  the number of atoms of each element

that is distinctive, but their physical arrangement within the

molecule. This thought, however, was something chemists

shuddered away from. The whole  notion of atoms was a

shaky one. Atoms were useful in explaining  chemical

properties but they could not be seen or detected in

any  way and they might very well be no more than

convenient fictions.  To start talking about actual

arrangements within the molecules was to advance farther

down the road of accepting atoms as real entities than most

chemists cared to—or dared to.

The phenomenon of isomerism was therefore left

unaccounted for and kept suspended until such time as

chemical advance might produce an explanation.



One difference in properties between tartaric acid and

racemic acid was particularly interesting. A solution of

tartaric acid or of its salts (that is, compounds in which the

acid hydrogen of the compound was replaced by an atom of

such elements as sodium or potassium) was optically active.

It rotated the plane of polarized light clockwise and was

therefore dextrorotatory (see the previous chapter), so that

the compound could well be called d-tartaric acid.

A solution of racemic acid, on the other hand, was

optically inactive. It did not rotate the plane of polarized

light in either  direction. This difference in properties was

clearly demonstrated  by the French chemist Jean Baptiste

Biot, whom I mentioned in the previous chapter as a pioneer

in the science of polarimetry.

No one at the time knew why any substance should be

optically active in solution, but they did know this— Those

crystals known  to be optically active had asymmetric

structures. In that case, if’ one were to prepare crystals of

tartaric acid and racemic acid or of their respective salts, it

would surely turn out that those of the  former were

asymmetric and those of the latter, symmetric.

In 1844, however, the German chemist Eilhardt

Mitscherlich undertook this investigation. He formed crystals

of the sodium  ammonium salt of both tartaric acid and

racemic acid, studied  them carefully, and announced that

the two substances had absolutely identical crystals.

The basic findings of the budding science of polarimetry

were blasted by this report and for the moment all was

confusion.

It was at this point that the young French chemist Louis

Pasteur entered the scene. He was only in his twenties and

his scholastic record at school had been mediocre, yet he

had the temerity to suspect it possible that Mitscherlich (a

chemist of the first  rank) might have been mistaken. After

all, the crystals he studied  were small and perhaps some

tiny details were overlooked.



Pasteur applied himself to the matter and began to

produce the crystals and study them painstakingly under a

hand lens. He finally  decided that there was a definite

asymmetry to the crystals of the sodium ammonium salt of

tartaric acid. So far, so good. That, at  least, was to be

expected, since the substance was optically active.

But was it possible now that the sodium ammonium salt

of racemic acid yielded crystals of precisely the same sort,

as  Mitscherlich maintained? In that case, there would be

asymmetric crystals of a substance which was not optically

active, and that would be very unsettling.

Pasteur produced and studied the crystals of the salt of

racemic acid and found that they were indeed also

asymmetric but that not all the crystals were identical.

Some of the crystals were exactly like those of the

sodium ammonium salt of tartaric acid, but others were

mirror images of the first group and were asymmetric in the

opposite sense.

Could it be that racemic acid was half tartaric acid and

half the mirror image of tartaric acid, and that the reason

racemic acid was optically inactive was that it was made up

of two parts, one part of which neutralized the effect of the

other part?

This had to be checked directly. Making use of his hand

crystal and a pair of tweezers, Pasteur began to work over

those tiny crystals of the racemic acid salt. All those which

were right-handed  he shoved to one side; all those which

were left-handed, to the other. It took him a long time, for

he wanted to make no mistake, but he was eventually done.

He then dissolved each set of crystals in a separate

sample of water and found both solutions to be optically

active!

One of the solutions was dextrorotatory, exactly as

tartaric acid was. In fact, it was tartaric acid, in every sense.



The other was levorotatory, and differed from tartaric

acid in rotating the plane of polarized light in the opposite

direction. It was Z-tartaric acid.

Pasteur’s conclusion, announced in 1848, when he was

only twenty-six, was that racemic acid was optically inactive

only because it consisted of equal quantities of d-tartaric

acid and Z-tartaric acid.

The announcement created a sensation and Biot, the

grand old man of polarimetry, who was seventy-four years

old at the  time, cautiously refused to accept Pasteur’s

finding. Pasteur therefore undertook to demonstrate the

matter to him in person.

Biot gave the young man a sample of racemic acid

which he had personally tested and which he knew to be

optically inactive. Under Biot’s shrewd, old eyes, alert for

hanky-panky, Pasteur formed  the salt, crystallized it,

isolated the crystals, and separated them painstakingly by

means of hand lens and tweezers. Biot then took over. He

personally prepared the solutions from each set of

crystals and placed them in the polarimeter.

You guessed it. He found that both solutions were

optically active, one in the opposite sense to the other. After

that, with typical Gallic enthusiasm, he became fanatically

pro-Pasteur.

Actually, Pasteur had been most fortunate. When the

sodium ammonium salt of racemic acid crystallizes, it

doesn’t have to form  separate mirror-image crystals. It

might also form combination  crystals in each of which are

equal numbers of molecules of d-tartaric acid and Z-tartaric

acid. These combination crystals are symmetrical.

Had Pasteur obtained these crystals he would still have

noted their difference from those of the sodium ammonium

salt of tartaric acid and have refuted Mitscherlich. On the

other hand, he would have missed the far greater discovery

of the reason for the optical inactivity of racemic acid and

he would also have missed having been the very first man



to form optically active substances from an optically inactive

start.

As it happens, only symmetric-combination crystals are

formed out of solutions above 280 C. (820 F.). It requires

solutions of sodium ammonium salt of racemic acid at

temperatures below 280  C. to form separate sets of

asymmetric crystals. Furthermore, the  crystals formed are

usually so tiny that they are far too small to separate with

hand lens alone. It just happened that Pasteur was working

at low temperatures and under conditions which produced

fairly good-sized crystals.

Pasteur might be dismissed as an ordinary man who

took advantage of an unexpected good break, but (as I used

to tell my biochemistry class) .he managed to take

advantage of similarly  unexpected good breaks every five

years or so. After a while, you had to come to the conclusion

that it was Pasteur who was remarkable and not the laws of

chance.

As Pasteur himself once said, “Chance favors the

prepared mind.” We all get our share of lucky breaks and

the great man  is he who is capable of recognizing a break

when it comes, and of taking advantage of it.

Pasteur continued to interest himself in the matter of

the tartaric acids. He found that if he heated d-tartaric acid

for prolonged periods under certain conditions, some of the

molecules would change to the Z-form and racemic acid

would be produced. (Ever since, the ability to change optical

activity to optical inactivity by heat or by some chemical

process through formation of some of the oppositely active

form has been known as “racemization.”)

Pasteur also found a kind of tartaric acid which was

optically inactive, which could not be separated into

opposite forms under any conditions, and which possessed

properties distinct from those of racemic acid. He called it



meso-tartaric acid, from the Greek word for “intermediate,”

since it seemed intermediate between  the d- and the Z-

forms of the acid.

But all these facts could not explain the existence of

optical activity in solutions. Granted that some crystals are

symmetrical,  while others are asymmetric in one sense or

the other, still there  are no crystals in solution. There are

only molecules.

Could not the molecules themselves retain the

asymmetry of the crystals? Was not the asymmetry of the

crystals but a reflection of that of the molecules that

composed them? Was not racemization a result of the heat-

induced rearrangement of atoms  within the molecule?

Pasteur was sure of all this, but he could think of no way of

proving it or of demonstrating what the arrangements must

be.

In the 1860’s, to be sure, the German chemist Friedrich

August Kekule worked out a system whereby a molecule

was pictured  not merely as a conglomeration of so many

atoms of this element or that, but as a collection of atoms

connected to one another in a  definite arrangement (see

Chapter 13). Little dashes were used  between symbols of

the elements to represent the “bonds” linking one atom to

another, so that the molecule did get to look like  a Tinker

Toy.

However, the Kekule structures were considered to be

highly schematic and to be merely another useful tool for

chemists who  were working out organic structures and

reactions. As in the case  of atoms themselves, chemists

were not prepared to say that the

Kekule structures actually represented the true situation

within the molecules.

The Kekule structures did explain the existence of many

isomers, since they demonstrated gross differences in

atomic arrangement even when the total numbers of atoms

of each element present within the molecule were the same.



The Kekule structures did not, however (as used originally),

account for those “optical  isomers” which differed only in

the way in which they twisted the plane of polarized light.

We next come to the Dutch chemist Jacobus Hendricus

van’t Hoff, who took up the problem in 1874, when he was

only twenty-two. The following represents what may have

been his line of reasoning.

According to the Kekule system, a carbon atom is

represented by the letter C with four little bonds attached to

it. Usually, these  little bonds are shown pointing to the

comers of an imaginary square, thus, j C | , so that the angle

between any two adjacent  bonds is ninety degrees. A

carbon atom will combine with four hydrogen atoms to form

the substance methane, which will then look like this:

  VH

/\

Are the four bonds identical? If each is different from the

rest, somehow, then what would happen if one of the

hydrogen atoms  is replaced by a chlorine atom to form

“methyl chloride”? Surely, there would then be four different

methyl chlorides, depending on which of the four different

bonds the chlorine atom happened to attach itself to.

But there aren’t. There is only one methyl chloride and

no more. This indicates that the four carbon bonds are

equivalent and, indeed, if the four are drawn to the corners

of a square, that is what should be expected. One comer of

the square should be no different from any other.

Consider the situation, though, if two chlorine atoms

replace hydrogen atoms to form “methylene chloride.”

Then, if we still deal with bonds pointing to the corners of a

square, there ought to be two different methylene chlorides,

depending on whether the two chlorine atoms are placed at

adjacent corners of the square or at opposite comers, thus:



 

H    C1    H    C1

V OR V

H    a    ci    H

But there aren’t. There is only one methylene chloride

and no more, which shows that the Kekule structures can’t

possibly correspond to reality (and, of course, no one

claimed that they did).

One way in which they were almost certain not to

correspond to reality was that all were drawn, for

convenience’ sake, in two dimensions—that is, in a plane—

and surely it was unlikely that all molecules would be strictly

planar in nature.

The four bonds of the carbon atoms were almost

certainly distributed in three dimensions and it was only

necessary to choose some 3-D arrangement in which each

bond was equally adjacent  to all three remaining bonds.

Only then would there be only a single methylene chloride.

The simplest way of arranging this was to have the four

bonds pointing toward the apices of a tetrahedron.* then

looks as though it were resting on three bonds forming a

squat tripod while the fourth bond is pointing straight up. It

doesn’t matter which bond you point upward, the other

three always form the squat tripod. The carbon atom can

thus stand in each of four different positions and look the

same each time.

* A tetrahedron is a solid bounded by four equilateral triangles. It can

best be understood if it is inspected in the form of a three-dimensional

model. Failing that, you are probably familiar with the shape of the

Egyptian pyramids—a square base, with each wall slanting inward from



one side of that base toward an apex on the top. Well, if you imagine a

triangular base instead, you have a tetrahedron.

What’s more, any one bond is equally far from each of

the other three. The angle between any two bonds is 109%

°.

If we deal with such a “tetrahedral carbon,” then as long

as two of the bonds are attached to identical atoms (or

groups of atoms), it doesn’t matter what atoms, or groups of

atoms, are attached  to the other two; in every case all

possible arrangements are equivalent and only one

molecule is formed.

Thus, if attached to the four bonds of a carbon atom are

aaaa, or aaab, or aabb, or aabc, then it doesn’t matter to

which bond which atom is attached. If you attach them so

as to form what  seem to be two different arrangements,

then by twisting the first  arrangement so that some

different bond faces upward, you can make it identical with

the second.

Not so when you have four different atoms or groups of

atoms attached to the four bonds: abed. In that case, it

turns out there are two different and distinct arrangements

possible, one of which  is the mirror image of the other. No

amount of twisting and turning can then make one

arrangement look like the other.

A carbon atom to which four different atoms or groups

of atoms are attached is an “asymmetric carbon.”

It turns out that optically active organic substances

invariably have asymmetric molecules if the Van’t Hoff

system is used. Almost always there is at least one

asymmetric carbon present.  (Sometimes there is an

asymmetric atom other than carbon present and sometimes

the molecule as a whole is asymmetric even though none of

the carbon atoms are.)



In tartaric acid there are present two asymmetric carbon

atoms. Either can be present in a certain configuration or in

its mirror  image. Let’s refer to these arbitrarily as p and q

(since q is the  mirror image ofp). If the two carbon atoms

are pp, then we have  d-tartaric acid and if qq, Z-tartaric

acid.

If the two halves of the molecule, each with one

asymmetric carbon, were not identical, we would have two

other optically active forms, pq and qp. In the case of

tartaric acid, however, the  two halves are identical in

structure, so that pq and qp are identical and, in each case,

the optical activity of one half balances the optical activity

of the other. The net result is optical inactivity, and we have

meso-tartaric acid.

It is not easy to see all this without careful structural

formulas, which I will not plague you with. The crucial point

to remember  is that from 1874 right down to the present

day, all questions of  optical activity, no matter how

involved, have been satisfactorily  explained by a careful

consideration of the tetrahedral carbon atom together with

similar structures for other atoms. Although our knowledge

of atomic structure has enormously expanded and  grown

vastly more subtle in the century since, Van’t Hoffs

geometrical picture remains as useful as ever.

Van’t Hoff’s paper dealing with the tetrahedral atom

appeared in a Dutch journal in September 1874. Two months

later, a somewhat similar paper appeared in a French

journal. The author was a French chemist, Joseph Achille Le

Bel, who was twenty-seven at the time.

The two young men worked it out independently, so that

both are given equal credit and one usually speaks of the

Van’t Hoff-Le Bel theory.

The tetrahedral atom did not at once meet with the

approval of all chemists. After all, there was still no direct

evidence that  atoms existed at all (and nothing direct

enough to be convincing  was to come for another



generation). To some of the older and  more conservative

chemists, therefore, the new view, placing atom bonds just

so, smacked of mysticism.

In 1877, the German chemist Hermann Kolbe, then fifty-

nine years old and full of renown, published a strong

criticism of Van’t  Hoff and his views. It was quite within

Kolbe’s right to criticize, for it could be argued that the new

view went beyond the foundations of chemistry as they then

existed.

In fact, an essential part of the practical working of the

scientific method is that new ideas be subjected to

searching criticism. They must be jumped at and hammered

down in fair and sporting fashion, for one of the tests of the

value of the new idea is its ability to survive hard knocks.

Kolbe, however, was neither fair nor sporting. He

characterized Van’t Hoff as a “practically unknown chemist,”

which had nothing to do with the case. Even more

unforgivably, he sneered at him for holding a position at the

Veterinary School of Utrecht,  managing to refer to it three

times in a short space, thus exhibiting a rather unlovely

professorial snobbery.

Nevertheless, to those who think that the scientific

“establishment” has the power to quash useful advances

permanently at the simple behest of conservatism and

snobbery, let it be stated that  the tetrahedral atom was

adopted with reasonable speed. It worked so well that not

all of Kolbe’s sour fulminations could stop it and Van’t HofFs

career went on untouched. (In fact, Van’t  Hoff rapidly

became one of the leading physical chemists in the  world

and in 1901, when the Nobel prizes were established,

the first award in chemistry went to him.)

Kolbe is today best known, perhaps, not for his own very

real contributions to chemistry, but for his diatribe against

Van’t Hoff —which is reprinted to amuse the audience.*

And again a new advance meant new problems. Once

the structure of the carbon atom and its bonds had been



worked out, and the details of molecules described in 3-D, a

curious asymmetry turned out to exist in living tissue. That

will be the subject of the next chapter.

* I was recently challenged to give my views on a book of far-out theory

by someone who said he wanted my views especially if unfavorable, as

he was making a collection which would someday, in hindsight, make

very amusing reading. The book of far-out theory seemed like nonsense

to me but I was aware of Kolbe’s misfortune and I hesitated. But then I

decided that I was not going to duck the issue out of fear for posterity’s

views. I thought the theories were worthless and I said so. However, I

was polite about it. That much costs nothing.



5 - THE ASYMMETRY OF LIFE 

Only yesterday (as I write this) I was on a Dayton, Ohio,

talk show, by telephone, one of those talk shows where the

listeners are encouraged to call in questions.

A young lady called in and said, “Dr. Asimov, who, in

your opinion, did the most to improve modern science

fiction?”

I answered, after the barest hesitation, “John W.

Campbell, Jr.”*

Whereupon she said, “Good! I’m Leslyn, his daughter.”

I carried on, of course, but inside I had a momentary

dizzy spell. The reason for my second’s hesitation in

answering was that I  had had to make a quick choice

between two alternatives. I could  have answered honestly

and said, “Campbell!” as I did; or I could have played it for

laughs, as I so often do, and said, “Me!” If I had had a visible

audience and could have relied on hearing the laugh,  I

would undoubtedly have opted for the joke. As it was, with

no  possibility of a tangible reaction, I played it, thank

goodness,  straight—and avoided what would have been a

terrible embarrassment.

Well, it sometimes happens, in science, that a person

has a choice of two alternatives and has to face the

possibility that his  choice, whichever it is, will stamp itself

indelibly on the field. If he guesses wrong, that wrongness

may be impossible to remove and  will be a source of

endless posthumous embarrassment.

* John Campbell, who died on July 11, 1971, was, in my opinion (and that

of many others) the outstanding personality of all time in the field of

science fiction. I owe a personal debt to him past all calculation. I have

said this elsewhere. I wish to say so here.



Thus Benjamin Franklin once decided that there were

two types of electric fluid and that one of them was mobile

and one stationary. Thus some substances, when rubbed,

gained an excess (+) of the mobile fluid, while others lost

some of the mobile fluid and suffered a deficit (—). The one

with the deficit showed the effect of the excess of the other,

stationary fluid, so we could say that the two substances,

(+) and (—), would show opposite electrical effects.

And so they do. An amber rod and a glass rod show

opposite electrical effects when rubbed. (They attract each

other, once charged, instead of repelling each other as like

charges—two glass rods, for instance—would.) The question

was: Which had the excess of the movable fluid and which

the deficit; which was (+) and which was (—)?

There was absolutely no way of telling and Franklin was

forced to guess. He guessed the amber had the excess,

assigned it (+) and the glass he assigned (—). That set the

standard. All other  charges were traced back to Franklin’s

decision on amber vs. glass  and to the present day it is

usually assumed in electrical engineering that the current

flows from the positive terminal to the negative.

By Franklin’s standard the first two fundamental

subatomic particles of ordinary matter were assigned their

charge, too. The electron which tends to move toward the

positive terminal is assigned (—); and the proton which is

attracted to the electron is (+). They represent, in a sense,

Franklin’s two electric fluids,  but, as it happens, it is the

electron that is mobile and the proton  that is relatively

stationary, so that the current really flows from the negative

terminal to the positive.

Franklin had had a fifty-fifty chance of guessing right,

and he muffed it. Too bad. Fortunately, the wrong guess had

no effect  on the practical development of electrical

technology or even on  theory—but it always represents an

irritating bit of non-neatness to neat-nuts like myself.



In this chapter, however, we will, in passing, mention

another fifty-fifty choice of alternatives and see how that

worked out.

Once again, we are dealing with optical isomerism, the

subject of the previous two chapters. Van’t Hoff and Le Bel

had shown

(as I explained in Chapter 4) that if the four bonds of a

carbon atom were attached to four different kinds of atoms

or groups of  atoms, that carbon atom was “asymmetric.”

The four attached groups could be attached in either of two

possible configurations which were essentially different, one

being the mirror image of the other.

A compound containing an asymmetric carbon atom

can, in other words, be “left-handed” or “right-handed.”

As we might expect, nature has no left-right bias in this

respect. Two compounds which differ, structurally, only in

being lefthanded or right-handed have identical chemical

and physical properties and, when faced with conditions

which are not themselves asymmetric, always react in the

same way.

We might make an analogy to the right and left hand (or

foot, or eye, or nostril, or upper canine). In each case the

two organs have identical features and functions. What one

can do the other can do and generally in equal fashion. The

mirror imagery is not  perfect, perhaps. The right and left

hand of a given individual  don’t have mirror-image

fingerprints, for instance. Also, most people use one hand

with greater ease than the other—but that is  because the

brain itself is not perfectly symmetrical.

Chemical compounds, which are less complicated than

the human hand, demonstrate left-right symmetry to a

much higher degree of perfection than hands do. What a

left-handed molecule can do, its right-handed brother can

also do, and just as well.

(Of course, an equal mixture of right-handed and left-

handed twins may have some properties which differ from



those of either  separately, as in the case of racemic acid

and tartaric acid described  in the previous chapter, but

that’s a different matter. A right hand and left hand clasped

together can be easily distinguished from two rights—or two

lefts—clasped together, and because of the differing

position of the thumbs, undoubtedly function differently.)

To see the significance of right-left symmetry, suppose

you begin with a molecule that contains no asymmetric

carbon and subject it to a chemical change that produces

one. Thus, if a carbon has attached to it abcc, and you

change one of the attached c’s  to a d, so that the whole

becomes abed, a symmetric carbon becomes an

asymmetric one.

The d can replace either of the two c’s. If it replaces

one, there results a left-handed molecule and if it replaces

the other, there  results a right-handed molecule. The

chances are exactly even; neither result is favored over the

other.

Consequently, in any reaction of this sort, almost

exactly equal numbers of each twin are produced. Any

deviation from exact equality (and some deviation is to be

expected in any chance process) would not be large enough

to be detectable.

No matter what chemists do, short of introducing some

asymmetric factor to begin with, they end up with

symmetry. There seems no way of forcing Nature to make a

right-left choice on the molecular level.

You can work the other way round. You can have a

mixture containing equal numbers of the left-handed and

right-handed  mirror-image molecules, and subject that

mixture to some physical  or chemical effect (that is not,

itself, asymmetric) which will alter  the molecules. The

altered molecules are such that they can be  easily

separated from the original. If the effect, whatever it is,

destroys the left-hand molecule a little more rapidly or

easily than the right-hand molecule (or vice versa), what will



be left after a time, will show an excess of one or the other.

The mixture will end by being at least slightly asymmetrical.

But that never happens either. You can’t form molecular

asymmetry out of a situation that is symmetrical to begin

with.

I have been careful to rule out asymmetric effects till

now, but suppose we decide to use one—

Suppose you have a substance made of two mirror-

image twins in equal numbers; call them b and d, to use

mirror-image letters.  Next suppose you have another

compound, which does not contain an asymmetric carbon

atom, so that its molecules are symmetric. Call it o, a

symmetric letter. If o combines with b and d  to form an

addition compound, then bo and od will be formed.  These

are still mirror images and can’t be separated.

On the other hand, what happens if you have another

compound which contains one or more asymmetric carbon

atoms, so that it exists in right- and left-handed forms, and

you actually have one or the other variety only? Call this p.

Again you form an addition compound and end up with

bp and pd, which are not mirror images. (The mirror image

of bp is qd,  not pd.) The addition compounds, not being

mirror images, have  different properties and can be easily

separated. Once the addition compounds are separated,

each is broken down to b and p,  or to p and d. The p is

easily gotten rid of and the chemist is left with b and d in

separate test tubes. He has two compounds, each of which

is asymmetric and optically active, and this is called

an “asymmetric synthesis.”

You might very well ask, though, where a chemist gets

the asymmetric p in the first place? If he can end with an

asymmetric compound only when he begins with one, isn’t

he working in a  circle? Where does the first asymmetric

compound come from?

As it happens, it is easy to find compounds that are

already asymmetric—but with an important restriction. He



can find them  only in connection with life. In fact,

asymmetric compounds exist  in nature only in living tissue

or in matter that was once part of living tissue.

In fact, we can go farther than that. There are numerous

molecules that have one or more asymmetric carbon atoms

and that are to be found in living tissue. In every case only

one of the optically active pairs is to be found there. If a left-

hand compound  is found in living tissue, the right-hand

mirror image is not; if a  right-hand compound is found in

living tissue, the left-hand image is not*

What’s more, the choice between one twin and the

other does not vary from species to species. If the left-

handed twin is favored  in the living tissue of any one

species, it is favored in all living tissue of all species. All of

earthly life makes use of only a single one of any molecule

capable of existing as minor-image twins, and always the

same single one.

* Actually, the non-occurring mirror images occasionally do occur, in

specialized places and in very limited amounts. Their very trifling

presences merely emphasize the general rule.

(This accounts, by the way, for the fact that Pasteur

could separate the mirror-image components of racemic

acid mechanically, as described in the previous chapter.

Pasteur, being alive, was himself asymmetric.)

Is there perhaps some regularity to be found in which

mirror-image twins will occur in tissue. At first glance, it

doesn’t seem so. Some compounds in living tissue are

dextrorotatory and some are levorotatory and there seems

no regularity to the matter. For instance, consider two very

common sugars in living tissue: “glucose” and “fructose.”

Both are made up of the same number of the same atoms

and are very similar in properties. However, glucose

is dextrorotatory and fructose, levorotatory, so that we have

d-glucose and Z-fructose.



Nor are these mirror images, I hasten to say. Each does

have a mirror image, Z-glucose and d-fructose, respectively,

which do not occur in living tissue.

Once the Van’t Hoff-Le Bel theory was advanced in

1874, something more than mere optical rotation was

possible as a way of characterizing the mirror-image twins.

Why not determine the  actual configuration of the various

groups about the asymmetric  carbon atom and see if any

regularity among the compounds found  in living tissue

follows from that?

This project was undertaken by the German chemist

Emil Fischer, who began working with sugar molecules in

the 1880’s.  A molecule such as that of glucose has six

carbon atoms, of which  no less than four are asymmetric.

Each one of the four can exist as a pair of mirror images, so

that there are altogether sixteen different glucoselike

compounds, arranged in eight pairs of minor images.

To simplify matters, Fischer began with the simplest

possible sugarlike compound, glyceraldehyde. It has three

carbon atoms,  of which only one is asymmetric.

Glyceraldehyde therefore exists  as just one pair of mirror-

image twins, d-glyceraldehyde and l-glyceraldehyde.

The four different groups about the single asymmetric

carbon atom in glyceraldehyde could be arranged in two

different ways.  Which arrangement should be assigned to

the d-twin and which  to the Z-twin? Fischer had no way of

telling, so he guessed! He assigned one arrangement, quite

arbitrarily, to the d-glyceraldehyde and the other to the Z-

glyceraldehyde, establishing this standard in  a paper he

published in 1891.

(It wasn’t till exactly sixty years later, in 1951, that it

became possible to investigate molecules with sufficient

subtlety to tell what the arrangement really was. This was

accomplished by a team of Dutch investigators under J. M.

Bijvoet, and they discovered  that Fischer’s fifty-fifty guess,

unlike Franklin’s was correct.)



Fischer didn’t stop there, of course. He began to build

up, very carefully, more complicated sugar molecules,

noting in every case  what the arrangement must be. In

every case, he could conclusively demonstrate that the

structural arrangement of a complicated sugar with more

than one asymmetric carbon atom was related to either the

d-glyceraldehyde or the Z-glyceraldehyde  standard.

Provided the atomic arrangements in the standard

compounds were as he guessed they might be, he could

work out the arrangements of all the others. (If he guessed

wrong, then he  would have to switch the arrangement in

every sugar molecule to its mirror image—but, as eventually

turned out, he hadn’t guessed wrong.)

He found that although d-glyceraldehyde was

dextrorotatory, some of the compounds related to it,

structurally, were levorotatory. One could not predict from

the structure alone the direction  of optical rotation. Since

lower-case letters had been used for direction of optical

rotation, capital letters were used to indicate relationship.

When a capital letter was used, the direction of rotation was

indicated by (+) or (—), the former for dextro-, the latter for

levo-.

Thus, since the glucose found in living tissue is related

to D-glyceraldehyde and is dextrorotatory, it is called D-(+)-

glucose.

The fructose found in living tissue is also related to D-

glyceraldehyde and is levorotatory, so it is D-(-)-fructose.

Here is something interesting. All the sugars found in

living tissue, whether they turn the plane of polarized light

in one  direction or the other, are related to D-

glyceraldehyde. They are all members of the “D-series.” To

put it more dramatically, the  sugars of life are all right-

handed. *

But why?

If we seek the reason for any regularity in the structure

of compounds in living tissue, we are bound to look at



enzymes. AH the compounds synthesized in living tissue are

synthesized through  the mediation of enzyme molecules,

and all enzyme molecules are asymmetric.

* Minor exceptions? A substance related to L-(-)-glucose is found in

streptomycin.

We must ask, then, as to the nature of the asymmetry of

enzymes.

All enzyme molecules are proteins. Protein molecules

are made up of chains of amino acids which come in some

twenty varieties.  All twenty varieties are closely related in

structure. In each case  there is a central carbon atom to

which are attached: 1) a hydrogen atom, 2) an amino group,

3) a carboxyl group, 4) any one of twenty different groups

which may be lumped together as “side chains.”

In the case of the simplest of the amino acids, “glycine,”

the side chain is another hydrogen atom, so that the central

carbon atom is attached to only three different groups. For

that reason,  glycine is not asymmetric and is not optically

active.

In the case of all the other amino acids, the side chain

represents a fourth different group attached to the central

carbon atom, which means that the central carbon is

asymmetric and that each amino acid, except glycine, can

exist in two forms, one the mirror image of the other. And, in

fact, each amino acid exists in living  tissue in only one of

the two forms; and the same form is found, in each case, in

all living tissue of any kind.

But which form? Some amino acids in the naturally

occurring form are dextrorotatory and some are

levorotatory, but you can’t  go by that. Instead, you must

work out their structural nature  with reference to the

glyceraldehyde standard.

When this is done, it turns out that, without exception,

all naturally occurring amino acids in all living tissue of



whatever kind are of the L-series.*

We can therefore eliminate all questions as to why this

form of some sugar (or other compound) exists in tissue and

not its mirror image, and zero in on the amino acids. From

them, everything else follows, so we can ask: Why are all

the amino acids of the L-series?

It isn’t hard to answer why all the amino acids belong to

the same series. When amino acids hook together to form a

protein  molecule, the side chains stick out on this side or

that and some  of them are very bulky. The protein

molecules do not have room to spare for them.

If the amino acid chain were to consist of both L-amino

acids and D-amino acids, there would be frequent occasions

when an L-amino acid would be immediately followed by a

D-amino acid. In  that case, the side chains would stick out

on the same side and  would, in many cases, seriously

interfere with each other. If, on  the other hand, the chain

consisted of L-amino acids only, the side chains would stick

out first to one side, then to the other, alternately. There

would then be more room available and a protein molecule

could more easily form.

But the same thing would be true if the chain consisted

of D-amino acids only. In fact, there is no reason to think

that proteins consisting of D-amino acids only would be in

any way different in  form or function from those that now

exist, that organisms made up of such D-proteins would be

in any way inferior to those that  now exist, that a whole

ecology based on D-organisms would be  in any way less

viable than the system which does exist on Earth.

* Well, almost. There are some D-series amino acids found in very

specialized locations, in the cell walls of certain bacteria, for instance.

The question, therefore, arises: Why one rather than the

other? Why has Earth developed an L-ecology, rather than a

D-ecology?



The simplest possible explanation (and therefore the

one which is perhaps most likely to be true) is through the

working of sheer randomness.

In the lifeless primordial ocean, individual more complex

molecules were steadily being built up out of less complex

precursors thanks to energy sources such as the ultraviolet

radiation of the Sun. Among these molecules being built up

were L-amino  acids and D-amino acids.* These come

together to form chains,  such chains being built up most

easily out of all one form or all  the other, so that both D-

chains and L-chains would exist.

Eventually, some chains would be complex enough to

have enzymatic properties and could co-operate, perhaps,

with nucleic acids that would also be forming. (Nucleic acids

contain five-carbon sugars in their molecules, which are

always of the D-series.) It may be that, through sheer

circumstance, an L-amino acid chain was first to reach the

necessary complexity and, in combination with nucleic acid,

began multiplying. (It is characteristic of life that it is based

on molecules capable of forming replicas of themselves.)

In that way, the proto-life molecule, using itself as a

model, could form many times more L-amino acid chains

than could be formed by chance alone. The L-ecology would

have got the first  foothold and, being self-perpetuating,

would never let go. The decision between L and D would

thus be made at the very beginning of the history of life.

It might just as well have gone the other way, too, so

that if we were to study many Earthlike life-bearing planets,

we might find that about half of them bore a D-ecology and

half an L-ecology.

* Since 1951, chemists have been trying to duplicate primordial

conditions and have formed amino acids in this fashion—but always the

D- and L-forms in equal quantities.



Since food from D-organisms could be digested and

assimilated only with difficulty, if at all, by L organisms such

as ourselves, and since it might set up serious, or even

fatal, allergic manifestations, human exploration of the

Galaxy might then face a particular danger. A planet might

be a very paradise but if its life forms tested out D it would

be unsuitable for colonization.

But need we rely on pure randomness? There are some

nonlife sources of asymmetry. There is a kind of polarized

light, called “circularly polarized light,” which can be viewed

as either a lefthanded screw or a right-handed screw.

A particular variety of such light, being asymmetric,

would affect one minor-image compound more than its twin.

A chemist beginning with an equal mixture of the two mirror

images would end with one slightly in excess. He would go

from symmetry to  asymmetry without the intervention of

life. Usually, though, he ends with only some 0.5 per cent of

the amount of asymmetry he would get if he had one of the

images only.

Still, one can imagine a source of circularly polarized

light on the primordial Earth, say through the reflection of

sunlight from the ocean surface. The light might be harder

on the D-amino acids  than on the L-amino acids. The D-

amino acids would be harder  to form and easier to break

down once formed. In that case there  would be a kind of

built-in bias in favor of the L-ecology.

The catch is, though, that there seems no reason why

the circularly polarized light should be formed left-handed

rather than right-handed. If it is formed in both ways

equally, as is to be expected, there will be no bias.

But something new has turned up.

A Hungarian botanist named Garay (I don’t have his first

name) reported in 1968 that an amino acid solution

bombarded with energetic electrons from strontium-90, did

not decompose equally. The D-form decomposed perceptibly

more quickly than the L-form.



Why?

One possibility is this. When the beta particles are

slowed down by passage through the solution, they emit

circularly polarized  gamma rays. If the gamma rays were

produced in equal amounts of left-handed and right-handed

forms this wouldn’t matter, but are they?

As I explained in Chapter 2, the law of parity breaks

down in weak interactions, and it is these which involve the

electron. The  breakdown means that the electron is not

symmetric with respect to right and left. It is left-handed, so

to speak. Consequently, the  gamma rays it produces are

left-circularly polarized and that means  D-amino acids are

less easily formed and more easily destroyed once formed.

It would follow, then, that because of the non-

conservation of parity there is an ingrained bias as far as

optical isomers are concerned. In any Galaxy (or universe)

made up of matter, in which  electrons and protons

dominate, we may expect a certain preponderance of L-

ecologies among the life-containing planets.

On the other hand, in any Galaxy (or universe) made up

of antimatter, in which positrons and antiprotons dominate,

we may  expect preponderance of D-ecologies among the

life-containing planets.

Of course, this postulated connection between non-

conservation of parity and the asymmetry of life is, as yet,

highly tentative, but  I am emotionally drawn to it. I firmly

believe that everything in  the universe is interconnected,

that knowledge is one; and it  seems dramatically right to

me to have a discovery concerning the non-conservation of

the law of parity, which seems so ivory-towerish and far-

removed, serve to explain something so fundamental about

life, about man, about you and me.



B - The Problem of Oceans



6 THE THALASSOGENS 

Cocktail parties bring out the worst in me in the way of

selfrighteousness, for I don’t drink.

This isn’t a question of morality, you understand. It’s

just that I don’t particularly like the taste of liquor and that

even small  quantities induce blotches and shortness of

breath. Anyway, without ever touching a drop, I can be as

hilariously drunk as anyone in the room—and no hangovers

afterward.

The only trouble is that people won’t let it go at that.

They stand around and hound me. “Are you sure you won’t

have something?” they ask for the fifteenth time.

What’s more, when I do get thirsty, I have to go over to

the bartender, make sure no one is listening, and then ask

in a stage whisper if I can have some water.

First, I have to convince him that I really want water.

Then I have to persuade him that I want a large glass

without ice. I generally fail. Not listening, he picks out a

cocktail glass and hands  me water-on-the-rocks which

means I have about five cubic centimeters of fluid and must

then stand there, moodily, swirling ice  cubes and wishing

they would melt.

It’s no wonder I get nasty. The other evening at a

cocktail party one of those present was inveighing against

marijuana. “Ninety-two per cent of heroin users,” he said,

“began with pot.”

I was on his side, actually, for I am against the use of

drugs, but I eyed the glass of liquor he was holding and

said, “Are you a social drinker?”

“Of course,” he said.

“Well,” said I, “every single alcoholic who ever existed

began as a social drinker.”



Anyway, there’s nothing wrong with water. It’s a great

beverage and a very unusual substance in addition.

For instance, the six most common elements in the

universe as a whole are thought to be hydrogen, helium,

oxygen, neon, nitrogen, and carbon, in that order. Out of

every ten thousand atoms in  the universe about 9,200 are

hydrogen, 790 are helium, 5 are oxygen, 2 are neon, 2 are

nitrogen, and 1 is carbon. All the rest make  up an

insignificant scattering and for many purposes can be

simply ignored.

With this information on hand, we can ask ourselves

what the most common compound (i.e., a substance with a

molecule made up of two or more different kinds of atoms)

in the universe is. It stands to reason that the most common

compound would be one with a small, very stable molecule

made up of atoms of the two most common elements.

Since helium atoms don’t form parts of any molecules at

all, that leaves hydrogen and oxygen as the most common

compound forming elements in the universe. One atom of

each can combine to form “hydroxyl” (OH), which has been

detected in the interstellar spaces of our galaxy and of at

least one other. It can only exist in rarefied media such as

that in space. Two hydrogen atoms  and one oxygen form

water (H20), and that can exist at planetary densities—and

is undoubtedly the most common such  compound in the

universe.

Naturally, water wouldn’t be common everywhere. It

wouldn’t exist at all in any normal star, of course. The

molecule breaks up  at stellar temperatures. On too-small

planetary bodies, water molecules would be too light and

flitting to be held by the feeble gravitational force. Some

might be held by chemical forces to the rocky crust, but this

would represent a very small percentage of the

total potential. It is not surprising then that the Moon, Mars,

and, undoubtedly, Mercury are relatively dry.



On giant planets such as Jupiter and Saturn, where the

gravitational field is intense and the temperature is low,

there is a much more representative sampling of the

material of the universe and surely water is by far the most

common compound on such worlds.

Earth stands in an intermediate position. It is small

enough and warm enough to have lost most of the water it

might have possessed at the start. More likely, it failed to

gather most of it in the first place out of the swirling cloud of

dust and gas from which the planet formed. Even so, water

on Earth is extremely plentiful.

In fact, in two respects, Earth’s water is absolutely

unique. In the first place, water is by far the most common

liquid on Earth. Indeed, it is the only liquid on Earth present

in quantity. (What is in second place? Petroleum, perhaps.)

Secondly, water is the only substance on Earth present,

in quantity, in all three phases, solid, liquid, and gas. Not

only is there an ocean full of water, but there are polar caps

of miles-deep ice, and  there is water vapor making up a

major (if variable) part of the atmosphere.

The question, Gentle Readers, is this, then: Can any

substance other than water serve? Can a planet exist with a

large ocean of any substance other than water?

To answer that question, let’s consider the

requirements:

1)       The ocean substance must be a plentiful

component of the  universe mixture. We can imagine

oceans of liquid mercury, or  liquid fluorine or liquid

carbon tetrachloride, but we can’t realistically imagine

any planet with these particular substances present  in

such quantities as to spread out into oceans.

2)       The ocean substance must have a prominent

liquid phase.  For instance, the Martian polar caps may

well be frozen carbon  dioxide, but there is no liquid

carbon dioxide phase at Martian atmospheric pressure.



The solid carbon dioxide vaporizes directly to  gas, so

there would be no carbon dioxide ocean even if there

were enough carbon dioxide to form one.

3)       Ideally, we would want a substance whose

liquid phase could be transformed with reasonable ease

to either solid or gas, if we are to make possible those

properties of Earth’s ocean which lead  to ice caps,

clouds, rain and snow. Thus an ocean of liquid gallium at

the temperatures of water’s boiling point, for instance,

might produce gallium “ice caps” with ease, but at that

temperature, gallium’s vapor pressure would be so low

that there would be no gallium vapor in the air to speak

of, no gallium clouds, no gallium rain. On the other

hand, if we had an ocean of liquid helium at

a  temperature of 2° above absolute zero (i.e., 2° K.)

there would  be plenty of helium vapor in the

atmosphere (indeed, that would make up almost all the

atmosphere) and helium rain would be  common, but

there is likely to be no helium ice or snow because solid

helium doesn’t form, even at absolute zero, except

under considerable pressure, and we would be hard put

to design a planet with sufficient atmospheric pressure

at 2° K. to do the job.

In considering the requirements, let’s begin with the

first-presence in oceanic quantities. For that, we had better

work with the top six elements only: hydrogen, helium,

oxygen, neon, nitrogen, and carbon. Any substance made

up of anything but these  six elements (singly or in

combination) might have many virtues but would simply not

be present in sufficiently overwhelming a quantity to make

up an ocean composed entirely or nearly entirely of itself.*

Of these six elements, two, helium and neon, can exist

in elemental form only. A third, hydrogen, can form

compounds, but exists in such overwhelming quantities that

on any planet capable of collecting more than a trace of it



(i.e., on Jupiter, as opposed to Earth) it must exist mostly in

elemental form for sheer lack of  sufficient quantities of

other elements with which to combine.

As for oxygen, nitrogen, and carbon, these, in the

presence of a vast preponderance of hydrogen will exist

only in combination  with as much hydrogen as possible.

Oxygen will exist as water  (H20); nitrogen, as ammonia

(H3N); and carbon, as methane (H4C).

This gives us our list of the six possible thalassogens:**

hydrogen, helium, water, neon, ammonia, and methane, in

order of decreasing quantity.

* There is one conceivable exception on an Earthlike planet. Silicon

dioxide is present in oceanic quantities but it is a solid and wouldn’t be a

liquid under anything but white heat. Scratch silicon dioxide.

**This is a word I have just made up. It is from Greek words (“sea-

producers”) and I define it as “a substance capable of forming a

planetary ocean.”

The next step is to consider each in connection with its

liquid phase. At ordinary pressures, equivalent to that

produced by  Earth’s atmosphere, each has a clear-cut

boiling-point temperature,  above which it exists only as a

gas. This boiling point can be increased when pressure is

increased, but let’s ignore that complication, and consider

the boiling point, in degrees above absolute  zero, at

ordinary pressure.

It turns out that the boiling points of helium, hydrogen,

and neon are, respectively, 4.20 K., 20.30 K., and 27.30 K.

But keep in mind that even distant Pluto has a surface

temperature estimated to be roughly 6o° K. In fact, I wonder

if any sizable planet, such as the outer members of our solar

system, can ever have extremely low temperatures. Internal

heat arising from radioactivity must be sufficient to keep the

surface temperature at Plutonian levels, at least, even in the



complete absence of any  sun. (Jupiter, for instance,

according to a recent report I’ve seen, radiates three to four

times as much heat as it receives from the Sun.)

In short, then, for any reasonable planet we can design,

the temperature is going to be too high for the presence, in

quantity, of helium, hydrogen, or neon in the liquid phase.

Scratch them  from the list and we have only three

thalassogens left: methane, ammonia, and water.

And what are their boiling points? Why, respectively,

111.70 K., 239.8, and 373.2.

If we consider these three, we come to these

conclusions:

1)    Water is the most common and is therefore the

most likely to form an ocean.

2)    Since methane is liquid across a range of 23

degrees, ammonia across 44 degrees, and water across

100 degrees, water, of  the three, has by far the

broadest temperature range for the liquid phase and, in

its ocean-forming propensities, is least sensitive

to temperature deviation.

3) Most important of all, water forms its oceans at a

higher  temperature than the other two. You might

expect methane oceans on a planet like Neptune or

ammonia oceans on a planet like Jupiter. Only water,

however, only water, could possibly form an ocean on

an inner planet like Earth.

Well then, we depend for the existence of our ocean,

and therefore for the existence of life, on the fact that water

happens to have its liquid range at a far higher temperature

than that of any other possible thalassogen. Is that just the

way the ball bounces or is there something interesting to be

wrung out of the water molecule?

Let’s see-



When atoms combine to form molecules, the bond

between them is formed through a kind of tug-of-war over

the outermost electrons in those atoms. In many cases, one

type of atom has the  capacity to hold on to one or two

electrons over and above those it normally possesses. Given

half a chance it will grab on to such  electrons. Since the

atom itself is electrically neutral (positive  charges in the

interior, balancing negative charges on the outskirts) and

since every electron has a negative charge, an atom which

is capable of taking on one or more additional

electrons  then carries a net negative charge. Elements

made up of atoms  capable of doing this are therefore

characterized as “electronegative.”

The most electronegative of the elements, by far, is

fluorine. Following it, in order, are oxygen, nitrogen,

chlorine, and bromine. These are the only strongly

electronegative elements.

Some atoms on the other hand have no strong ability to

latch on to additional electrons. Indeed, they find it difficult

to hold on to the electrons they normally possess and have

a considerable tendency to give up one or two. Given half a

chance they will do  so. Once they lose such negatively

charged electrons, what remains  of the atom has a net

positive charge. Such atoms are therefore “electropositive.”

Most of the elements tend to be somewhat

electropositive. The most electropositive elements are the

alkali metals, of which sodium and potassium are the most

common representatives. Calcium, magnesium, aluminum,

and zinc are other examples of strongly electropositive

elements.

When an electropositive element, like sodium, meets an

electronegative one like chlorine, the sodium atom freely

gives up an electron, which the chlorine atom as freely

takes. What is left is a sodium atom with a positive charge

(a sodium ion) and a chlorine atom with a negative charge

(a chloride ion). The attraction between the two ions is the



strong pull of an electromagnetic force  and this is called

“electrovalence.” A number of chloride ions cluster around

each sodium ion and a number of sodium ions

cluster  around each chloride ion. The result is an intricate

and very orderly array of ions that hang on to each other

tightly.

The commonest way of pulling ions apart is to use heat.

All ions, no matter how firmly held in place by some sort of

attraction, are vibrating about that place. This vibration is

related to  temperature. The higher the temperature, the

more energetic the  vibration. If the temperature is high

enough, the vibration becomes violent enough to pull the

ions apart, however strong the  electromagnetic force

between them, and the substance then melts. (In the liquid

phase, the ions are no longer held firmly in place and they

move about freely.)

Nevertheless the temperature, by ordinary standards,

must be quite high before the strong attractions between

the sodium ions  and the chloride ions can be overcome.

Sodium chloride (ordinary  table salt) has a comparatively

high melting point, therefore— 10740 K. (For orientation, a

pleasant spring day with the temperature at 700 F. is at

2940 K.)

Still higher temperatures are required to pull the ions

apart altogether and send them in pairs (one sodium ion

and one chloride ion) into the nearly total independence of

the gas phase, so that the boiling point of sodium chloride is

16860 K.

This is more or less true of all electrovalent compounds,

which form by the transfer of one or more electrons from

one atom to another. Molybdenum oxide has a melting point

of 28930 K. and a boiling point of 5070° K.

What happens, though, when one electropositive

element meets another? Sodium atoms, for instance, can

form bonds  among themselves by allowing the outermost



electron each possesses (and which they hold on to only

very loosely) to be shared among them all. This is a stabler

situation than would exist if each  were responsible for its

own outermost electron only, as in sodium  gas.

Consequently sodium atoms cling together and sodium is

a solid at ordinary temperatures. To be sure, it doesn’t take

much to  pull the atoms apart and sodium melts at a

temperature of 370° K.,  just under that of boiling water. It

doesn’t boil, though, and obtain complete atomic

independence till 1153 ° K.

(Those outermost electrons wander easily from atom to

atom. Their existence accounts for the fact that sodium, and

metals generally, conduct heat and electricity so much

better than nonmetals.)

Metals made up of less electropositive atoms get

together more snugly and some of them end up by forming

bonds as tight as  those of any electrovalent compound.

Tungsten metal has a melting point of 36400 K. and a boiling

point of 61500 K.

Yet though metallic atoms fit together well, there is a

greater tendency for them to transfer electrons to the

electronegative  atoms, particularly to oxygen, which is by

far the most common of  all the strongly electronegative

elements. For this reason, there is virtually no free metal in

the Earth’s crust.*

In general, then, we can say that metals and

electrovalent compounds are so high-melting as to offer no

chance of a liquid phase at any reasonable planetary

temperature, up to and including that of Mercury. Those few

which might (like sodium metal or tin tetrachloride) cannot

possibly be present in large enough quantity to form an

ocean.

So we must look for something else. What happens if

one electronegative atom meets another? What happens if

one fluorine atom meets another, for instance? Each of the



fluorine atoms can handle one electron over and above its

usual assignment, but neither is in a position to give up one

of its own in order to satisfy the other. What does happen is

that each atom allows the other a share in one of its own

electrons. There is a two-electron pool to which each

contributes and in which each shares. Both fluorine atoms

are then satisfied.

* Earth has a metallic core because it contains so much iron that there

just aren’t enough electronegative atoms to take care of it all. The

metallic excess, denser than the oxygen-containing electrovalent

compounds, settled to the Earth’s center in the soft, youthful days of the

planet.

In order for this pool to exist, though, the two fluorine

atoms must remain at close quarters! To pull them apart

takes a lot of  effort, for it means breaking up that two-

electron pool. Consequently, under ordinary circumstances,

fluorine in elementary form exists in molecules made up of

atom pairs (F2). The temperature must rise well over 13000

K. even to begin to break up  the fluorine molecule and

shake the individual atoms apart. The  attraction between

atoms represented by shared electrons is called a “covalent

bond.”

Two fluorine atoms, once they have formed their two-

electron pool, have no reason to share any electrons with

any other atoms,  much less transfer electrons to them or

even receive electrons from  them. The two-electron pool

completely satisfies their electron  needs. Consequently,

when one fluorine molecule meets another  fluorine

molecule, they bounce off each other, with very little

tendency to stick together.

If there were no tendency to stick together at all, the

fluorine molecule would remain independent of its neighbors

however far  down the temperature might drop. The

molecules would move  more and more sluggishly, bounce



off one another more and more feebly, but they would never

stick.

However, there are what are called “Van der Waals

forces,” named for the Dutch chemist who first studied

them. Without going into the matter in detail we can simply

say that there are weak attractive forces between atoms or

molecules even when there is no outright electron transfer

or electron sharing.

Thanks to Van der Waals forces, fluorine molecules are

slightly sticky, and if the temperature drops low enough, the

energy that

keeps them moving will not be great enough to make

them break away after colliding. Fluorine will condense to a

liquid.

The boiling point of liquid fluorine is 850 K. If the

temperature drops further still, the fluorine molecules lock

firmly into an orderly array and fluorine becomes a solid.

The melting point of solid fluorine is 500 K.

The same thing happens with the other electronegative

elements. Chlorine, oxygen, and nitrogen also form electron

pools between two atoms. We therefore have chlorine

molecules, oxygen molecules, and nitrogen molecules, each

made up of atom  pairs (Cl2, 02, and N2). Even hydrogen

atoms, which are not particularly electronegative, form

molecules by pairs (H2).

In every case the melting and boiling points are low,

with the exact value depending on the strength of the Van

der Waals forces.  Hydrogen, with its very small atoms,

possesses a liquid range at a  considerably lower

temperature than that of fluorine. The boiling point of liquid

hydrogen is 210 K. and the freezing point of solid hydrogen

is 14° K.

A few varieties of atom happen to possess a satisfactory

number of electrons to begin with. They have little tendency

to give up any electrons they have and still less to accept



additional electrons  from outside. They do not therefore

tend to form compounds.  These are the so-called “noble

gases.”

There are six of these altogether and, of them, the three

with the largest atoms can form compounds (not very stable

ones)  with the most electronegative elements, such as

fluorine and oxygen. The three with the smallest atoms—

argon, neon, and helium (in order of decreasing size)—won’t

do even that much under any conditions yet discovered. Nor

will they form electron pools  among themselves. They

remain in sullen isolation as individual atoms.

Yet they, too, experience the mutual attraction of Van

der Waals forces and, if cooled sufficiently, become liquids.

The smaller the atom, the smaller the forces and the more

strongly cooled they must be to liquefy.

Helium, with the smallest atoms of the noble gases,

experiences  such small attractions that of all known

substances it is the most difficult to liquefy. The boiling point

of liquid helium is phenomenally low, only 4.20 K. Solid

helium doesn’t exist at all, even at o° K. (absolute zero),

except under considerable pressure.

So far, though, these gaseous substances I have

discussed, that are covalent in nature, and that have liquid

ranges far down the  temperature scale, are all elements—

elements that either exist in the form of isolated atoms, as

in the case of helium, or as isolated two-atom molecules, as

in the case of hydrogen.

Is it possible for molecules of two different atoms to be

covalent in nature and to be low-melting and low-boiling. —

Yes, it is!

Consider carbon. The carbon atom is neither strongly

electropositive nor strongly electronegative. It has a

tendency to form two-electron pools with each of four other

atoms. It could form  those pools with four other carbon

atoms, each of which can form pools with three others, each

of which with still three others, and so on indefinitely. In the



end, uncounted trillions of carbon  atoms may be sticking

firmly together by way of strong covalent bonds. The result

is that carbon has a higher melting point than  that of any

other known substance—nearly 40000 K.

But the carbon atom may form a two-electron pool with

each of four different hydrogen atoms. The hydrogen atoms

can only form one two-electron pool apiece and so that ends

it. The entire  molecule consists of a carbon atom

surrounded by four hydrogen  atoms (H4C), and this is

methane.

Methane molecules have little attraction for each other

except by way of weak Van der Waals forces. The boiling

point of liquid methane is 112° K., and the melting point of

solid methane is 890 K.

Similarly, a carbon atom can form a molecule with one

oxygen atom. This would be carbon monoxide (CO). Its

boiling point and melting point are, respectively, 83 ° K. and

670 K.

Now we can come to a general conclusion. Unlike

metallic substances and electrovalent compounds, covalent

compounds have  low melting points and boiling points and

only they can conceivably be thalassogens at reasonable

planetary temperatures.

This gives us our first answer as to why water is a

thalassogen at all: it is a covalent compound essentially. All

right, that’s something to begin with. Yet so many covalent

compounds are, if anything, liquid at too low a range for

planetary purposes and  certainly for earthly purposes

specifically. Why is liquid water so warm then?

One possibility rests in the fact that, in general, the

larger the covalent atom or molecule, the stronger the Van

der Waals forces and the higher the boiling point. Consider

the following table, in  which the size of the molecule is



measured by its molecular weight (or, in the case of helium

and neon, atomic weight).

Substance
Atomic or Molecular

Weight

Boiling

Point (F)

Hydrogen (H2) 2 17

Helium (He) 4 4

Neon (Ne) 20 27

Nitrogen (N2) 28 77

Carbon monoxide

(CO) 28 83

Oxygen (Oa) 32 90

Fluorine (F2) 38 85

Oxygen fluoride (OF2) 54 138

Nitrogen fluoride

(NF3) 7i 153

Chlorine (Cl2) 7i 239

Pentane (C5H12) 72 309

Chlorine heptoxide

(C1207) 183 355

The table isn’t perfect, for helium, which has a larger

atomic weight than hydrogen’s molecular weight,

nevertheless has a lower boiling point than hydrogen. Then,

too, fluorine, which has a larger molecule than oxygen has,

is nevertheless lower-boiling. Still, the table seems to show

that there is a kind of rough and ready relationship between

molecular weight and boiling point in  the case of covalent

compounds.

We might conclude therefore that water, which has a

boiling point at 3730 K., ought to have a molecular weight

somewhat  higher, or at least not particularly lower, than



chlorine heptoxide.  Its molecular weight ought to be, say,

180, as a minimum.

Except that it isn’t. The molecular weight of water is 18,

just one tenth what it “ought” to be.

Something, obviously, is terribly wrong—or right,

perhaps, for it is to whatever causes this anomaly that we

owe our life-giving  ocean. What that wrongness/rightness

might be we’ll discuss in the next chapter.



7 - HOT WATER

One of the occupational hazards of popularizing the

scientific view of the universe for the general public is the

occasional collision with readers who prefer some variety of

religious view of the universe instead. To reduce some

wonderful phenomenon from the provenance of God to the

blind consequence of some physical or  chemical “law”

offends them, and their response, very often, is to  accuse

the science writer of atheism.

Thus, only yesterday, I received a letter from a lady

which began by addressing me austerely as “Dear Sir,” and

then continued, somewhat less austerely, “According to the

Scriptures, and using  the language of the Scriptures, you

are a ‘fool.’”

That aggrieved me, naturally, since while I am every bit

as foolish (on occasion) as the next fellow, I hate to be told

so. Besides, the accusation went beyond that of mere folly.

It was obvious that the lady was referring to a certain well-

known biblical quotation.

Among the hundred and fifty poems in the Book of

Psalms, there are two, the fourteenth and the fifty-third, that

are virtually  identical, and in each case the first verse

begins, “The fool hath said in his heart, There is no God.”

What could I do? I decided that a scriptural reference

deserves a scriptural reference, so I sent the nice lady a

short note which said:

”’. . . whosoever shall say, Thou fool, shall be in

danger of hell fire.’ Matthew 5:22.”*

But, alas, having taken care of one correspondent, I

must now run the risk of offending others of those whom

Robert Burns  would refer to as the “unco guid.” For, you



see, water has amazing properties that seem to be perfectly

designed for life. It would be so pious to look upon it as the

workings of a benevolent and ingenious Maker, creating a

Universe for the good of undeserving Man, and so prosaic to

bring it down to the uncaring properties of atoms.

* This is from the Sermon on the Mount, in case you don’t recognize it.

—Yet I will have to do the latter, since I am committed to

the scientific view of the universe (pointing out to the

reverent that  they can easily suppose those uncaring

properties to have been created by God).

In the previous chapter, I pointed out that water was the

only possible thalassogen for a planet at the temperature of

the Earth,  the only compound that could possibly exist in

sufficient quantity in the liquid phase to form an ocean.

To be liquid at the relatively low temperatures of Earth

(as I explained), a substance would have to consist of

covalent molecules, that is, molecules in which pairs of

neighboring atoms more  or less share electrons in

neighborly fashion, rather than carrying  through a transfer

of one or more electrons from one atom to another, bodily.

In general, the larger the molecular weight of a covalent

compound the higher the temperature range of its liquid

phase. From that standpoint one might expect a substance

which is liquid at  water temperatures to have a molecular

weight of perhaps 180.  The molecular weight of water,

however, is 18, just one tenth of what it “ought” to be. On

the basis of molecular weight, liquid  water is surprisingly

warm; it is “hot water” indeed.

But why is that? Are we perhaps oversimplifying if we

relate liquid-phase temperatures to molecular weight alone?

Well, at the end of the previous chapter I listed

molecular weights and boiling points without any attempt to

pick and choose  among them. That is probably unfair, for



substances are made up  of different elements, and these

differ greatly among themselves in  chemical and physical

properties. Yet elements exist in families, and within these,

the members are quite similar. It might be best

to stick to members of a particular family and see what

regularities we can find there.

For instance, consider the six elements of the noble gas

family, their atomic weights, and their boiling points.

Element Table 1 Atomic Weight Boiling Point (° K.) * 

Helium (He) 4.0 4.2

Neon (Ne) 20.2 27.2

Argon (Ar) 39.9 87.4

Krypton (Kr) 83.8 120.2

Xenon (Xe) 131.3 166.0

Radon (Rn) 222.0 211.3

Here we have a smooth rise in boiling point with the

atomic weight, which is what we would expect, looking at

the matter in an unsophisticated way. After all, if the atoms

grow heavier, it takes more energy in the form of heat to lift

them away from each other and send them off separately in

vapor form.

What if we shift to the four elements of another family,

the halogens, a family as well defined as that of the noble

gases (see  Table 2). Here, too, the boiling point rises

smoothly with the  atomic weight. There is a fifth halogen,

the last in the series, which is named astatine. It is a

radioactive element and even its most long-lived nuclear

variety (with an atomic weight of 210) has a half-life of but

8.3 hours. It has not yet been obtained in quantities large

enough to allow a clear boiling point determination, but I am

willing to bet, sight unseen, and any reasonable sum, that



its boiling point is somewhere in the neighborhood of 5700

K.

Element Table 2 Atomic Weight Boiling Point (° K.)

Fluorine (F) 19.0 85.0

Chlorine (CI) 35.5 238.5

Bromine (Br) 79.9 331(?

Iodine (I) 126.9 457-5

*”° K.” represents the “absolute scale of temperature with the zero point

(“absolute zero”) at —273.16° C.

While the progression is smooth within an element

family, observe what happens when we cross the line.

Compare Tables 1 and 2. Neon and fluorine are not very

different in atomic weight but fluorine’s boiling point is three

times as high as neon’s. This goes all the way down, each

halogen having a boiling point approaching three times that

of the noble gas with similar atomic weight.

Is it that atomic weight alone isn’t the sole deciding

factor? Of course not. There are other properties that play a

role. The noble gas atoms are chemically inert and do not

combine among themselves. They remain as separate

atoms. The halogen atoms, on the other hand, because of

their characteristic electron arrangements  (different from

those of the noble gas atoms) do combine in pairs. Fluorine

is not composed of individual atoms, as neon is, but

of  molecules made up of two atoms apiece. Fluorine is F2

and its  molecular weight is 38.0. To consider the energy

required to separate the fundamental particles of fluorine

liquid into vapor, one  ought to consider the weight of the

molecule, not that of the atom.  The molecular weight of

fluorine is about that of the atomic weight  of argon and,



sure enough, the boiling point of fluorine is about  that of

argon.

If we could stop there, we’d be able to work up a hard-

and-fast relationship between particle size (whether atomic

or molecular) and boiling point. In science, though, it isn’t

fair to stop  at any point where you find yourself with the

answer you want.  You have to be sporting enough to look

further and try to spoil your own hypothesis.

That’s not hard to do. Chlorine atoms combine by twos

also, and chlorine is Cl2, with a molecular weight of 71. That

is distinctly less than the atomic weight of krypton, and yet

the boiling point of chlorine is just twice that of krypton.

So we had better not try to cross the family lines in

working up our theories. For the rest of the article I will stick

to families and it will only be anomalies within the families

that will receive our attention.

But let’s see, is it only the boiling points that vary

smoothly with atomic (or molecular) weight? Is the variation

always direct,  so that the measure grows larger as the

weight goes up? Let’s consider a third well-marked element

family, that of the “alkali metals” and take their melting

points this time.

Table 3

Element Atomic Weight Melting Point (° K.)

Lithium (Li) 6.9 452

Sodium (Na) 23.0 371

Potassium (K) 39.1 337

Rubidium (Rb) 85.5 312

Cesium (Cs) 132.9 301 

Cesium’s melting point is down to 301 ° K., or 28.50 C,

which means that it will melt on a hot summer day. There is

also a sixth alkali metal, francium, which is radioactive, with



its most long-lived nuclear variety (atomic weight, 223)

having a half-life of only  21 minutes. Its melting point has

not been determined but you  can bet, though, it is very

likely about 2900 K. and that it will melt on a balmy spring

day.

Other properties of other kinds vary in this regular

fashion with atomic weights within element families, with

values sometimes  moving steadily upward and sometimes

steadily downward.* The next question is, though, will this

same sort of happy effect work  within families of

compounds—that is, substances with molecules made up of

more than one kind of atom?

Consider molecules made up of carbon and hydrogen.

These come in many varieties, because carbon atoms can

link together  in chains and rings. Suppose, then, we

consider a single carbon  atom combined with hydrogen, a

chain of two carbon atoms combined with hydrogen, a chain

of three carbon atoms, four, and so on. The longer the chain

the larger the molecular weight, and we can consider such a

series of progressively larger molecules of very much the

same kind to make up a family. 

* It is only fair to say that a rigidly steady variation is not always

found. There are exceptions. However, modern chemists can usually

account for them, and we will have an example later in this article.

What happens tothe boiling point, in that case?

Table 4

Compound Molecular Weight Boiling Point (° K.)

Methane (CH4) 16.0 111.7

Ethane (C2H6) 30.1 184.5

Propane (C3H8) 44.1 228.7



Butane (C4H10) 58.1 273.7

Pentane (C5H12) 72.2 309

Hexane (C6H14) 86.2 341

As you see, boiling point rises smoothly with molecular

weight in this case.

To be sure, the family of “hydrocarbons” considered in

Table 4 is one in which all the members have molecules

made up of the same elements. Would it be possible to set

up families in  which at least one of the elements changes

from member to member?

Thus, carbon is the first member of an element family of

which the next three, in order of increasing atomic weight,

are silicon  (Si), germanium (Ge), and tin (Sn). An atom of

each of these  higher members can combine with four

hydrogen atoms to form  well-known compounds (silane,

germane, and stannane, respectively) analogous to

methane. Table 5 shows what happens to the boiling points

there, and you see we get regularity in such a family, too.

The problem, then, of finding out why water has the

high liquid-range temperatures it has, may become easier to

handle if  we work within some family of compounds that

includes it.

Table 5

Compound Molecular Weight Boiling Point (° K.)

Methane (CH4) 16.0 111.7

Silane (SiH4) 32.1 161.4

Germane (GeH4) 76.6 184.7

Stannane (SnH4) 122.7 221

Water molecules are made up of hydrogen and oxygen

atoms (H20). Of these two elements, hydrogen is a loner



and is not part of any clearly defined family (though it has

certain relationship both to the halogens and to the alkali

metals). Oxygen, on the other hand, is the first member of a

family that includes sulfur (S), selenium (Se), and tellurium

(Te) as later members. An atom of each of these three can

combine with two hydrogen atoms to form molecules (H2S,

H2Se, and H2Te, respectively)  that are analogous in

structure to water molecules.

Table 6

Molecular Boiling Point

Compound Weight (° K.)

Water (H20) 18.0 373.2

Hydrogen sulfide (H2S) 34.1 213.5

Hydrogen selenide (H2Se) 81.0 231.7

Hydrogen telluride (H2Te) 129.6 271.0

If we look at the last three members alone, we see that

theboiling point goes up with molecular weight. But water

doesn’t fit! Its boiling point should be, judging from the rest,

something like 2000 K. or — 73 ° C. Only the coldest polar

days should suffice  to liquefy its vapor and yet here it is,

boiling something like 170  degrees higher than it should.

Hot water, indeed.

There are two other compounds that, like water, don’t fit

their families in this respect.

A hydrogen atom will combine with one atom of any of

the halogens. We can get hydrogen fluoride (HF), hydrogen

chloride  (HC1), hydrogen bromide (HBr), and hydrogen

iodide (HI).



The boiling points of the last three on the absolute scale

are 188.2, 206.5, and 237.8, respectively. We might expect

HF to have  a boiling point about 170, but it doesn’t. Its

boiling point is 292.6 or about 120 degrees “too high.”

Then, too, three hydrogen atoms will combine with one

atom of the member of a family of elements that includes

nitrogen  (N), phosphorus (P), arsenic (As), and antimony

(Sb). The  compounds phosphine (H3P), arsine (H3As), and

stibine  (H3Sb) have boiling points of 185.5, 218, and 256.

On that basis,  the first member of the series, ammonia

(H3N), ought to have a  boiling point of about 150, but it

doesn’t. Its boiling point is  239.8, which is about ninety

degrees “too high.”

What, then, do these three too-high-boiling compounds,

water (H20), ammonia (H3N), and hydrogen fluoride (HF),

have in common?

1)    All three are made up of molecules consisting of

hydrogen atoms and one other kind of atom.

2)       The other atoms involved—oxygen, nitrogen,

and fluorine—  just happen to be the three most

electronegative atoms there are; that is, the atoms most

capable of snatching electrons from other atoms.

A fluorine atom, the most electronegative of all, can, for

instance, take an electron away from a sodium atom

altogether, assuming sole ownership and leaving the

sodium atom utterly minus one electron.

The hydrogen atom is not quite such an easy mark. It

holds on to its single electron more tightly than the sodium

atom does to its one outermost electron. The fluorine atom

does not take  hydrogen’s electron away altogether, but it

does take over the  lion’s share of it. The electron, so to

speak, is closer to the center  of the fluorine atom than to

the center of the hydrogen atom.



This means that if you imagine a line drawn down the

center of the hydrogen fluoride molecule, with the hydrogen

atom on  one side and the fluorine atom on the other; the

fluorine side, having more than its equal share of electrons,

has what amounts to a small negative electric charge, while

the hydrogen side has an equally small positive electric

charge.

Much the same can be said of the water molecule and

the ammonia molecule. In each case, the side of the

hydrogen atoms  carries a small positive charge, while the

side of the oxygen (or  nitrogen) atom carries a small

negative charge.

All three molecules are “polar molecules.” That is, they

have poles at which electric charge is concentrated.

This is not true of H2S, for instance, which is otherwise

so similar to H2O in structure. Sulfur just isn’t as

electronegative as oxygen and it cannot hog more than its

fair share of the electrons of the hydrogen atoms. Hydrogen

sulfide is therefore not particularly polar. Neither is

hydrogen chloride or phosphine.

If we now consider polar molecules, those with a

positively charged end and a negatively charged end, we

must inevitably start thinking of the possibility of attraction

between molecules.  What if the positively charged end of

one molecule should be near the negatively charged end of

another molecule of the same  kind? Would they not stick

together a bit?

Yes, they would, particularly since the positively charged

end involves the hydrogen atom. Why? Because the

hydrogen atom is  the smallest of all the atoms and its

center can therefore be most  closely approached. The

strength of attraction between two oppositely charged

objects varies inversely as the distance between them. The

closer they come together, the stronger the attraction.



It follows, then, that the water molecule, the hydrogen

fluoride molecule, and the ammonia molecule are “sticky

molecules.” They  tend to line up positive end to negative

end, and it takes significantly higher temperatures to pry

them apart than if they were non-polar; that is, lacking the

concentration of charge on two opposite sides, and held

together only by the Van der Waals forces mentioned in the

previous chapter.*

* Van der Waals forces are also the result of electrical asymmetry in

atoms and molecules, with momentary concentrations of electric charge

in one place or another. In non-polar molecules, however, the

concentration-shifts from place to place lead to overall polarizations that

are tiny indeed, much less than those in polar molecules, where the

concentration of charge is persistent and definitely localized.

Usually, the water molecules are pictured with a

hydrogen atom attached to the oxygen atom of its own

molecule by a solid bond representing an ordinary chemical

linkage, while it is attached to  the oxygen atom of a

neighboring molecule by a longer, dashed bond to indicate

the electromagnetic attraction of opposite charges.

Because the hydrogen atom is thus between two oxygen

atoms, one of its own and one of a neighboring molecule

(or, in similar fashion, between two fluorine atoms, between

two nitrogen  atoms, between a nitrogen atom and an

oxygen atom, and so on), the situation is commonly referred

to as a “hydrogen bond.”

The hydrogen bond is only about one twentieth as

strong as an ordinary chemical bond, but that is enough to

add up to 170 degrees to the temperature required to tear

the molecules apart  and set the liquid to boiling. Water

molecules are sticky enough, thanks to the hydrogen bonds,

to boil at 373 ° K. instead of 2000  K., and that, combined

with the fact that hydrogen and oxygen  are the two most

common compound-forming atoms in the universe, makes it



possible for oceans of liquid to exist on a planet

the temperature of the Earth.

What’s more, it is because of the stickiness of the water

molecules that it is possible for water to absorb so much

heat for each degree rise in temperature or give off so much

heat for each degree fall. We say, therefore, that water has

an unusually high “heat capacity.”

There is, similarly, an unusually high heat absorption at

the melting point or boiling point, due to the necessity for

breaking  all those hydrogen bonds. That is, it takes much

more heat than one would expect to convert ice at 273 ° K.

to water at the same  temperature, or to convert water at

373 ° K. to steam at the same  temperature. Working in

reverse, an unusual amount of heat is given off when steam

condenses to water or water freezes to ice.  (Water has an

unusually high “latent heat of fusion and vaporization,” in

other words.)

This is more than a mere matter of statistics. Water acts

as a huge heat-sponge. It takes up and gives off more heat

than any  other common substance for a given change of

temperature, so  that the ocean rises in temperature much

more slowly under the beating rays of the Sun than the land

does, and drops in temperature much more slowly in the

absence of the Sun.

With a vast ocean of water on its surface, the Earth

therefore has a much more equable temperature than it

would without it.  In the summer, the sluggishly warming

ocean acts as a cooling device; in the winter, the sluggishly

cooling ocean is a warming device. And if you want to see

what that means in a practical  sense, consider the

temperature ranges over the day-night interval  and the

summer-winter interval of a land area far from

any ameliorating stretch of ocean (North Dakota) with those

of one that is surrounded by ocean on all sides (Ireland).

Since at any temperature, the evaporation of water

absorbs more heat per gram of vapor formed than is true of



any other common liquid, water is a particularly cheap and

effective air conditioning device.

Perspiration is almost pure water and as it evaporates a

great deal of heat must be absorbed from the object closest

to that water —which happens to be the skin on which the

perspiration rests. In this way, the body is cooled.

Then, too, there is the matter of solvent properties. In a

substance like sodium chloride (common salt), the sodium

atoms lose an electron each to the chlorine atoms, which

therefore gain an electron each. The sodium atoms carry a

unit positive charge and the chlorine atoms a unit negative

charge, and are hence called ions. The two sets of ions cling

together through the attraction of opposite charges.*

When particles of salt are dumped into water, the

presence of positive and negative poles on the water

molecules sets up an  electromagnetic field which tends to

neutralize that which is set up by the charged sodium and

chloride ions. The ions cling to each other with far less verve

in the presence of water than in the open air and have a

pronounced tendency to fall apart and go swimming in the

water on their own. To put it briefly, sodium chloride

dissolves in water.

* The sodium chloride combination is much more polar than the water

molecule is and this is reflected in its extremely high boiling point.

So do a surprising variety of other electrovalent

compounds, that is, compounds made up of oppositely

charged ions after the fashion of sodium chloride.

Polar compounds, which are not built up of outright ions

but have molecules with separated concentrations of charge

(like  water itself), also lose a considerable part of their

tendency to  cling together in the presence of water and

therefore tend to  dissolve. This includes many common

substances of importance  to life which have the oxygen-



hydrogen or nitrogen-hydrogen  linkage that makes

polarization possible.

This includes various alcohols, sugars, amines, and

other organic compounds.

No other liquid is so versatile a solvent as water; no

other liquid can dissolve appreciable quantities of so wide a

variety of substances. To be sure, though, water cannot

dissolve appreciable  amounts of all electrovalent

compounds, since electrovalency is  not the only property

that is important. And, of course, it cannot  dissolve non-

polar compounds such as hydrocarbons, fats, sterols, and so

on.

The importance of water’s versatile solvent action is this

—

The body’s most important substances, the proteins and

the nucleic acids, together with its most important fuels, the

starches and sugars, are loaded with oxygen-hydrogen and

nitrogen-hydrogen linkages and, if not polar altogether,

have important  polar regions within their molecules. Such

compounds can therefore dissolve in water or, at least, can

attach water molecules  intimately to various portions of

their structure and undergo  changes in connection with

these attached water molecules.

In short, the body’s chemistry can go on against the

intimacy of a water background. This background is so

essential to life as  we know it, that life could only have

reasonably begun in the ocean, and now, even where it has

adapted itself to dry land, the tissues remain approximately

70 per cent water.

So consider water. Consider its high liquid-range

temperatures, its capacity to act as a temperature-

ameliorating heat-sponge and as an efficient air conditioner,

its ability to dissolve a wide variety  of substances and,

therefore, to act as a medium within which  the reactions

necessary to life can proceed, and you may well



say, “Surely, this is no accident. Surely water is a substance

that has been carefully designed to meet the needs of life.”

But that is placing the cart before the horse, I’m afraid.

Water existed, to begin with, as a substance of certain

properties, and  life evolved to fit those properties. Had

water had other properties,  life would have evolved to fit

those other properties. If water had a  lower liquid-range

temperature, for instance, life might have  evolved on

Jupiter. And if water had not existed at all, life might have

evolved to fit some other substance altogether.

In every case, though, life would have evolved so neatly

to fit whatever was at hand, that any form of that life high

enough to  consider the situation with sufficient subtlety

would well feel  justified in believing that intelligent and

purposeful supernatural  design was involved in something

which, actually, the blind and  random forces of evolution

had produced.

And I suppose my delightful lady correspondent, if she

were so hardy as to read through this essay carefully, would

but feel herself further justified in her belief about the

relationship of scriptural language to myself.

But what can I do? I call the situation as I see it.



8 - COLD WATER 

About half a year ago (as I write this) I was hurrying

through the wintriness of New York City. There was no snow

on the ground but it was cold and I was hastening for haven.

As I was  crossing the street, my foot came down upon a

manhole cover and a fraction of a second later I had made

hard and full-length contact with the ground.

It was the hardest fall I had ever taken and my first

thought, as I lay there, was one of regret, for it felt as

though I had broken  my left tibia and in all my thirty-plus

years I had never before broken a bone. I ought to have lain

there and waited for help, but  I had to struggle to my feet

for two reasons:

For one thing, I was hoping desperately the bone was

not broken and if I could get to my feet it wouldn’t be.

Secondly, I wanted to find out why I had fallen, since I am

usually reasonably sure-footed.

I found I could stand. My left leg was banged up below

the knee but the bone was intact, even though my suit (my

best suit)  was not. I further found (more in anger than in

sorrow) that the manhole cover was frosted over with a thin

layer of slippery ice. What had laid me low was the fact that

the ice was quite transparent and that without close

inspection, the manhole cover seemed bare and safe.

I had to hobble onward, at that moment, toward my

hotel room, which was four infinitely long blocks away, and

there was  no time to muse on what had happened and

make an article out of it. By now, though, the bitterness of

the time has been somewhat assuaged, and I am ready. So

here, O Gentle Reader, is the result—

To the ancients, one of the remarkable things about ice,

perhaps the most remarkable, was the very property that

had caused my near disaster—its transparency. To the



Greeks, ice was  krystallos from kryos, meaning “frost,” so

the first strong impression seems to have been left by its

manner of formation.

Once that was established, however, another property

supervened and the word came to be more significant for

the connotation of transparency than of cold. After all,

anything at all could be cold, but in ancient times few

objects were known that were at the same time solid but not

opaque.

It followed, then, that when pieces of quartz were

discovered, and found to be transparent, they were called

krystallos, too, and were considered (at first) to be a form of

ice that had been subjected to such intense cold as to have

attained permanent solidity  and an inability ever to melt

again.

Then the word achieved still another change of

connotation. One interesting fact about transparent quartz

was its surprising regularity in shape. It had plane faces that

met to form clearly  defined angles and edges.

Consequently, krystallos came to mean any solid with such

a regular geometry. From this came our  modern word

“crystal.”

Nevertheless, the older meaning of transparency

persists in vestigial fashion. One still hears of the

“crystalline spheres” which  held the planets in the old

Ptolemaic cosmology. This was not because they consisted

of solid crystals; heavens, no. It was because they were

perfectly transparent so they could not be seen.

And in modern times, the fortune teller, gazing

mystically into a glass sphere, is pretending to see

something in her “crystal ball.“  This is not because the

sphere is crystalline in the modern sense, for glass happens

to be one of the very few common solids that is  not

crystalline (and, therefore, not truly solid), but because it

is transparent.



And yet, none of that really represents the true wonder

of ice. It may seem to have wonders enough. Its mere

existence as “hard  water” may seem amazing and

paradoxical enough to the lifelong inhabitants of tropic

climes, and its coldness and transparency may be of

interest, but all that is really nothing.

Consider instead something that is often remarked on,

to the point, in fact, where it becomes something of a cliche.

Have you never heard a statement such as this one: “Like

an iceberg, nine tenths of the significance of the remark was

hidden”?

Like an iceberg!

Being a non-traveler, I have never seen a real iceberg,

but if I were on a ship and one hove into view (at, I hope, a

safe distance)  I am sure that the passengers, crowding

against the rail to see it,  would say to one another, “Just

imagine, Mabel (or Harry), nine  tenths of that iceberg is

under water.”

Then I would say, “That’s not surprising, ladies and

gentlemen. The surprising thing is that one tenth of that

iceberg is above water.” Naturally, that would mean I would

start getting those  queer looks that would indicate once

again (oh, how many times!) how much of a nut I appear to

be to my beloved fellow-creatures.

But it’s true-

In general the density of any substance increases as

temperature goes down. The lower the temperature, the

more slowly the atoms or molecules of a gas move, the less

forcefully they bounce  off each other, and the closer they

can crowd to each other. When the kinetic energy of the gas

molecules is insufficient to overcome  the attractive forces

between the molecules (see the previous two chapters), the

gas liquefies.

In liquids, the molecules are in virtual contact, but they

have enough energy to slip and slide past each other freely.

They also vibrate and keep each other at greater distances



than would be the case if all were absolutely motionless. As

the temperature drops, the vibrations decrease in force and

amplitude and the  molecules settle a bit closer together.

The density continues to increase.

Eventually, the energy of vibration isn’t enough to keep

the molecules slipping and sliding. They settle into a fixed

position  and the substance solidifies. The settling is more

compact than is  possible (usually) in the liquid form but

there is still vibration about the fixed position. As the

temperature continues to drop, the vibrations continue to

die down until they are reduced to a minimum at the

temperature of absolute zero (—273.1° C). It is then that

density is at a maximum.

To summarize— As a general rule, there is an increase in

density with decrease in temperature. There is a sudden

sharp increase in density when a gas becomes a liquid* and

another, but lesser, sharp increase when a liquid becomes a

solid. This means that the solid form of a substance, being

denser than the liquid form of that same substance, will not

float in the liquid form.

As an example, liquid hydrogen has a density of about

0.071 grams per cubic centimeter, but solid hydrogen has a

density of  about 0.086 grams per cubic centimeter. If a

cubic centimeter of  solid hydrogen were completely

immersed in liquid hydrogen it  would still weigh 0.015

grams and would be pulled downward  by gravity. Sinking

slowly (against the resistance of the liquid  hydrogen) but

definitely, it would eventually reach the bottom  of the

container, or the bottom of the ocean, if there were

that much liquid hydrogen.

(You might suspect that the solid hydrogen would melt

on the way downward, but not if the ocean of liquid

hydrogen were at its freezing point—and we’ll suppose it is.)

In the same way, solid iron would sink downward

through an ocean of liquid iron, solid mercury through liquid

mercury, solid  sodium chloride through liquid sodium



chloride, and so on. This is so general a situation that if you

took a thousand solids at random, you would be very likely

to find that in each case the solid form would sink through

the liquid form and you would be  tempted to make that a

universal rule.

—But you can’t, for there are exceptions.

And of these, by far the most important one is water.

At 100° C. (water’s boiling point under ordinary

conditions), water is as un-dense as it can be and still

remain liquid. Its density  then is about 0.958 grams per

cubic centimeter. As the temperature drops the density

rises: 0.965 at 900 C, 0.985 at still lower temperature, and

so on until at 40 C, it is 1.000 grams per cubic centimeter.

* Except at the “critical temperature,” something which need not

concern us now.

To put it another way, a single gram of water has a

volume of 1.043 cubic centimeters at 100° C, but contracts

to a volume of 1.000 cubic centimeters at 40 C.

Judging from what is true of other substances, we would

have every right to expect that this increase in density and

decrease in volume would continue as the temperature

dropped below 4°C. It does not!

The temperature of 4°C* represents a point of maximum

density for liquid water. As the temperature drops below

that, the density starts to decrease again (very slightly, to

be sure) and by the time one reaches o° C, the density is

0.9999 grams per cubic centimeter, so that a gram of water

takes up 1.0001 cubic centimeters. The difference in density

at 0° C. as compared with that at 4° C. is trifling, but it is in

the “wrong” direction, and that makes it crucial.

At o° C. water freezes if further heat is withdrawn, and

by everything we learn from other solidifications we would



have a right to expect a sharp increase of density. We would

be wrong! There is a sharp decrease in density.

Whereas water at 0° C. has, as I said, a density of

0.9999 grams per cubic centimeter, it freezes into ice at o°

C. with a density of  only about 0.92 grams per cubic

centimeter.

If a cubic centimeter of ice is completely immersed in

water, with both at a temperature of o° C, then the weight

of the ice is  —0.08 grams and there is, so to speak, a

negative gravitational effect upon it. It therefore rises to the

surface of the water. The rise continues till only enough of it

is submerged to displace its own weight (as measured in air)

of the denser, liquid water. Since a cubic centimeter of ice at

o° C. weighs 0.92 grams and it takes  only 0.92 cubic

centimeters of water at o° C. to weigh 0.92 grams, it turns

out that when the ice is floating, 92 per cent of its

substance is below water and 8 per cent is above.

* 3.98
0
 C, to be more accurate.

What we would ordinarily expect, judging from almost

all other solids immersed in their own liquid form, is that

100 per cent of the ice would be submerged and o per cent

exposed. It follows, then, as I said earlier, that the surprising

thing is not that so much of an iceberg is invisible, but that

so much of it (or, indeed, any of it at all) is exposed.

Well, why is that?

Let’s begin with ice. In ordinary ice, each water

molecule has four other molecules surrounding it with great

precision of orientation. The hydrogen atom of each water

molecule is pointed in the direction of the oxygen atom of a

neighbor and this orientation is maintained through the

small electrostatic attraction involved in the hydrogen bond

(as described in the previous chapter).



The hydrogen bond is weak and does not suffice to draw

the molecules very close together. The molecules remain

unusually far apart, therefore, and if a scale model is built of

the molecular  structure of ice, it is seen that there are

enough spaces between  the molecules to make up a very

finely ordered array of “holes.“  Nothing visible, you

understand, for the holes are only about an  atom or so in

diameter.

Still, this makes ice less dense than it would be if there

were a closer array of molecules.

As the temperature of the ice rises, its molecules vibrate

and move still farther apart, so that its density falls,

reaching a minimum of the aforementioned 0.92 grams per

cubic centimeter  at o° C. At that temperature of o° C,

however, the molecular  vibration has reached the point

where it just balances the attractive forces between the

molecules. If further heat is added, the molecules can break

free and can begin to slip and slide past each other. In doing

so, however, some of them fall into the holes.

As ice melts, then, the tendency to decrease the density

through increased vibrational energy is countered by the

disappearance of the holes, and more than countered. For

that reason, liquid water is 8 per cent denser at o° C. than

solid water is.

Even in water at o° C, however, the loose molecular

arrangement in ice hasn’t utterly vanished. As the

temperature rises still higher, there is still a slow

disappearance of the last few lingering holes and it is not till

a temperature of 40 C. is reached that so  few of them are

left that they can no longer exert a dominating effect on the

density change. At temperatures higher than 40 C,  the

energy of molecular vibration increases and density

decreases steadily as it “ought” to do.



The importance of this density anomaly in water simply

can’t be exaggerated. Consider what happens to a

moderately sized lake, for instance, during a cold winter.

The temperature of the water gradually drops from its

mild warmth of the summer. Naturally, it is the water at the

surface that cools first, becomes denser, and sinks, forcing

up the warmer water at the bottom, so that it can, in turn,

cool and sink. In this way the entire body of water cools, and

would cool all the way to o° C. if the density continued to

increase steadily as temperature dropped.

As it is, though, when a temperature of 4° C. is reached,

a further cooling of the surface water makes it slightly less

dense! It does not sink, but floats on the warmer water

below. The surface water drops in temperature all the way

to o° C, but heat leaves the  lower depths only slowly and

those depths remain somewhat warmer than 0° C.

It is the water at the surface, then, that experiences

freezing, and the ice, being less dense than water, remains

floating. If the  cold weather continues long enough, the

entire layer of surface  water freezes and forms a solid

coating of ice that may become thick and strong indeed (to

the satisfaction of ice skaters).

But ice is a good insulator of heat, and the thicker it is,

the more effective an insulator it is. As it thickens, the

deeper layers of water (still liquid) lose heat through the ice

to the air above more and more slowly; and more and more

slowly does the ice  layer thicken further. In short, in any

winter that is likely to occur on Earth, a sizable lake will

never freeze solidly all the way to the bottom. This means

that life-forms in it can survive through the winter.

What’s more, when the warm weather returns, it is the

surface ice that receives the brunt of the Sun’s heat. It

melts and the  liquid water beneath is at once exposed, so

that the lake quickly becomes liquid throughout once more.

What would happen, though, if water were like other

substances. In cooling, there would be a continual sinking of



cooler water all the way down to o° C, so that the entire

body of the lake would be at that temperature eventually. It

would have a tendency to freeze at every point, and any ice

that formed near the surface of the lake would sink at once

if there were still liquid below it. A winter that under present

circumstances would only suffice to form a thick scum of ice

on a lake would be enough to  freeze that same lake solid,

top to bottom, if water were like other substances.

Then, when warm weather came, the surface of the

frozen lake would melt, but the water that formed would

insulate the deeper  layers of ice from the Sun’s heat. The

thicker the layer of liquid water, the more slowly the Sun’s

heat would penetrate to the ice below and the more slowly

would the deeper ice melt. Through  an ordinary summer

such as we experience on Earth, a solidly frozen lake would

never melt all through. Most of it would remain permanently

frozen.

The same would hold true for rivers and for the polar

oceans. Indeed, if water were suddenly to change its density

characteristics, each winter would see further ice form and

sink to the  ocean abyss to remain permanently frozen

thereafter. Eventually, all of Earth would be a mass of ice-

bound land, with a thin layer of water on the surface of the

tropic ocean.

Even though such an Earth would be at the distance

from the Sun it now is, and would receive the amount of

solar energy it now does, it would be a frigid world and life

as we know it would not have formed. It follows then that

life depends on the hydrogen  bond not merely for the

reasons I outlined in the last chapter, but because of the

loose structure it gives ice.

There’s another way to break down the holes in ice

besides raising the temperature. Why not simply squeeze

the ice together under pressure? To be sure, it takes

enormous pressures to  squeeze out the holes to the point



where ice is as dense as water. (When water is allowed to fill

a sealed container tightly and then made to freeze, it exerts

an outward pressure equal to the pressure  it would take to

compress ice to the density of water—and the  container

breaks.)

Still, high pressures can be produced in the laboratory.

About 1900, a German physicist, Gustav Tammann, began

to make use of such high pressures, and beginning in 1912,

an American physicist, Percy W. Bridgman, carried the

matter much further.

In this way, it was found that there were many forms of

ice.

In any solid there is an orderly arrangement of

molecules and there is always the possibility of a variety of

different arrangements under different conditions. Some

anangements are more  compact than others and these

would be favored by high pressures and low temperatures.

Thus, under ordinary temperatures and pressures,

ordinary ice (which we can call Ice I) is the only variety that

can exist. As the pressure is increased, however, two other

forms are found, Ice  II at temperatures below —35° C, and

Ice III at temperatures between —350 C. and —200 C.

If the pressure is raised still further, Ice V is formed.

(There is no Ice IV; it was reported but proved to be a case

of mistaken  observation and was dropped; but not before

Ice V had been reported.)

If the pressure is raised still further, Ice VI and Ice VII are

formed. Whereas all other forms of ice exist only at 0° C.

and  below, Ice VI and Ice VII can exist at temperatures

above 0° C, though only at enormous pressures.

In fact, at a pressure of 20,000 kilograms per square

centimeter (one and a half million times the pressure of the

atmosphere),

Ice VI will exist at temperatures above 100° C, the

boiling point of liquid water under ordinary conditions.



All these high-pressure forms of ice are denser than

liquid water, as you would expect, for the holes have been

squeezed out of them. Indeed, of all known forms of ice,

only Ice I, the ordinary  variety, is less dense than liquid

water.

It would follow that if any of the forms of ice other than

Ice i could form in the oceans, they would sink to the bottom

and gradually accumulate.

In one of his excellent novels, Kurt Vonnegut

hypothesized a mythical “Ice X,” which could exist at the

ocean bottoms and which would form spontaneously if only

some small quantity existed as a “seed.” The hero had such

a small piece and, of course, it got into the ocean to bring

about the final catastrophe.

Is there really a chance of that? No. Any form of ice but

Ice I can only exist at enormous pressures. Even the least

high-pressure  ices (Ice n and Ice in) can exist only at

pressures more than two  thousand times that of the

atmosphere. If such pressures could  be attained at the

bottom of the ocean (they can’t), a further  requirement

would be that the temperature be well below — 20° C.  (It

isn’t.)

You can see, further, that no form of ice other than Ice I

could exist in someone’s pocket. If any other ice were

formed and the  high pressure required to form it were

removed, the ice would  instantly expand to Ice I with

explosive violence.

That still leaves one thing to discuss. Though solid forms

of a substance can (and often do) exist in a variety of

crystalline forms, liquid and gaseous forms do not. In liquids

and gases there  is not, generally speaking, any orderly

array of molecules, and one  does not find varieties of

disorder.

But in 1965, a Soviet scientist, B. V. Deryagin, studied

liquid water in very thin capillary tubes and found some of it



to possess  most unusual properties. For one thing, its

density was 1.4 times that to be expected of ordinary water.

Its boiling point was extraordinarily high and it could be

heated up to 5000 C. before ceasing to be liquid. It could be

cooled down to — 400 C. before turning into a glassy solid.

The report was largely disbelieved in the West, where

there is almost automatically skepticism toward any unusual

finding that emerges outside the charmed circle of nations

prominent in nineteenth-century science.

However, when Americans repeated Deryagin’s work,

they found, much to their own surprise, that they got the

same results and could even see droplets of the anomalous

form of liquid water—droplets so small they could be made

out only under a microscope.

What was behind this?

Water molecules, while slipping and sliding around each

other, do tend to take up the hydrogen bond orientation, as

in ice. This  happens over very small volumes and for very

brief periods, but  it is enough to make liquid water behave

as though it consisted of submicroscopic particles of ice that

form and unform with superspeed.

The “ice” never forms over a volume large enough and

for a time long enough to make the holes significant and

cause water to be as un-dense as ice, but it does keep the

water molecules far enough apart to allow hydrogen bonds

to form and unform.  Liquid water is therefore less dense

than it might be.

Suppose, though, that pressure is placed on water in

such a way that molecules are forced closer together while

in the hydrogen  bond orientation. With neighboring

molecules unusually close,  the hydrogen bond would be

much stronger than ordinary and  would, indeed, approach

an ordinary chemical bond in strength.  Molecule after

molecule would fall into place and, thanks to the unusually

strong hydrogen bond attractions, they would make up  a



kind of giant molecule built up out of the small water-

molecule units.

When small units build up a giant molecule in this

fashion, the small units are said to “polymerize” and the

giant molecule is a  “polymer.” The new form of water was

therefore spoken of as  “polymerized water” or, for short,

“polywater.”

In polywater, the molecules are in orderly array,

something as in ice, but in much more compact fashion, and

certainly without  the holes. Not only does this compact

array of water molecules produce a substance considerably

more dense than ice, but considerably more dense than

ordinary liquid water as well.

What’s more, because the molecules are held more

tightly together, it takes a much higher temperature than

100° C. to tear them apart and make polywater boil. It also

takes a much lower  temperature than o° C. to force the

molecules apart into the less compact array of ordinary ice.

Other unusual properties of  polywater are also easily

explained on the basis of the compact array of molecules.

Apparently, polywater does not form under ordinary

increases in pressure, but does form in the constricted

volume of tiny  capillary tubes. Biologists at once began to

wonder whether within  the constricted volume of tissue

cells, polywater also formed; and  whether some of the

properties of life could not be most easily explained in terms

of polywater.

I wish I could end the matter here, with this glamorous

discovery and the still more glamorous speculation, but I

can’t. The trouble is that many chemists remain skeptical of

the whole business.

It is possible, after all, that investigators have been

misled by the chance of solution of the glass from the tubes

in which the polywater was being studied. If it were not pure

liquid water they  were studying but tiny volumes of glass

solution, all bets were off.



Indeed, one chemist recently prepared a solution of

silicic acid (something which could form when water is in

contact with glass)  and reported it to possess the very

properties of polywater.

So it may be that polywater is a false alarm, after all.



C - The Problem of Numbers and

Lines



9 - PRIME QUALITY 

Not long ago I got a letter from a young amateur

mathematician which offered me a proof that the number of

primes was infinite and asked, first, if the proof were valid,

and, second, if it had ever been worked out before.

I answered that first, the proof was a valid and elegant

one but second, that Euclid had worked out the same proof,

just about word for word, in 300 B.C.

Alas, alas, this is the fate of almost every single one of

us amateur mathematicians almost every single time.

Anything we work out that is true is not new; anything we

work out that is new is not  true. —And yet, if we work out

what is true, from a standing start, without ever having had

it worked out for us, then I maintain it to be a feat of note. It

may not advance mathematics, but it is a  triumph of the

intellect just the same.

I told my young correspondent this and now I would like

to tell you about the proof and about a few other things.

First, what is a prime or, more correctly, a “prime

number”? A prime is any number that cannot be expressed

as the product of  two numbers, each smaller than itself.

Thus, since 15 = 3X5, 15 is not a prime. On the other hand,

13 cannot be expressed as a  product of smaller numbers

and is therefore a prime. Of course, 13 = 13X1, but 13 is not

smaller than 13, so that this multiplication does not count.

Any number can be expressed as itself multiplied by 1,

whether it is prime or not (15 = 15 X 1, for instance), and

this sort of business is no distinction.

Another way of putting it is that a prime number cannot

be divided evenly (“has no factors”) other than by itself and

by 1. Thus 15 can be divided evenly by either 3 or 5, in

addition to being divisible by X5 and 1; but 13 can be



divided only by X3 and 1. So again, 15 is not a prime and X3

is.

Well then, what numbers are prime? Alas, that is not an

easy question to answer. There is no general way of telling a

prime number just by looking at it.

There are certain rules for telling if a particular number

is not a prime, but that is not the same thing. For instance,

287,444,409,786 is not a prime. I can tell that at a glance.

What’s more, 287,444,409,785 is not a prime, either, and I

can tell that at a  glance, too. But is 287,444,409,787 a

prime? All I can tell at a glance is that it may be a prime; but

also it may not. There is no way I can tell for certain unless I

look it up in a table—assuming that I have a table that gives

me all the prime numbers up to a  trillion. If I don’t have

such a table, and I don’t, I have to sit  down with pen and

paper and try to find a factor.

Is there any systematic way of finding all the primes up

to some finite limit. Yes, indeed, there is. Write down all the

numbers from 1 to xoo. (I’d do it for you here, but I’d waste

space, and it will be good exercise for you if you do it.)

The first number is x but that is not a prime by

definition. The reason for that is that in multiplication—

which is the way we have of distinguishing primes from non-

primes—the number x has the  unique property of not

changing a product. Thus 15 could be written as 5 X 3, or as

5 X 3 X x, or, indeed, as 5X3X1X1X1X1  . . . and so on

forever. By simply agreeing to eliminate x  from the list of

primes, we eliminate the possibility of a tail of x’s, and get

rid of some nasty complications in the theoretical work

on primes. No other number acts like x in this respect and

no other number requires special treatment.

We next come to 2, which is a prime since it has no

factors other than itself and x. Let’s eliminate every number

in our list  that can be divided by 2 (and is therefore non-

prime) and to do that we need only cross out every second

number after 2. This means we cross out 4, 6, 8, xo, and so



on, up to and including 100. You can check for yourself that

these numbers are not prime, since 4 = 2X2; 6 = 2X3; 8 =

2X4, and so on.

We look at our list of numbers and find that the smallest

number not crossed out is 3. This is a prime since 3 has no

factors other than itself and 1. So we begin with 3 and cross

out every third number after it: 6, 9, 12, 15, and so on, up to

and including 99.  Some of the numbers, 6 and 12, for

instance, were already  crossed out when we were dealing

with 2, but that’s all right; cross  them out again. The

numbers now crossed out are all divisible by  3 and are

therefore not prime: 6 = 3X2; 9 = 3X3, and so on.

The next number not crossed out is 5, and you cross out

every fifth number after it. Then 7, and you cross out every

seventh number after it. Then 11, then 13, and so on. By the

time you  reach 47 and proceed to cross out the 47th

number after it (94),  you find you have crossed out every

number below 100 that you can. The next available number

is 53, but if you try to cross out the 53d number after it, that

is 106, which is beyond the end of the list.

So you have left the following numbers under 100 which

are not crossed out: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37,

41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97.

These are the twenty-five prime numbers below 100. If

you memorize them you will be able to tell at a glance

whether any particular number under 100 is a prime or not,

just by knowing whether it is or is not on the list I just gave

you.

Is there a simple connection among all these numbers,

some formula that will give only the primes up to 100 and

no other  numbers? Even if you could work out such a

formula, it wouldn’t help you, for it would break down as we

proceed above 100, for  after all, we can, if we want to,

continue to use the same system of stopping at each

uncrossed number and counting off every one that is its own

number after it. We would then find out that  above 100,



there are prime numbers such as 101, 103, 107, 109, 113,

127, and so on.

If we had written all the numbers up to

1,000,000,000,000, we would eventually have worked out

all the primes up to that point  and we would have

determined, mechanically and without flaw  (provided we

make no mistake in counting), whether the number I gave

you previously, 287,444,409,787, is or is not a prime.

This perfect system for finding all the prime numbers up

to any finite number, however large, is called “the sieve of

Eratosthenes,“ because the Greek scholar Eratosthenes first

used it somewhere about 230 B.C. * 

There is one trouble with the sieve of Eratosthenes and

that is that it takes an unconscionable length of time.

Working it out  through 100 isn’t bad, but time yourself

working it through 1,000 or through 10,000 and you’ll agree

that it soon piles up prohibitively.

But wait. After all, you keep piling up more and more

prime numbers and each one sieves out some of all the still

higher numbers remaining. This means that a larger and

larger percentage of  those still higher numbers is crossed

out, doesn’t it?

Yes, it does. There are twenty-five primes under 100, as

I just pointed out, but only twenty-one primes between 100

and 200,  and sixteen primes between 200 and 300. This

dwindling is an irregular thing and sometimes the number

jumps, but on the whole,  the percentage of primes does

dwindle—there are only eleven  primes between 1,300 and

1,400.

* When Frederik Pohl (the well-known science fiction writer and editor)

was young, he worked out the sieve of Eratosthenes all by himself and

was most chagrined to find out he had been anticipated. But one needs

no more evidence than that to demonstrate Fred’s brightness. Working it

out independently (simple though it seems after it is explained) was

more than I was ever able to do.



Well, then, do the primes ever come to a complete halt?

Put it another way. As one goes up the line of numbers,

there are longer and longer intervals, on the average,

between primes. That is, there are longer and longer lists of

successive non-primes.  The longest successive stretch of

non-primes under 30 is five: 24, 25, 26, 27, and 28. There

are seven successive non-primes between 89 and 97;

thirteen successive non-primes between 113 and 127, and

so on. If you go high enough, you will find a hundred

successive non-primes, a thousand successive non-primes,

ten thousand successive non-primes, and so on.

You can find (in theory) any number of non-primes in

succession no matter how high a number you name, if you

proceed along the list of numbers long enough. But, and this

is a big “but,” is there ever a time when the number of non-

primes in succession is  infinite? If so, then after a certain

point in the list of numbers, all the remaining numbers will

be non-prime. The number marking that “certain point”

would be the largest prime number possible.

What we are asking now, then, is whether the number of

primes is infinite or whether there is, instead, some one

prime that is the largest of all, with nothing prime beyond it.

Your first thought might be to work out the siejfe of

Eratosthenes till you reach a number beyond which you can

see that everything higher is crossed out. That, however, is

impossible. No  matter how high you go, and how long a

vista thereafter seems to  be non-prime, you can never

possibly tell whether there is or is  not another prime

somewhere (perhaps a trillion numbers further) up ahead.

No, you must use logical deduction instead.

Let’s consider a non-prime number that is a product of

prime numbers: say, 57 = 19 X 3. Now let’s add 1 to 57 and

make it 58. The number 58 is not divisible by 3, since if you

try the division you get 19 with a remainder of 1; nor is it

divisible by 19, for that will give you 3 with a remainder of 1.



This is not to say that 58 is not divisible by any number at

all, for it is divisible by 2 and by 29 (58 = 2 X 29).

You can see, however, that any number that is the

product of two or more smaller numbers, is no longer

divisible by any of those numbers if its value is increased by

1. To put it in symbols:

If N = P x Q x R . . . . , then N -I- 1 is not divisible by

either P or Q or R or any other factor of N.

Well, then, suppose you begin with the smallest prime,

2, and consider the product of all the successive primes up

to some point. Begin with the two smallest primes: 2 X 3 =

6. If you add 1 to the product you get 7, which cannot be

divided by either 2 or 3. As a  matter of fact, 7 is a prime

number. You go next to (2X3X5)4-1  = 31 and that’s a prime.

Then (2X3X5X7)4-1 = 211, and (2 X 3 X 5X 7X 11) + 1 =

2311, and both 211 and 2311 are primes.

If we then try (2X3X5X7X11X13) + !, we get 30,031.

That, actually, is not a prime number. However, neither 2, 3,

5, j, 11, nor 13 (which represent all the primes up to 13) are

among its factors, so any primes that must be multiplied to

make 30,031, must be higher than 13. And, indeed 30,031

= 59 X 509.

We can say, as a general rule, that 1 plus the product of

any number of successive primes, beginning with 2 and

ending with P,  is either a prime itself and is therefore

certainly higher than P, or is a product of prime numbers all

of which are higher than P.  And since this is true for any

value of P, there can be no highest  prime, since a

mechanism exists for finding a still higher one, no  matter

how high P is. And that, in turn, means that the number

of primes is infinite.

This, in essence, is the proof Euclid presented, and it is

the proof my young correspondent worked out

independently.



The next problem is this: Granted that the number of

primes is infinite, is there any formula that has as its

solution all the primes and none of the non-primes, so that

we can say: Any number that is a solution of this formula is

a prime; all others are not? You see, to determine whether

287,444,409,787 is a prime or  not by the sieve of

Eratosthenes, which will surely tell you, you must work your

way up through all the lower numbers. You can’t  skip. A

“prime-formula” will enable you to crank in

287,444,409,787 directly and tell you whether it is prime or

not.

Alas, there is no such formula, and it is not likely that

any can ever be found (although I am not sure that it has

been proven that none can be found). The order of primes

along the list of  numbers is utterly irregular and no

mathematician has ever been  able to work out any order,

however complicated, which would make a “prime-formula,”

however complicated, possible.

Let’s lower our sights then. Is it possible to work up

some useful formula that will give us not every prime, but at

least only primes?

We could then grind out an infinite series of known

primes by turning a formula-crank, even though we know

we are skipping an infinite quantity of other primes.

Again, no (except for some specialized non-useful

cases). No matter how we try to find a useful system that

will yield primes only, non-primes will always sneak in. For

instance, you might  think that adding 1 to the product of

successive primes beginning with 2 might yield only prime

numbers. The numbers I got this way a little earlier in the

article were 7, 31, 211, 2311—all primes! But then, the next

in the series was 30,031, and that was not a prime.

Formulas have been worked out in which the value n

was substituted by the numbers 1, 2, 3, and so on, with

prime values obtained for every value up to n = 40. And

then for n = 41, a nonprime will pop out.



So let’s lower our sights again. Is there any system that

will allow us to crank out only non-primes? Non-primes may

not be interesting but at least we can get rid of them and

study a group of remaining numbers that will be denser in

primes.

Yes! At last we have something to which the answer is,

yes! In working out the sieve of Eratosthenes, for instance,

perhaps you  noticed that in crossing out every second

number after 2, you  crossed out only numbers that ended

with 2, 4, 6, 8, and o, and  that you crossed out every

number that ended with 2, 4, 6, 8, 0. This means that any

number, no matter how long and formidable, even if it has a

trillion digits, is not a prime if the last digit is 2, 4, 6, 8, or o;

if it’s an “even number,” in other words.

Since exactly half of all the numbers in any finite

successive list end in these digits, that means that all

primes (except for 2 itself, of course) must exist in the other

half—the odd numbers.

Then again, when you begin with 5 and cross out every

fifth number, you cross out only numbers that end with 5

and o, and every number that ends with 5 and 0. Numbers

ending with o are  already taken care of, but now we can

eliminate any number from the list of possible primes if the

last digit is 5 (except for 5 itself, of course).

This means we need look for primes (other than 2 and

5) only in those numbers that end in the digits 1, 3, 7, or 9.

This means  that in any successive list of numbers we can

eliminate 60 per cent  and look for primes only in the

remaining 40 per cent.

Of course, if we take into account not a finite successive

list of numbers (say from 1 to 1,000,000,000,000) but all

numbers, the  40 per cent that may contain primes is still

infinite and still contains an infinite number of primes—and

an infinite number of non-primes, too. Restricting the places

in which we look for primes doesn’t help us in the ultimate

problem of finding all the primes  by some mechanical



method easier than the sieve of Eratosthenes but at least it

clears away some of the underbrush.

Of course, there are other possible eliminations. Any

number, no matter how long and complicated, whose digits

add up to a sum divisible by 3 is itself divisible by 3 and is

not a prime. However, digit adding is tedious, so let’s

restrict ourselves to just looking at the last digit. The trick of

looking at the last digit is the only elimination device that is

simple enough to be pleasing. Is  there anything we can do

to improve the situation that exists?

To answer that, let us ask what the magic is of 2 and 5

that enables them to make their mark on the final digit. The

answer is easy. Our number system is based on 10 and 10 =

2 X 5. What we  have to do is find a number that is the

product of two separate  primes that is smaller than 10.

Maybe we can then crowd the “magic” into a smaller area.

Only one number smaller than 10 will do and that is 6 =

2 X 3.

All numbers are either multiples of 6 or, on being

divided by 6, leave remainders that are equal to 1, 2, 3, 4,

or 5. There are no other possibilities. This means that any

number is of the class 6rz, 6n + 1, 6n + 2, 6n + 3, 6n + 4,

or 6n + 5. Of these, any number of the form 6n cannot be a

prime since it is divisible by both 2 and 3 (6n = 2 X 371 = 3

X in). Any number of the form 6n + 2 or 6n + 4 is divisible

by 2 and any number of the form 6n + 3 is divisible by 3.

That means that all primes (except 2 and 3) must be of

the forms 6n + 1 or 6n + 5. Since 6n + 5 is equivalent to 6n

— 1, we

might say that all prime numbers are either one more or

one less than a multiple of 6.

Suppose, then, we make a list of multiples of 6: 6, 12,

18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84, 90, 96, 102 . . .

With that as a guide, we could next make a double list of

all numbers one less than these multiples, and one more,

with bold face for those numbers which are prime:



5,11,17,23,29,35,41,47,53,59,65,71,77,83,89,95,10

1.. . 7,13,19,25,31,37,43,49, 55,

61,67,73,79,85,91,97,103 .. .

As you see, the numbers in the list occur in pairs of

which one is 2 more than the other (with a multiple of 6 in

between). You  might think, after looking at the list above,

that at least one of each pair must be a prime and that that

imposes some kind of additional order on the primes. That is

not so, unfortunately. At least one of each pair is a prime as

far as we’ve gone, but if you go further, you will find that in

the pair 119, 121, neither one is a prime. The number 119,

which is 6 X 20 — 1, is equal to 7 X 17 and 121, which is 6 X

20 + 1, is equal to 11 X 11. The higher up you go the more

common the non-prime pairs get.

Sometimes only the upper and smaller number of the

pair is a prime, as in 23 and 25; sometimes only the lower

and higher number, as in 35 and 37. In the end, both upper

and lower lists get  an equal share but in an absolutely

irregular fashion.

There are also occasions when both numbers of the pair

are prime, as in 5 and 7, 11 and 13, and 101 and 103. Such

pairs are called “prime twins” and they can be found as far

as the list of numbers has been investigated for primes. The

density of their occurrence diminishes as the numbers grow

larger, just as does the density of the primes themselves. It

would seem, however, that the density of prime twins never

falls to zero and that the number of prime twins is infinite.

That, however, has never been proved.

If we consider the numbers of the form 6n + 1 and 6n —

1 only, we find they contain every single prime in existence

(except 2 and

3) yet make up only one third of all the numbers in any

finite successive list. Is there any way we can translate this

into the final digit business?



The answer is yes!!!! And I use those exclamation points

because I come here to something that I am sure has been

well known to mathematicians for at least two centuries, but

which I have never seen mentioned in any book I have read.

I have worked this out independently!

All you have to do is use a six-based system, in which

our ordinary numbers look as follows:

10-based: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,

15, 16, 17 . . .

6-based: 1, 2, 3,4, 5,10,11,12,13,14,15, 20, 21, 22,

23, 24, 25 . . .

(There is no space here to go into details on other-based

number  systems, but see “One, Ten, Buckle My Shoe,”

reprinted in Adding a Dimension, Doubleday, 1964.)

In the 6-based system, only numbers ending in the

digits one and five could possibly be prime. In the 6-based

system we would  know at once that 14313234442,

14313234443, 14313234444, and  14313234440 were not

prime, just by looking at the last digit. On  the other hand,

14313234441 and 14313234445 might be prime  (and,

unfortunately, might not).

The point is that in a 6-based system you could instantly

eliminate two thirds of the numbers in any finite successive

list of numbers just by looking at the final digit, leaving one

third to contain all the primes (except 2 and 3). This is

better than we can do  in the 10-based system, where we

eliminate three fifths and leave two fifths.

But what if we use a number as base that does not have

two different prime factors as do 6 and 10, but three

different prime factors? The smallest number which qualifies

is 30 = 2X3 X 5.

If we use 30 as base, consider that all numbers are of

the form 3on, 3on + 1, 3071 + 2, 300 4- 3 … all the way up

to 3on + 29. Of these, numbers of the form 30/1, 3071 + 2,



30/1 + 4, and so on,  are divisible by 2 and are therefore

non-prime; numbers of the form 30/1 + 3 , 3011 + 9, 3011

+ 1 5, and so on are divisible by 3 and are therefore non-

prime; numbers of the form 3071 + 5 and  3on 4- 25 are

divisible by 5 and are therefore non-prime. In the end, the

only numbers that cannot be divided by 2, 3, or 5 (except

for 2, 3, and 5 themselves) and therefore may be primes,

are numbers of the classes -}on + 1, -ym + 7, 3071 + 1 1,

3071 + 1 3, 3on + 17, 3on + 19, 3071 + 23, and $on + 29.

This sounds like a large number of classes to contain

primes, but in the 30-based system there are thirty different

digits, one representing every number from o to 29

inclusive. And in a 30-based  system, numbers ending in

twenty-two of these thirty digits are non-prime on the face

of it. Only those ending in the eight digits equivalent to our

ten-based numbers 1, 7, 11, 13, 17, 19, 23, and 29 may be

primes.

In the 30-based system, then, we eliminate eleven

fifteenths, or 73% per cent, of any finite successive list of

numbers and crowd all the primes (except 2, 3 and 5) into

the 26% per cent remaining.

Of course, you can go still higher. You can use a number

system based on 210 (since 210 = 2X3X5X7) or 2310

(since 2310 = 2 X 3 X 5 X7X a) or still higher, going up the

scale of multiplied primes as far as you care to go. In each

case, you have  to leave out of account all the primes that

are factors of the number base, but will find all other primes

crowded into a smaller and  smaller fraction of any finite

successive list of numbers.

Here’s the way it works as far as I’ve gone:

Number Base % eliminated % remaining

2 50 50

2X3 = 6 66% 33%

2X3X5 = 30 73% 26%



2X3X5X7 = 210 77% 22%

I refuse to go higher. You can work it out for 2310 or for

any still higher number base yourself.*

Now mind you, the larger you make the number on

which you base your number system, the more inconvenient

it is to handle  that system in practice, regardless of how

beautiful it may be in  theory. It is perfectly easy to

understand the system for writing and handling numbers in

a 30-based system, but to try to do so in actual

manipulations on paper is a one-way ticket to the booby

hatch—at least if your mind is no nimbler than mine.

* Since this chapter first appeared, knowledgeable readers have sent me

formulas to use in such calculations. If I had known them I would have

had a lot less trouble.

The gain in prime-concentration in passing to a 30-

based system (and I won’t even talk about a 210-based

system or anything higher) is simply not worth the

tremendous loss in manipulability.

Let us therefore stick with the 6-based system, which is

not only more efficient as a prime-concentrator than our

ordinary 10-based  system is, but is actually easier to

manipulate once you are used to it.

Or we can put it another way. It is the 6-based system

which is, in this respect at least, of prime quality.*

* Let there be no groaning in the gallery!



10 - EUCLID’S FIFTH 

Some of my articles stir up more reader comment than

others, and one of the most effective in this respect was one

I once wrote in which I listed those who, in my opinion, were

scientists of the first magnitude and concluded by working

up a personal list of the ten greatest scientists of all time.

Naturally, I received letters arguing for the omission of

one or more of my ten best in favor of one or more others,

and I still get them, even now, seven and a half years after

the article was written.

Usually, I reply by explaining that estimates as to the

ten greatest scientists (always excepting the case of Isaac

Newton, concerning whom there can be no reasonable

disagreement) are largely a subjective matter and cannot

really be argued out.

Recently, I received a letter from a reader who argued

that Archimedes, one of my ten, ought to be replaced by

Euclid, who  was not one of my ten. I replied in my usual

placating manner, but then went on to say that Euclid was

“merely a systematizer”  while Archimedes had made very

important advances in physics and mathematics.

But later my conscience grew active. I still adhered to

my own opinion of Archimedes taking pride of place over

Euclid, but the  phrase “merely a systematizer” bothered

me. There is nothing necessarily “mere” about being a

systematizer.*

For three centuries before Euclid (who flourished about

300 B.C.) Greek geometers had labored at proving one

geometric theorem or another and a great many had been

worked out.

What Euclid did was to make a system out of it all. He

began  with certain definitions and assumptions and then

used them to prove a few theorems. Using those definitions



and assumptions plus the few theorems he had already

proved, he proved a few additional theorems and so on, and

so on.

* Sometimes there is. In all my non-fiction writings I am “merely” a

systematizer. —Just in case you think I’m never modest.

He was the first, as far as we know, to build an

elaborate mathematical system based on the explicit

attitude that it was useless to try to prove everything; that it

was essential to make a beginning  with some things that

could not be proved but that could be accepted without

proof because they satisfied intuition. Such intuitive

assumptions, without proof, are called “axioms.”

This was in itself a great intellectual advance, but Euclid

did something more. He picked good axioms.

To see what this means, consider that you would want

your list of axioms to be complete, that is, they should

suffice to prove all  the theorems that are useful in the

particular field of knowledge  being studied. On the other

hand they shouldn’t be redundant. You don’t want to be able

to prove all those theorems even after  you have omitted

one or more of your axioms from the list; or to be able to

prove one or more of your axioms by the use of the

remaining axioms. Finally, your axioms must be consistent.

That is, you do not want to use some axioms to prove that

something is  so and then use other axioms to prove the

same thing to be not so.

For two thousand years, Euclid’s axiomatic system stood

the test. No one ever found it necessary to add another

axiom, and  no one was ever able to eliminate one or to

change it substantially —which is a pretty good testimony to

Euclid’s judgment.

By the end of the nineteenth century, however, when

notions of mathematical rigor had hardened, it was realized

that there  were many tacit assumptions in the Euclidean



system; that is,  assumptions that Euclid made without

specifically saying that he had made them, and that all his

readers also made, apparently without specifically saying so

to themselves.

For instance, among his early theorems are several that

demonstrate two triangles to the congruent (equal in both

shape and size) by a course of proof that asks people to

imagine that one triangle is moved in space so that it is

superimposed on the other.

—That, however, presupposes that a geometrical figure

doesn’t change in shape and size when it moves. Of course

it doesn’t, you say. Well, you assume it doesn’t and I assume

it doesn’t and Euclid  assumed it doesn’t—but Euclid never

said he assumed it.

Again, Euclid assumed that a straight line could extend

infinitely in both directions—but never said he was making

that assumption.

Furthermore, he never considered such important basic

properties as the order of points in a line, and some of his

basic definitions were inadequate—

But never mind. In the last century, Euclidean geometry

has been placed on a basis of the utmost rigor and while

that meant  the system of axioms and definitions was

altered, Euclid’s geometry remained the same. It just meant

that Euclid’s axioms and  definitions, plus his unexpressed

assumptions, were adequate to the job.

Let’s consider Euclid’s axioms now. There were ten of

them and he divided them into two groups of five. One

group of five was  called “common notions” because they

were common to all sciences:

1)      Things which are equal to the same thing are

also equal to one another.

2)       If equals are added to equals, the sums are

equal.



3)       If equals are subtracted from equals, the

remainders are equal.

4)       Things which coincide with one another are

equal to one another.

5)    The whole is greater than the part.

These “common notions” seem so common, indeed so

obvious, so immediately acceptable by intuition, so

incapable of contradiction, that they seem to represent

absolute truth. They seem something a person could seize

upon as soon as he had evolved the light of reason. Without

ever sensing the universe in any way, but living only in the

luminous darkness of his own mind, he would see  that

things equal to the same thing are equal to one another and

all the rest.

He might then, using Euclid’s axioms, work out all the

theorems of geometry and, therefore, the basic properties

of the universe from first principles, without having

observed anything.

The Greeks were so fascinated with this notion that all

mathematical knowledge comes from within that they lost

one important urge that might have led to the development

of experimental science. There were experimenters among

the Greeks, notably Ctesibius and Hero, but their work was

looked upon by the Greek scholars as a kind of artisanship

rather than as science.

In one of Plato’s dialogues, Socrates asks a slave certain

questions about a geometric diagram and has him answer

and prove a theorem in doing so. This was Socrates’ method

of showing that even an utterly uneducated man could draw

truth from out of himself. Nevertheless, it took an extremely

sophisticated man, Socrates, to ask the questions, and the

slave was by no means uneducated, for merely by having

been alive and perceptive for years, he had learned to make

many assumptions by observation and  example, without



either himself or (apparently) Socrates being  completely

aware of it.

Still as late as 1800, influential philosophers such as

Immanuel Kant held that Euclid’s axioms represented

absolute truth.

But do they? Would anyone question the statement that

“the whole is greater than the part”? Since 10 can be

broken up into  6 + 4, are we not completely right in

assuming that 10 is greater  than either 6 or 4? If an

astronaut can get into a space capsule,  would we not be

right in assuming that the volume of the capsule is greater

than the volume of the astronaut? How could we doubt the

general truth of the axiom?

Well, any list of consecutive numbers can be divided

into odd numbers and even numbers, so that we might

conclude that in any such list of consecutive numbers, the

total of all numbers present must be greater than the total

of even numbers. And yet if  we consider an infinite list of

consecutive numbers, it turns out  that the total number of

all the numbers is equal to the total number of all the even

numbers. In what is called “transfinite mathematics” the

particular axiom about the whole being greater than the

part simply does not apply.

Again, suppose that two automobiles travel between

points A and B by identical routes. The two routes coincide.

Are they  equal? Not necessarily. The first automobile

traveled from A to B, while the second traveled from B to A.

In other words, two lines might coincide and yet be unequal

since the direction of one might  be different from the

direction of the other.

Is this just fancy talk? Can a line be said to have

direction? Yes, indeed. A line with direction is a “vector” and

in “vector mathematics” the rules aren’t quite the same as

in ordinary mathematics  and things can coincide without

being equal.



In short, then, axioms are not examples of absolute

truth and it is very likely that there is no such thing as

absolute truth at all.  The axioms of Euclid are axioms not

because they appear as absolute truth out of some inner

enlightenment but only because they seem to be true in the

context of the real world.

And that is why the geometric theorems derived from

Euclid’s axioms seem to correspond with what we call

reality. They started with what we call reality.

It is possible to start with any set of axioms, provided

they are not self-contradictory, and work up a system of

theorems consistent with those axioms and with each other,

even though they are not consistent with what we think of

as the real world. This does  not make the “arbitrary

mathematics” less “true” than the one starting from Euclid’s

axioms, only less useful, perhaps. Indeed,  an “arbitrary

mathematics” may be more useful than ordinary “common-

sense” mathematics in special regions such as those

of transfinites or of vectors.

Even so, we must not confuse “useful” and “true.” Even

if an axiomatic system is so bizarre as to be useful in no

conceivable  practical sense, we can nevertheless say

nothing about its “truth.“ If it is self-consistent, that is all we

have a right to demand of any  system of thought. “Truth”

and “reality” are theological words, not scientific ones.

But back to Euclid’s axioms. So far I have only listed the

five “common notions.” There were also five more axioms

on the list that were specifically applicable to geometry and

these were later  called “postulates.” The first of these

postulates was:

1) It is possible to draw a straight line from any

point to any other point.

This seems eminently acceptable, but are you sure? Can

you prove that you can draw a line from the Earth to the



Sun? If you could somehow stand on the Sun safely and hold

the Earth motionless in its orbit, and somehow stretch a

string from the Earth to the Sun and pull it absolutely taut,

that string would represent a straight line from Earth to Sun.

You’re sure that this is a reasonable “thought experiment”

and I’m sure it is, too, but we only assume that matters can

be so. We can’t ever demonstrate them,  or prove them

mathematically.

And, incidentally, what is a straight line? I have just

made the assumption that if a string is pulled absolutely

taut, it has a shape we would recognize as what we call a

straight line. But what is  that shape? We simply can’t do

better than say, “A straight line is something very, very thin

and very, very straight,” or, to paraphrase Gertrude Stein,

“A straight line is a straight line is a straight line-”

Euclid defines a straight line as “a line which lies evenly

with the points on itself,” but I would hate to have to try to

describe  what he means by that statement to a student

beginning the study of geometry.

Another definition says that: A straight line is the

shortest distance between two points.

But if a string is pulled absolutely taut, it cannot go from

the point at one end to the point at the other in any shorter

distance,  so that to say that a straight line is the shortest

distance between  two points is the same as saying that it

has the shape of an absolutely taut string, and we can still

say “And what shape is that?”

In modern geometry, straight lines are not defined at all.

What is said, in essence, is this: Let us call something a line

which has the following properties in connection with other

undefined  terms like “point,” “plane,” “between,”

“continuous,” and so on. Then the properties are listed.

Be that as it may, here are the remaining postulates of

Euclid:



2)       A finite straight line can be extended

continuously in a straight line.

3)       A circle can be described with any point as

center and any distance as radius.

4)    All right angles are equal.

5)       If a straight line falling on two straight lines

makes the interior angles on the same side less than

two right angles, the two  straight lines, if produced

indefinitely, meet on that side on which are the angles

less than the two right angles.

I trust you notice something at once. Of all the ten

axioms of Euclid, only one—the fifth postulate—is a long

jawbreaker of a sentence; and only one—the fifth postulate

—doesn’t make instant sense.

Take any intelligent person who has studied arithmetic

and who has heard of straight lines and circles and give him

the ten axioms one by one and let him think a moment and

he will say, “Of course!” to each of the first nine. Then recite

the fifth postulate and he will surely say, “What!”

And it will take a long time before he understands

what’s going on. In fact, I wouldn’t undertake to explain it

myself without a diagram like the one on page 124.

Consider two of the solid lines in the diagram: the one

that runs from point C to point D through point M (call it line

CD  after the end points) and the one that runs through

points G, L, and H (line GH). A third line, which runs through

points A,  L, M, and B (line AB), crosses both GH and CD,

making angles with both.

If line CD is supposed to be perfectly horizontal, and line

AB is supposed to be perfectly vertical, then the four angles

made in  the crossing of the two lines (angles CMB, BMD,

DML, and  LMC) are right angles and are all equal (by

postulate 4). In particular, angles DML and LMC, which I

have numbered in the diagram as 3 and 4, are equal, and

are both right angles.



(I haven’t bothered to define “perfectly horizontal” or

“perfectly vertical” or “crosses” or to explain why the

crossing of a perfectly horizontal line with a perfectly

vertical line produces four right angles, but I am making no

pretense of being completely rigorous. This sort of thing can

be made rigorous but only at the expense of a lot more talk

than I am prepared to give.)

Now consider line GH. It is not perfectly horizontal. That

means the angles it produces at its intersection (I haven’t

defined “intersection”) with line AB are not right angles and

are not all equal. It can be shown that angles ALH and GLB

are equal and that angles HLB and GLA are equal but that

either of the first pair is not equal to either of the second

pair. In particular,  angle GLB (labeled 2) is not equal to

angle HLB (labeled 1).

Suppose we draw line EF, passing through L, and that

line EF is (like line CD) perfectly horizontal. In that case it

makes four  equal right angles at its intersection with line

AB. In particular, angles FLB and ELB are right angles. But

angle HLB is contained within angle FLB (what does “is

contained within” mean?)  with room to spare. Since angle

HLB is only part of FLB and the  latter is a right angle then

angle HLB (angle 1) is less than a right angle, by the fifth

“common notion.”



In the same way, by comparing angle ELB, known to be

a right angle, with angle GLB (angle 2), we can show that

angle 2 is greater than a right angle.

The “interior angles” of the diagram are those on the

side of line GH that faces line CD, and those on the side of

line CD that faces line GH. In other words, they are angles 1,

2, 3, and 4.

The fifth postulate talks about “the interior angles on

the same side,” that is, 1 and 4 on one side and 2 and 3 on

the other. Since we know that 3 and 4 are right angles, that

1 is less than a right angle, and that 2 is more than a right

angle, we can say that the interior angles on one side, 1 and

4, have a sum less than two right angles, while the interior

angles on the other have a sum  greater than two right

angles.

The fifth postulate now states that if the lines GH and

CD are extended, they will intersect on the side where the

interior angles  with a sum less than two right angles are

located. And, indeed, if you look at the diagram you will see

that if lines GH and CD are extended on both sides (dotted

lines), they will intersect at point  N on the side of interior

angles 1 and 4. On the other side, they  just move farther

and farther apart and clearly will never intersect.

On the other hand, if you draw line JK through L, you

would reverse the situation. Angle 2 would be less than a

right angle and angle 1 would be greater than a right angle

(where angle 2 is now angle JLB and angle 1 is now angle

KLB). In that case interior angles 2 and 3 would have a sum

less than two right angles and interior angles 1 and 4 would

have a sum greater than two right angles. If lines JK and CD

were extended (dotted lines), they would intersect at point

O on the side of interior angles 2 and 3. On the other side

they would merely diverge further and further.

Now that I’ve explained the fifth postulate at great

length (and even then only at the cost of being very un-



rigorous) you might  be willing to say, “Oh yes, of course.

Certainly! It’s obvious!”

Maybe, but if something is obvious, it shouldn’t require

hundreds of words of explanation. I didn’t have to belabor

any of the other nine axioms, did I?

Then again, having explained the fifth postulate, have I

proved it? No, I have only interpreted the meaning of the

words and  then pointed to the diagram and said, “And

indeed, if you look at the diagram, you will see—”

But that’s only one diagram. And it deals with a

perfectly vertical line crossing two lines of which one is

perfectly horizontal. And what if none of the lines are either

vertical or horizontal  and none of the interior angles are

right angles? The fifth postulate applies to any line crossing

any two lines and I certainly haven’t proved that.

I can draw a million diagrams of different types and

show that in each specific case the postulate holds, but that

is not enough. I must show that it holds in every conceivable

case, and this can’t  be done by diagrams. A diagram can

only make the proof clear;  the proof itself must be derived

by permissible logic from more  basic premises already

proved, or assumed. This I have not done.

Now let’s consider the fifth postulate from the

standpoint of moving lines. Suppose line GH is swiveled

about L as a pivot in  such a way that it comes closer and

closer to coinciding with line EF. (Does a straight line remain

a straight line while it swivels  in this fashion? We can only

assume it does.) As line GH swivels toward line EF, the point

of intersection with line CD (point N)  moves farther and

farther to the right.

If you started with line JK and swiveled it so that it would

eventually coincide with line EF, the intersection point O

would move off farther and farther to the left. If you

consider the diagram and make a few markings on it (if you

have to) you will see this for yourself.



But consider line EF itself. When GH has finally swiveled

so as to coincide with line EF, we might say that intersection

point N  has moved off an infinite distance to the right

(whatever we mean by “infinite distance”) and when line JK

coincides with line EF,  the intersection point O has moved

off an infinite distance to the left. Therefore, we can say that

line EF and line CD intersect at two points, one an infinite

distance to the right and one an infinite distance to the left.

Or let us look at it another way. Line EF, being perfectly

horizontal, intersects line AB to make four equal right

angles. In that case, angles 1, 2, 3, and 4 are all right angles

and all equal. Angles 1      and 4 have a sum equal to two

right angles, and so do angles 2    and 3.

But the fifth postulate says the intersection comes on

the side where the two interior angles have a sum less than

two right angles. In the case of lines EF and CD crossed by

line AB, neither  set of interior angles has a sum less than

two right angles and there can be an intersection on neither

side.

We have now, by two sets of arguments, demonstrated

first that lines EF and CD intersect at two points, each

located an infinite distance away, and second that lines EF

and CD do not intersect  at all. Have we found a

contradiction and thus shown that there is something wrong

with Euclid’s set of axioms?

To avoid a contradiction, we can say that having an

intersection at an infinite distance is equivalent to saying

there is no intersection. They are different ways of saying

the same thing. To agree that “saying a” is equal to “saying

b” in this case is consistent with all the rest of geometry, so

we can get away with it.

Let us now say that two lines, such as EF and CD, which

do not intersect with each other when extended any finite

distance, however great, are “parallel.”

Clearly, there is only one line passing through L that can

be parallel to line CD, and that is line EF. Any line through L



that  does not coincide with line EF is (however slightly)

either of the  type of line GH or of line JK, with an interior

angle on one side or the other that is less than a right angle.

This argument is sleight  of hand, and not rigorous, but it

allows us to see the point and say: Given a straight line, and

a point outside that line, it is possible to draw one and only

one straight line through that point parallel to the given line.

This statement is entirely equivalent to Euclid’s fifth

postulate.

If Euclid’s fifth postulate is removed and this statement

put in its place, the entire structure of Euclidean geometry

remains standing without as much as a quiver.

The version of the postulate that refers to parallel lines

sounds clearer and easier to understand than the way Euclid

puts it, because even the beginning student has some

notion of what parallel lines look like, whereas he may not

have the foggiest idea of  what interior angles are. That is

why it is in this “parallel” form  that you usually see the

postulate in elementary geometry books.

Actually, though, it isn’t really simpler and clearer in this

form, for as soon as you try to explain what you mean by

“parallel”  you’re going to run into the matter of interior

angles. Or, if you  try to avoid that, you’ll run into the

problem of talking about  lines of infinite length, of

intersections at an infinite distance being equivalent to no

intersection, and that’s even worse.

But look, just because I didn’t prove the fifth postulate

doesn’t mean it can’t be proven. Perhaps by some line of

argument, exceedingly lengthy, subtle and ingenious, it is

possible to prove the fifth postulate by use of the other four

postulates and the five common notions (or by use of some

additional axiom not included in the list which, however, is

much simpler and more  “obvious” than the fifth postulate

is).

Alas, no. For two thousand years mathematicians have

now and then tried to prove the fifth postulate from the



other axioms simply because that cursed fifth postulate was

so long and so un-obvious that it didn’t seem possible that it

could be an axiom.  Well, they always failed and it seems

certain they must fail. The  fifth postulate is just not

contained in the other axioms or in any list of axioms useful

in geometry and simpler than itself.

It can be argued, in fact, that the fifth postulate is

Euclid’s greatest achievement. By some remarkable leap of

insight, he  realized that, given the nine brief and clearly

“obvious” axioms, he could not prove the fifth postulate and

that he could not do  without it either, and that, therefore,

long and complicated though the fifth postulate was, he had

to include it among his assumptions.

So for two thousand years the fifth postulate stood

there: long, ungainly, puzzling. It was like a flaw in

perfection, a standing  reproach to a line of argument

otherwise infinitely stately. It bothered the very devil out of

mathematicians.

And then, in 1733, an Italian priest, Girolamo Saccheri,

got the most brilliant notion concerning the fifth postulate

that anyone had had since the time of Euclid, but wasn’t

brilliant enough himself to handle it-

Let’s go into that in the next chapter.



11 - THE PLANE TRUTH

There are occasionally problems in immersing myself in

these science essays I write. For instance, I watched a

luncheon companion sprinkle salt on his dish after an

unsatisfactory forkful,  try another bite, and say with

satisfaction, “That’s much better.”

I stirred uneasily and said, “Actually, what you mean is,

‘I like that much better.’ In saying merely, “That’s much

better,’ you are  making the unwarranted assumption that

food can be objectively  better or worse in taste and the

further assumption that your own  subjective sensation of

taste is a sure guide to the objective situation.”

I think I came within a quarter of an inch of getting that

dish, salted to perfection as it was, right in the face; and

would have well deserved it, too. The trouble, you see, was

that I had just written the previous chapter and was brimful

on the subject of assumptions.

So let’s get back to that. The subject under

consideration is Euclid’s “fifth postulate,” which I will repeat

here so that you won’t have to refer back to it:

If a straight line falling on two straight lines makes the

interior angles on the same side less than two right angles,

the two straight lines, if produced indefinitely, meet on that

side on which are the angles less than the two right angles.

All Euclid’s other axioms are extremely simple but he

apparently realized that this fifth postulate, complicated as

it seemed, could not be proved from the other axioms, and

must therefore be included as an axiom itself.

For two thousand years after Euclid other geometers

kept trying to prove Euclid too hasty in having given up, and

strove to find some ingenious method of proving the fifth

postulate from the other axioms, so that it might therefore

be removed from the list—if only because it was too long,



too complicated, and too not immediately obvious to seem a

good axiom.

One system of approaching the problem was to consider

the following quadrilateral:

Two of the angles, DAB and ABC are given as right

angles in this quadrilateral, and side AD is equal in length to

side BC. Given these facts, it is possible to prove that side

DC is equal to  side AB and that angles ADC and DCB are

also right angles (so  that the quadrilateral is actually a

rectangle) if Euclid’s fifth postulate is used.

If Euclid’s fifth postulate is not used, then by using only

the other axioms, all one can do is to prove that angles ADC

and  DCB are equal, but not that they are actually right

angles.

The problem then arises whether it is possible to show

that from the fact that angles ADC and DCB are equal, it is

possible to show that they are also right angles. If one could

do that, it would then follow from the fact that quadrilateral

ABCD is a  rectangle, that the fifth postulate is true. This

would have been proven from the other axioms only and it

would no longer be necessary to include Euclid’s fifth among

them.

Such an attempt was first made by the medieval Arabs,

who carried on the traditions of Greek geometry while

Western Europe was sunk in darkness. The first to draw this

quadrilateral and



labor over its right angles was none other than Omar

Khayyam

(1050-1123).*

Omar pointed out that if angles ADC and DCB were

equal, then there were three possibilities: 1) they were each

a right angle, 2) they were each less than a right angle, that

is “acute,“ or 3) they were each more than a right angle, or

“obtuse.”

He then went through a line of argument to show that

the acute and obtuse cases were absurd, based on the

assumption that two converging lines must intersect.

To be sure, it is perfectly commonsensical to suppose

that two converging lines must intersect, but, unfortunately,

common sense  or not, that assumption is mathematically

equivalent to Euclid’s fifth postulate. Omar Khayyam ended,

therefore, by “proving” the fifth postulate by assuming it to

be true as one of the conditions of the proof. This is called

either “arguing in a circle” or “begging  the question,” but

whatever it is called, it is not allowed in mathematics.

Another Arabian mathematician, Nasir Eddin al-Tus

(120174), made a similar attempt on the quadrilateral,

using a different and more complicated assumption to

outlaw the acute and obtuse cases. Alas, his assumption

was also mathematically equivalent to Euclid’s fifth.

Which brings us down to the Italian, Girolamo Saccheri

(16671733), whom I referred to at the end of the previous

chapter and who was both a professor of mathematics at

the University of Pisa, and a Jesuit priest.

He knew of Nasir Eddin’s work and he, too, tackled the

quadrilateral. Saccheri, however, introduced something

altogether new, something that in two thousand years no

one had thought of doing in connection with Euclid’s fifth.

Until then, people had omitted Euclid’s fifth to see what

would happen, or else had made assumptions that turned

out to be equivalent to Euclid’s fifth. What Saccheri did was

to begin by assuming Euclid’s fifth to be false, and to



substitute for it some other postulate that was contradictory

to it. He planned then to try to build up a geometry based

on Euclid’s other axioms plus the “alternate fifth” until he

came to a contradiction (proving that a particular theorem

was both true and false, for instance).

* He wrote clever quatrains which Edward FitzGerald even more cleverly

translated into English in 1859, making Omar forever famous as a

hedonistic and agnostic poet, but the fact is that he ought to be

remembered as a great mathematician and astronomer.

When the contradiction was reached, the “alternate

fifth” would have to be thrown out. If every possible

“alternate fifth” is  eliminated in this fashion, then Euclid’s

fifth must be true. This  method of proving a theorem by

showing all other possibilities to  be absurd is a perfectly

acceptable mathematical technique* and  Saccheri was on

the right road.

Working on this system, Saccheri therefore started by

assuming that the angles ADC and DCB were both greater

than a right angle. With this assumption, plus all the axioms

of Euclid other  than the fifth, he began working his way

through what we might call “obtuse geometry.” Quickly, he

came across a contradiction.  This meant that obtuse

geometry could not be true and that angles ADC and DCB

could not each be greater than a right angle.

This accomplishment was so important that the

quadrilateral which Omar Khayyam had first used in

connection with Euclid’s  fifth is now called the “Saccheri

quadrilateral.”

Greatly cheered by this, Saccheri then tackled “acute

geometry,” beginning with the assumption that angles ADC

and DCB were each smaller than a right angle. He must

have begun the task lightheartedly, sure that, as in the case

of obtuse geometry, he would quickly find a contradiction in

acute geometry. If that  were so, Euclid’s fifth would stand



proven and his “right-angle  geometry” would no longer

require that uncomfortably long statement as an axiom.

As Saccheri went on from proposition to proposition in

his acute geometry, his feeling of pleasure gave way to

increasing  anxiety, for he did not come across any

contradiction. More and more he found himself faced with

the possibility that one could build up a thoroughly self-

consistent geometry which was based on at least one axiom

that directly contradicted a Euclidean axiom. The result

would be a “non-Euclidean” geometry which might seem

against common sense, but which would be internally self-

consistent and therefore mathematically valid.

* This is equivalent to Sherlock Holmes’s famous dictum that when the

impossible has been eliminated, whatever remains, however

improbable, must be true.

For a moment, Saccheri hovered on the very brink of

mathematical immortality and—backed away.

He couldn’t! To accept the notion of a non-Euclidean

geometry took too much courage. So mistakenly had

scholars come to confuse Euclidean geometry with absolute

truth, that any refutation of Euclid would have roused the

deepest stirrings of anxiety  in the hearts and minds of

Europe’s intellectuals. To doubt Euclid was to doubt absolute

truth and if there was no absolute  truth in Euclid, might it

not be quickly deduced that there was  no absolute truth

anywhere? And since the firmest claim to absolute truth

came from religion, might not an attack on Euclid

be interpreted as an attack on God?

Saccheri was clearly a mathematician of great potential,

but he was also a Jesuit priest and a human being, so his

courage failed him and he made the great denial.* When his

gradual development of acute geometry went on to the

point where he could take  it no longer, he argued himself

into imagining he had found an inconsistency where, in fact,



he hadn’t, and with great relief, he  concluded that he had

proved Euclid’s fifth. In 1733, he published  a book on his

findings entitled (in English) Euclid Cleared of  Every Flaw,

and, in that same year, died.

By his denial Saccheri had lost immortality and chosen

oblivion. His book went virtually unnoticed until attention

was called to  it by a later Italian mathematician, Eugenio

Beltrami (1835—  1900), after Saccheri’s failure had been

made good by others. Now what we know of Saccheri is just

this: that he had his finger on a  major mathematical

discovery a century before anybody else and had lacked the

guts to keep his finger firmly on it.

* I am not blaming him. Placed in his position, I would undoubtedly have

done the same. It’s just too bad, that’s all.

Let us next move forward nearly a century to the

German mathematician Karl F. Gauss (1777-1855). It can

easily be argued  that Gauss was the greatest

mathematician who ever lived. Even  as a young man he

astonished Europe and the scientific world  with his

brilliance.

He considered Euclid’s fifth about 1815 and came to the

same conclusion to which Euclid had come—that the fifth

had to be  made an axiom because it couldn’t be proved

from the other axioms. Gauss further came to the

conclusion from which Saccheri  had shrunk away—that

there were other self-consistent geometries which were non-

Euclidean, in that an alternate axiom replaced the fifth.

And then he lacked the guts to publish, too, and here I

disclaim sympathy. The situation was different. Gauss had

infinitely more  reputation than Saccheri; Gauss was not a

priest; Gauss lived in a land where, and at a time when, the

hold of the Church was less to be feared. Gauss, genius or

not, was just a coward.



Which brings us to the Russian mathematician Nikolai

Ivanovich Lobachevski (1793-1856).* In 1826, Lobachevski

also began to wonder if a geometry might not be non-

Euclidean and yet consistent. With that in mind, he worked

out the theorems of “acute geometry” as Saccheri had done

a century earlier, but in 1829, Lobachevski did what neither

Saccheri nor Gauss had done. He did not back away and he

did publish. Unfortunately, what he published was an article

in Russian called “On the Principles of Geometry” in a local

periodical (he worked at the University of  Kazan, deep in

provincial Russia).

Who reads Russian? Lobachevski remained largely

unknown. It wasn’t until 1840 that he published his work in

German and brought himself to the attention of the world of

mathematics generally.

* Nikolai Ivanovich Lobachevski is mentioned in one of Tom Lehrer’s

satiric songs and to any Tom Lehrer fan (like myself) it seems strange

to see the name mentioned in a serious connection, but Lehrer is a

mathematician by trade and he made use of a real name.

Meanwhile, though, a Hungarian mathematician, Janos

Bolyai (1802-60), was doing much the same thing. Bolyai is

one of the  most romantic figures in the history of

mathematics since he also specialized in such things as the

violin and the dueling sword—in  the true tradition of the

Hungarian aristocrat. There is a story  that he once fenced

with thirteen swordsmen one after the other,  vanquishing

them all—and playing the violin between bouts.

In 1831, Bolyai’s father published a book on

mathematics. Young Bolyai had been pondering over

Euclid’s fifth for a number of years and now he persuaded

his father to include a twenty-six-page appendix in which

the principles of acute geometry were described. It was two

years after Lobachevski had published but  as yet no one

had heard of the Russian and nowadays, Lobachev-ski and



Bolyai generally share the credit for having discovered non-

Euclidean geometry.

Since the Bolyais published in German, Gauss was at

once aware of the material. His commendation would have

meant a great deal to the young Bolyai. Gauss still lacked

the courage to put his approval into print, but he did praise

Bolyai’s work verbally. And then, he couldn’t resist— He told

Bolyai he had had the same ideas years before but hadn’t

published, and showed him the work.

Gauss didn’t have to do that. His reputation was

unshakable; even without non-Euclidean geometry, he had

done enough for a  dozen mathematicians. Since he had

lacked the courage to publish, he might have had the

decency to let Bolyai take the credit. But he didn’t. Genius

or not, Gauss was a mean man in some ways.

Poor Bolyai was so embarrassed and humiliated by

Gauss’s disclosure, that he never did any further work in

mathematics.

And what about obtuse geometry? Saccheri had

investigated that and found himself enmeshed in

contradiction, so that had  been thrown out. Still, once the

validity of non-Euclidean geometry had been established,

was there no way of rehabilitating obtuse geometry, too?

Yes, there was—but only at the cost of making a still

more radical break with Euclid. Saccheri, in investigating

obtuse geometry had made use of an unspoken assumption

that Euclid himself had  also used—that a line could be

infinite in length. This assumption introduced no

contradiction in acute geometry or in right-angle geometry

(Euclid’s), but it did create trouble in obtuse geometry.

But then, drop that too. Suppose that, regardless of

“common sense” you were to make the assumption that any

line had to have some maximum finite length. In that case

all the contradiction in obtuse geometry disappeared and

there was a second valid variety of non-Euclidean geometry.



This was first shown in 1854 by the German mathematician

Georg F. Riemann (1826-66).

So now we have three kinds of geometry, which we can

distinguish by using statements that are equivalent to the

variety of fifth postulate used in each case:

A)       Acute geometry (non-Euclidean): Through a

point not on  a given line, an infinite number of lines

parallel to the given line may be drawn.

B)       Right-angle geometry (Euclidean): Through a

point not on a given line, one and only one line parallel

to the given line may be drawn.

C)       Obtuse geometry (non-Euclidean): Through a

point not on a given line, no lines parallel to the given

line may be drawn.

You can make the distinction in another and equivalent

way:

A)    Acute geometry (non-Euclidean): The angles of

a triangle have a sum less than 1800.

B)      Right-angle geometry (Euclidean): The angles

of a triangle have a sum exactly equal to 1800.

C)      Obtuse geometry (non-Euclidean): The angles

of a triangle have a sum greater than 180°.

You may now ask: But which geometry is true?

If we define “true” as internally self-consistent, then all

three geometries are equally true.

Of course, they are inconsistent with each other and

perhaps

only one corresponds with reality. We might therefore

ask: Which geometry corresponds to the properties of the

real universe?

The answer is, again, that all do.



Let us, for instance, consider the problem of traveling

from point A on Earth’s surface to point B on Earth’s

surface, and suppose we want to go from A to B in such a

way as to traverse the least distance.

In order to simplify the results, let us make two

assumptions. First, let us assume that the Earth is a

perfectly smooth sphere. This is almost true, as a matter of

fact, and we can eliminate mountains and valleys and even

the equatorial bulge without too much distortion.

Second, let us assume that we are confined in our

travels to the surface of the sphere and cannot, for instance,

burrow into its depth.

In order to determine the shortest distance from A to B

on the surface of the Earth, we might stretch a thread from

one point to the other and pull it taut. If we were to do this

between two points on a plane, that is, on a surface like that

of a flat blackboard extended infinitely in all directions, the

result would be what we ordinarily call a “straight line.”

On the surface of the sphere, the result, however, is a

curve, and yet that curve is the analogue of a straight line,

since that curve is the shortest distance between two points

on the surface of  a sphere. There is difficulty in forcing

ourselves to accept a curve as analogous to a straight line

because we’ve been thinking “straight” all our lives. Let us

use a different word, then. Let us call the shortest distance

between two points on any given surface a “geodesic.”*

On a plane, a geodesic is a straight line; on a sphere, a

geodesic is a curve, and, specifically, the arc of a “great

circle.” Such a great  circle has a length equal to the

circumference of the sphere and lies in a plane that passes

through the center of the sphere. On the Earth, the equator

is an example of a great circle and so are all the meridians.

There are an infinite number of great circles that can be

drawn on the surface of any sphere. If you choose any pair

of points on a sphere and connect each pair by a thread



which is pulled taut, you have in each case the arc of a

different great circle.

* “Geodesic” is from Greek words meaning “to divide the Earth” because

any geodesic on the face of the Earth, if extended as far as possible,

divides the surface of the Earth into two equal parts.

You can see that on the surface of a sphere, there is no

such thing as a geodesic of infinite length. If it is extended,

it simply  meets itself as it goes around the sphere and

becomes a closed  curve. On the surface of the Earth, a

geodesic can be no longer than 25,000 miles.

Furthermore, any two geodesies drawn on a sphere

intersect if produced indefinitely, and do so at two points.

On the surface of the Earth, for instance, any two meridians

meet at the north pole and the south pole. This means that,

on the surface of a sphere, through any point not on a given

geodesic, no geodesic  can be drawn parallel to the given

geodesic. No geodesic can be drawn through the point that

won’t sooner or later intersect the given geodesic.

Then, too, if you draw a triangle on the surface of a

sphere, with each side the arc of a great circle, then the

angles will have  a sum greater than 1800. If you own a

globe, imagine a triangle with one of its vertices at the north

pole, with a second at the equator and 10° west longitude,

and the third at the equator and 100° west longitude. You

will find that you will have an equilateral triangle with each

one of its angles equal to 900. The sum of the three angles

is 270 °.

This is precisely the geometry that Riemann worked out,

if the geodesies are considered the analogues of straight

lines. It is a  geometry of finite lines, no parallels, and

triangular angle-sums  greater than 1800. What we have

been calling “obtuse geometry”  then might also be called

“sphere geometry.” And what we have been calling “right-



angle geometry” or “Euclidean geometry”  might also be

called “plane geometry.”

In 1865, Eugenio Beltrami drew attention to a shape

called a “pseudosphere,” which looks like two cornets joined

wide mouth to wide mouth, and with each comet extending

infinitely out in either direction, ever narrowing but never

quite closing. The geodesies drawn on the surface of a

pseudosphere fulfill the requirements of acute geometry.

Geodesies on a pseudosphere are infinitely long and it is

possible for two particular geodesies to be extended

indefinitely without intersecting and therefore to be parallel.

In fact, it is possible to draw two geodesies on the surface of

a pseudosphere that do intersect and yet have neither one

intersecting a third geodesic lying outside the two.* In fact,

since an infinite number of geodesies can be drawn in

between the two intersecting geodesies,  all intersecting in

the same point, there are an infinite number  of possible

geodesies through a point, all of which are parallel

to another geodesic not passing through the point.

In other words “acute geometry” can be looked at as

“pseudosphere geometry.”

But now—granted that all three geometries are equally

valid under circumstances suiting each—which is the best

description of the universe as a whole?

This is not always easy to tell. If you draw a triangle with

geodesies of a given length on a small sphere and then

again on a large sphere, the sum of the angles of the

triangle will be greater  than 1800 in either case, but the

amount by which it is greater will be greater in the case of

the small sphere.

If you imagine a sphere growing larger and larger, a

triangle of a given size on its surface will have an angle-sum

closer and closer  to 1800 and eventually even the most

refined possible measurement won’t detect the difference.



In short, a small section of a very large sphere is almost as

flat as a plane and it becomes impossible to tell the

difference.

This is true of the Earth, for instance. It is because the

Earth is so large a sphere that small parts of it look flat and

that it took so long for mankind to satisfy himself that it was

spherical despite the fact that it looked flat.

* This sounds nonsensical because we are used to thinking in terms of

planes where the geodesies are straight lines and where two

intersecting lines cannot possibly be both parallel to a third line. On a

pseudosphere, the geodesies curve, and curve in such a way as to make

the two parallels possible.

Well, there is a similar problem in connection with the

universe generally.

Light travels from point to point in space; from the Sun

to the Earth, or from one distant Galaxy to another, over

distances many times those possible on Earth’s surface.

We assume that light in traveling across the parsecs

travels in a straight line but, of course, it really travels in a

geodesic, which  may or may not be a straight line. If the

universe obeys Euclidean  geometry, the geodesic is a

straight line. If the universe obeys  some non-Euclidean

geometry, then the geodesies are curves of  one sort or

another.

It occurred to Gauss to form triangles with beams of

light traveling through space from one mountaintop to

another, and measure the sum of the angles so obtained. To

be sure, the sums  turned out to be just about 1800, but

were they exactly 1800? That was impossible to tell. If the

universe were a sphere millions  of light-years in diameter

and if the light beams followed the curvings of such a

sphere, no conceivable direct measurement possible  today

could detect the tiny amount by which the angle sum

exceeded 1800.



In 1916, however, Einstein worked out the General

Theory of Relativity, and found that in order to explain the

workings of  gravitation, he had to assume a universe in

which light (and everything else) traveled in non-Euclidean

geodesies.

By Einstein’s theory, the universe is non-Euclidean and

is, in fact, an example of “obtuse geometry.”

To put it briefly, then, Euclidean geometry, far from

being the absolute and eternal verity it was assumed to be

for two thousand  years, is only the highly restricted and

abstract geometry of the plane, and one that is merely an

approximation of the geometry of such important things as

the universe and the Earth’s surface.

It is not the plain truth so many have taken for granted

it was— but only the plane truth.*

* Well, I think it’s clever.



D - The Problem of the Platypus



12 - HOLES IN THE HEAD 

A friend said to me once that he would love to see my

filing system. So I took him to my office and said, “This file

is for correspondence. Here I keep old manuscripts. Here I

have manuscripts in preparation. This is the card file of my

books—of my shorter fiction—of my shorter non-fiction—”

“No, no, no,” he said. “That’s all trivial. Where do you

keep your reference files?”

“What reference files?” said I, blankly. (I very often say

things blankly. I think it’s part of my charm—or maybe

naivete.)

“The cards on which you list items you may need for

future articles or books and then file them according to

various subjects.”

“I don’t do that,” I said, growing anxious. “Am I

supposed to?”

“But how do you keep things straight in your head,

then?”

I was glad to be able to answer that one definitely. “I

don’t know,” I said, and he seemed pretty annoyed with me.

Well, I don’t. All I know is that I’ve been a classifier ever

since I can remember. Everything falls into categories with

me. Everything is divided and counted up and put into neat

stacks in my  mind. I don’t worry about it; it happens by

itself.

Of course, I sometimes worry about the details. For

instance, what with one thing or another, the actual number

of books I have published has become an issue. I am forever

being asked, “How many books have you published?”*

But what’s a book?

Recently, the second edition of my book The Universe

was published. Do I count that as a new book? Of course

not. It’s updated but the updating doesn’t represent enough



in the way of change to make me consider the book “new.”

On the other hand, later, the third edition of my book The

Intelligent Man’s Guide To Science is being published. I

counted the second edition as a new book and I intend to

count the third edition as such, because in each case the

changes introduced were substantial and as time-and

energy-consuming as a new book would have been.

* The answer is 117 at the moment of writing, if you are dying of

curiosity.

You might think all this is something I can chop and

change to please myself, but not exactly. In my book Opus

100, I listed my  first hundred books in chronological order

and that list became “official.” But is it correct? Was I right

in omitting this or that item from the list or, for that matter,

including this item or that.

Unimportant? Sure, but it does help me sympathize with

those classifiers who involve themselves with more intricate

matters than a listing of books. For instance-

How do you tell a mammal from a reptile?

The easiest and quickest way is to decide that a

mammal is covered with hair and a reptile is covered with

scales. Of course,  you have to be liberal in making this

distinction. Some organisms  we consider mammals don’t

have very much hair. Human beings  don’t—but we have

some hair. Elephants have even less, but they have some.

Whales have still less, but even they have some. Dolphins

usually have anywhere from two to eight hairs near the

tip  of the snout. Even in those whales where hair is

altogether absent,  it is present at some time in the fetal

development.

And one hair is, in this respect, as good as a million, for

any hair at all is the hallmark of the mammal. No creature

that we  consider to be definitely a non-mammal has even

one true hair. They may have structures that look like hair,



but the resemblance  disappears if we consider its

microscopic structure, its chemical  makeup, its anatomical

origin, or all three.

A somewhat less useful distinction is that mammals

(well, most) bring forth their young alive, while reptiles

(well, most) don’t. Some reptiles, such as sea snakes, bring

forth living young,  but in doing so they merely retain the

eggs within their body till  they hatch. The developing

embryos find their food within the egg and the fact that the

egg is within the body is a point for security, but not for

nourishment.

Mammals, on the other hand, or most of them, feed the

developing young out of the maternal bloodstream by

means of an organ called the “placenta,” in which the

mother’s blood vessels and the blood vessels of the embryo

come close enough to allow molecules to seep across: food

from mother to embryo, wastes  from embryo to mother.

(There is no actual joining of bloodstreams, however.)

A minority of mammals bring forth living, but very

poorly developed, young, and these must then continue

their development in a special maternal pouch outside the

body. A still smaller minority of mammals lay eggs. But even

the egg-layers have hair.

Another point is that mammals feed their newborn

young on milk secreted by special maternal glands. This is

true even of the non-placental mammals; even of the egg-

layers. And this is not true for any animal without hair (not

one!). Milk seems to be a purely mammalian product and it

is this, more than anything  else, which seems to have

impressed the classifiers. The very word “mammal” is from

the Latin mamma, meaning “breast.”

Then, too, mammals maintain a constant internal

temperature even though the environmental temperature

may vary widely.  Reptiles, on the other hand, have an

internal temperature that tends, more or less, to match that

of the environment. Since  the internal temperature of



mammals is close to 100° F. and is  therefore generally

higher than the environmental temperature, mammals feel

warm to the touch while reptiles feel, by comparison, cold.

That is why we speak of mammals as “warm-blooded” and

reptiles as “cold-blooded,” missing the essential point

that the internal temperature is constant in the former case

and inconstant in the latter.

(To be sure, birds are warm-blooded, too, but there is no

danger in confusing a bird and a mammal. All birds, without

exception, have feathers and all non-birds, without

exception, do not have feathers. —And except for birds and

mammals, all organisms are cold-blooded.)

I have by no means listed all the differences between

mammals and reptiles, only those that the non-biologist can

tell by looking at the creatures from a distance. If we want

to indulge in dissection, we can discover others. For

instance, mammals have a flat  muscle called the

“diaphragm” which divides the chest from the  abdomen.

The diaphragm as it contracts, increases the volume of the

chest cavity (at the expense of the abdominal cavity,

which  doesn’t care) and helps draw air into the lungs.

Reptiles do not  have a diaphragm. In fact, no non-hairy

organism does.

So far, so good. But now we pass on to extinct creatures

which biologists can study only in fossil form.

Paleontologists (those  biologists specializing in extinct

species) have no hesitation in looking at a fossil and saying

that it is reptilian or that it is mammalian. The question at

once arises: How?

All the really obvious distinctions can’t be used since, in

general, all that the fossils offer us are the remains of what

used to be bones and teeth. You can’t look at a handful of

bones and teeth and find traces of hair or breasts or milk or

placentae or diaphragms.

All you can do is compare the bones and teeth with

those of modern reptiles and mammals and see if there are



strictly hard-tissue distinctions. Then, you might assume

that if an extinct  creature had bones characteristic of

mammals, it must also have had hair, breasts, a diaphragm,

and the rest.

Consider the skull. In the most primitive and earliest

reptiles, the skull behind the eye was solid bone and on the

other side of  the bone were the jaw muscles. There was a

tendency, however, to  expose the jaw muscles and give

them freer play, so that many reptiles had openings in the

skull bounded by bony arches. The  loss in sheer defensive

strength was more than made up for by the improvement in

the offense represented by larger, stronger jaws that could

go snap! more firmly. On the balance, then, the reptiles

which happened to develop these openings passed on

to greater things.

(Yet evolutionary “advances” are never universal, and

never the only answer. One group of reptiles that had no use

for a hole in the head, managed to survive for hundreds of

millions of years and flourish, after a fashion, even today,

though many, many hole-in-the-head groups have vanished.

I’m talking about the turtles, whose jaw muscles are hidden

under a solid wall of bone.)

The reptiles developed openings in their skulls in a

variety of patterns and, indeed, are classified into groups

according to those patterns. This is not because this pattern

is of overwhelming  physiological importance in itself, but

only because it is convenient, since if you have any part at

all of a reptile, however long dead, you are likely to have its

skull.

But what about mammals, which are descended from

reptiles? They have a single opening on either side of the

skull just behind  the eye bounded on the bottom by a

narrow bony arch called the “zygomatic arch.”

So the paleontologist can look at a skull and from the

nature of the openings tell at once whether it is reptilian or

mammalian.



Then, again, the lower jaw of a reptile is made up of

seven different bones, fused tightly into a strong structure.

The lower jaw of a mammal is a single bone. (Some of the

missing bones developed into the tiny bones of the middle

ear. This is not as strange as it sounds. If you put your finger

at the point where  lower jaw meets upper jaw and where

the old reptilian bones existed, you will find you are not very

far from your ear.)

As for the teeth, those of reptiles tended to be

undifferentiated and all alike, of conelike structure. In

mammals, the teeth are  highly differentiated, cutting

incisors in front, grinding molars in  back, with tearing

canines and premolars between.

Since mammals evolved from reptilian forebears is there

any way of recognizing which group of reptiles possessed

the distinction of being our ancestors? Certainly no living

group of reptiles  seems to be descended from anything

mammalian or even approaching the mammalian. We must

look for some group that left no reptilian descendants at all.

One such group, now entirely extinct (as reptiles), is

called the

“Synapsida.” These had a single skull opening on either

side of the head and included members who showed the

clear beginnings of mammalism.

There were two important groups of synapsids. The

earlier, dating back some three hundred million years, were

members of the order “Pelycosauria.” The pelycosaurs are

interesting chiefly because their skulls seem to show the

beginning of a zygomatic arch.  Furthermore, their teeth

show some differentiation. The front  teeth are incisorlike

and behind them are teeth that are rather like  canines.

There are no molars however. The rear teeth are reptilian

cones.

After flourishing for fifty million years or so, the

pelycosaurs gave way to a group of synapsids of the order



“Therapsida.” Undoubtedly, the therapsids were descended

from a particular species of pelycosaurs.

The therapsids are clearly further on the road to

mammalism than any of the pelycosaurs were. The

zygomatic arch is much  more mammal-like among them

than among the pelycosaurs; so much so, in fact, that the

feature gives them their name. “Therapsida” is from Greek

words meaning “beast opening.” In other  words, the

opening in the skull is beastlike where “beast” is

the common term for what zoologists would call mammals.

Further, the teeth are much more differentiated among

the therapsids than among the pelycosaurs. A well-known

therapsid which lived about 220 million years ago in South

Africa had a  skull and teeth that were so doglike that it is

called “Cynogna-thus” (“dog jaw”). The back teeth of

Cynognathus are even beginning to look like molars.

What’s more, while the chin of the therapsids was made

up of seven bones, in typical reptilian fashion, the center

bone or “dentary,” was by far the largest. The other six

bones, three on each side, were crowded toward the joint of

the lower jaw with the upper—on their way to the ear, so to

speak.

In another respect, too, the therapsids showed a

“progressive” feature. (We tend to call “progressive”

anything that seems to move in the direction of ourselves.)

Early reptiles, including the

pelycosaurs, tended to have their legs splayed out so

that the upper part, above the knee, was horizontal. This is

a rather inefficient way of suspending the weight of the

body.

Not so the therapsids. In their case, the legs were drawn

beneath the body, with the upper parts, as well as the

lower, tending to be vertical. This makes for better support,

allows faster movement with less energy expenditure, and is

a typically mammalian  characteristic. Apparently, the

superior efficiency of the vertical  leg meant there was no



virtue in particularly long toes. Primitive  reptiles tended to

have four or even five joints in their middle  toes. The

therapsids, however, had two joints in the first toes,

and three joints in the others. Again, this is the way it is in

mammals.

The therapsids, however, did not endure. While we may

root for them as our great-ever-so-great-grandfathers, the

fact is that  about two hundred million years ago, the

“archosaurs,” the creatures representing what we loosely

call dinosaurs were coming  into their own. As they (no

ancestors of ours) rapidly grew in  size and specialization,

they crowded out the therapsids.

By 150 million years ago, the therapsids were clean

gone forever, every single one of them extinct.

Well, not really! Some small therapsids remained, but

they had grown so mammal-like, as nearly as we can tell

from the very few fossil remnants left behind, that we don’t

call them therapsids any more. We call them mammals.

After the mammals came on the scene, they managed

to survive through a hundred million years or so of

archosaurian dominance. Then, after the archosaurs

vanished, about seventy  million years ago, the mammals

continued to survive and burst into a flood of differentiation

and specialization that made this  latest period of Earth’s

existence the “age of the mammals.”

The question now is: Why did the mammals survive

when the therapsids generally did not? The archosaurs

proved utterly superior to the therapsids; why not to those

therapsidian offshots,  the mammals, as well? It couldn’t

have been that the mammals  were particularly brainy,

because primitive mammals aren’t. They

are not very brainy even today, much less a hundred

million years ago.

Nor could it be because of their advanced reproductive

system, the bearing of live young, for instance. The

development of a placenta, or even of a pouch, did not take



place till near the end of the archosaurian dominance. For

nearly a hundred million  years the mammals survived as

egg-layers.

It couldn’t have been their advanced teeth or legs or

anything skeletal that the therapsids had, generally, for

none of that helped the therapsids, generally.

Actually, the best guess is that the trick of survival was

warmbloodedness, the development of a constant internal

temperature. The control of the internal temperature meant

that a mammal could withstand the direct rays of a hot sun

much more easily than  a reptile could. It meant that a

mammal was warm and agile on  a cold morning when

reptiles were cold, stiff, and sluggish.

If a mammal carefully confined his activity to the chilly

hours or if he were trapped by a reptile in the heat and

could escape by darting into the hot sun—it would tend to

survive. But for mammals to have survived in this fashion,

their warm bloodedness must  have been well developed

from the start and that couldn’t happen overnight.

We might conclude, then, that in addition to those

changes in the therapsids that we can see in the skeleton,

there must have been additional changes that made warm-

bloodedness possible. The mammals survived because of all

the therapsids, warmbloodedness had developed most

efficiently among them.

Are there any signs of the beginnings of such changes

among the reptilian precursors of the mammals? Well, a

number of species of pelycosaurs had long bony processes

to their vertebrae that  thrust high into the air. Apparently,

skin stretched across these  processes so that pelycosaurs

possessed a high, ribbed “sail.”

Why? The American zoologist Alfred Sherwood Romer

has suggested it was an air-conditioning device (like the

huge fanlike ears of the African elephant). Heat is gained or

lost through the surface of the body and the pelycosaurian

sail can easily double the



surface area available. On a cool morning, the sail will

pick up the Sun’s heat and warm the creature much more

quickly than  would be the case for a similar organism

without a sail. Again, on a hot day, a pelycosaur could stay

in the shade and lose heat rapidly through the blood vessels

engorging the sail.

The sail, in short, served to make the pelycosaur’s

internal temperature more nearly constant than was the

case in other  similar reptiles. Their therapsid descendants

had no sails, however, and it couldn’t be that they had

abandoned temperature  control, since their descendants,

the mammals, had it in such superlative degree.

It must be that the therapsids had developed something

better than the sail. A high metabolic rate to produce heat

in greater quantity might be developed and then hair (which

is only modified scales) to serve as an insulating device that

would cut down  heat loss on cold days. They might also

develop sweat glands to get rid of heat on hot days in more

efficient manner than by means of a sail.

In short, could the therapsids have been hairy and

sweaty, as mammals are? We can never tell from the fossils.

And did those species which best developed hairiness

and sweatiness become what we call mammals and did they

survive where the less advanced other therapsids did not?

Let’s look in another direction. In reptiles, the nostrils

open into the mouth just behind the teeth. This means that

reptiles can  breathe with their mouths closed—and empty.

When the mouth  is full, breathing stops. In the case of the

cold-blooded reptiles, not much harm is done. The reptilian

need for oxygen is relatively low and if the supply is cut off

temporarily during eating, so what?

Mammals, however, have to maintain a high metabolic

rate at all times if they are to be warm-blooded, and that

means that the oxidation of foodstuffs (from which heat is

obtained) must continue steadily. The oxygen supply must

not be cut off for more than a couple of minutes at any time.



This is made possible by  the fact that mammals have a

palate, a roof to the mouth. When  they breathe, air is led

above the mouth to the throat. It is only  when they are

actually in the act of swallowing that the breath is cut of and

this is a matter of a couple of seconds only.

It is interesting, then, that a number of late therapsid

species had developed a palate. This might be taken as a

pretty good indication that they were warm-blooded.

It would seem then that if we could see therapsids in

their living state and not as a handful of stony bones, we

would see hairy, sweaty creatures that we might easily

mistake for mammals. We might then wonder which hairy,

sweaty creatures were reptiles  and which were mammals.

How would we draw the line?

Nowadays, it might seem, the problem is not a crucial

one. All the hairy warm-blooded creatures in existence are

called mammals.—And yet, are we justified in doing so?

In the case of the placentals and the marsupials, we are

surely justified. They developed their placentas and their

pouches about eighty million years ago, after the mammals

had already existed  for some hundred million years. The

early mammals must have  been egg-layers and so,

therefore, must have been their therapsid  forebears. If we

want to look for the boundary line between therapsids and

mammals, we must therefore look among the hairy  egg-

layers.

As it happens, there are still six species of such hairy

egg-layers alive today, existing only in Australia, Tasmania,

and New Guinea, islands that split off from Asia before the

more efficient  placental mammals developed, so that the

egg-layers were spared what would otherwise have been a

fatal competition. The egg-layers were first discovered in

1792 and for a while biologists found it hard to believe they

could really exist. It took a long time before they got over

suspecting a hoax—hairy creatures that laid eggs seemed a

contradition in terms.



The best known of the egg-layers is the “duckbill

platypus” (the last part of the name means “flat-foot” and

the first part refers to  the horny sheath on its nose that

looks like a duck’s bill). It is  also called “Omithorhynchus”

from Greek words meaning “bird beak.”

These egg-layers have hair, of course, perfectly good

hair, but so (very likely) had at least some therapsids. The

egg-layers also  produce milk, although their mammary

glands have no nipples  and the young must lick the hair

where the milk oozes out. However, some therapsid species

might also have produced milk in that fashion. We can’t tell

from the bones.

In some respects, the egg-layers lean strongly toward

the side of the reptiles. Their body temperature is much less

perfectly controlled than that of other mammals and some

of them possess  venom. The platypus, for instance, has a

homy spur at each ankle which secretes venom; and though

a number of reptiles are  venomous, no mammals (other

than the egg-layers) are.

Then, too, because they are egg-layers, they have a

single abdominal opening, a “cloaca,” which serves as a

common passageway for urine, feces, eggs, and sperm. All

living birds and reptiles (also egg-layers) possess cloacae,

but no mammals, other than  those few egg-layers, do. For

this reason, the egg-layers are called “monotremes” (“one-

hole”).

To most zoologists, the hair and the milk spell mammal

unmistakably, but the eggs, the cloaca, and the venom are

sufficiently reptilian so that the egg-layers are placed in a

subclass “Proto-theria” (“first beasts”) while all other

mammals, marsupials and  placentals alike, are in the

subclass “Theria” (“beasts”).

The question arises, though: Are the monotremes really

the first of the mammals, or are they rather the last of the

therapsids?  Are they really reptiles that have the outer

appearance of mammals, as did, perhaps, a number of late



therapsid species; or are they mammals that have retained

some reptilian characteristics?

This may sound like a purely semantic matter, but

zoologists must make decisions in such matters and, if

possible, come to agreement over it.

An American zoologist, Giles T. Maclntyre, has recently

entered the fray, using skeletal characteristics as the

criterion. (We have only the skeleton as direct evidence in

the therapsid case.) He has concentrated on the region near

the ear, where some of  the reptilian jawbones became

mammalian ear bones and where  you might expect some

useful distinction between the two classes.

There is a “trigeminal nerve” which leads from the jaw

muscles to the brain. In all reptiles, without exception, it

passes through a little hole in the skull that lies between two

particular bones that make up the skull. In all marsupial and

placental mammals, without exception, it passes through a

little hole that pierces through one of the skull bones.

Then let us forget about hair and milk and eggs and

warm bloodedness, and reduce it to a matter of holes in the

head. Does the trigeminal nerve of the monotremes pass

through a skull bone  or between two skull bones? The

answer has been: Through a skull bone.

That would mean the monotremes are mammals.

Not so, says Maclntyre. The study of the trigeminal

nerve was made in adult monotremes, where the skull

bones are fused and  the boundaries hard to make out. In

young monotremes, the skull  bones are not as well

developed and are more clearly separated  (as is true of

young mammals generally). In young

monotremes, Maclntyre says, it is clear that the trigeminal

nerve goes between  two bones and it is only in the adult

skull that bone fusions obscure the fact.

If Maclntyre is correct, we may therefore say that the

therapsids never became entirely extinct and that the

monotremes represent  living therapsids, living reptiles so



similar to mammals in some  ways as to have been

considered mammals for nearly two centuries.

Does this matter to anyone but a few zoologists?

Well, it matters to me. Emotionally, I’m all the way on

MacIntyre’s side. I want the therapsids to have survived!



E - The Problem of History



13 THE EUREKA PHENOMENON 

In the old days, when I was writing a great deal of

fiction, there would come, once in a while, moments when I

was stymied. Suddenly, I would find I had written myself

into a hole and could see no way out. To take care of that, I

developed a technique which invariably worked.

It was simply this—I went to the movies. Not just any

movie. I had to pick a movie which was loaded with action

but which made no demands on the intellect. As I watched, I

did my best to avoid any conscious thinking concerning my

problem, and when I came out of the movie I knew exactly

what I would have to do to put the story back on the track.

It never failed.

In fact, when I was working on my doctoral dissertation,

too many years ago, I suddenly came across a flaw in my

logic that I  had not noticed before and that knocked out

everything I had done. In utter panic, I made my way to a

Bob Hope movie—and came out with the necessary change

in point of view.

It is my belief, you see, that thinking is a double

phenomenon, like breathing.

You can control breathing by deliberate voluntary action:

you can breathe deeply and quickly, or you can hold your

breath altogether, regardless of the body’s needs at the

time. This, however, doesn’t work well for very long. Your

chest muscles grow  tired, your body clamors for more

oxygen, or less, and you relax.  The automatic involuntary

control of breathing takes over, adjusts it to the body’s

needs, and unless you have some respiratory disorder, you

can forget about the whole thing.

Well, you can think by deliberate voluntary action, too,

and I don’t think it is much more efficient on the whole than

voluntary



breath control is. You can deliberately force your mind

through channels of deductions and associations in search

of a solution to some problem and before long you have dug

mental furrows  for yourself and find yourself circling round

and round the same  limited pathways. If those pathways

yield no solution, no amount  of further conscious thought

will help.

On the other hand, if you let go, then the thinking

process comes under automatic involuntary control and is

more apt to  take new pathways and make erratic

associations you would not think of consciously. The solution

will then come while you think you are not thinking.

The trouble is, though, that conscious thought involves

no muscular action and so there is no sensation of physical

weariness that would force you to quit. What’s more, the

panic of necessity tends to force you to go on uselessly,

with each added bit of useless effort adding to the panic in a

vicious cycle.

It is my feeling that it helps to relax, deliberately, by

subjecting your mind to material complicated enough to

occupy the voluntary faculty of thought, but superficial

enough not to engage  the deeper involuntary one. In my

case, it is an action movie; in  your case, it might be

something else.

I suspect it is the involuntary faculty of thought that

gives rise to what we call “a flash of intuition,” something

that I imagine  must be merely the result of unnoticed

thinking.

Perhaps the most famous flash of intuition in the history

of science took place in the city of Syracuse in third-century

B.C. Sicily. Bear with me and I will tell you the story—

About 250 B.C, the city of Syracuse was experiencing a

kind of Golden Age. It was under the protection of the rising

power  of Rome, but it retained a king of its own and



considerable self government; it was prosperous; and it had

a flourishing intellectual life.

The king was Hieron II, and he had commissioned a new

golden crown from a goldsmith, to whom he had given an

ingot of gold as raw material. Hieron, being a practical man,

had carefully weighed the ingot and then weighed the crown

he received back. The two weights were precisely equal.

Good deal!

But then he sat and thought for a while. Suppose the

goldsmith had subtracted a little bit of the gold, not too

much, and had  substituted an equal weight of the

considerably less valuable copper. The resulting alloy would

still have the appearance of  pure gold, but the goldsmith

would be plus a quantity of gold over and above his fee. He

would be buying gold with copper, so to speak, and Hieron

would be neatly cheated.

Hieron didn’t like the thought of being cheated any

more than you or I would, but he didn’t know how to find out

for sure if  he had been. He could scarcely punish the

goldsmith on mere suspicion. What to do?

Fortunately, Hieron had an advantage few rulers in the

history of the world could boast. He had a relative of

considerable talent.  The relative was named Archimedes

and he probably had the greatest intellect the world was to

see prior to the birth of Newton.

Archimedes was called in and was posed the problem.

He had to determine whether the crown Hieron showed him

was pure gold, or was gold to which a small but significant

quantity of copper had been added.

If we were to reconstruct Archimedes’ reasoning, it

might go as follows. Gold was the densest known substance

(at that time). Its density in modern terms is 19.3 grams per

cubic centimeter.  This means that a given weight of gold

takes up less volume  than the same weight of anything

else! In fact, a given weight of  pure gold takes up less

volume than the same weight of any kind of impure gold.



The density of copper is 8.92 grams per cubic

centimeter, just about half that of gold. If we consider 100

grams of pure gold, for instance, it is easy to calculate it to

have a volume of 5.18 cubic centimeters. But suppose the

100 grams of what looked like pure gold was really only 90

grams of gold and 10 grams of copper. The 90 grams of gold

would have a volume of 4.66 cubic centimeters, while the

10 grams of copper would have a volume of 1.12 cubic

centimeters; for a total value of 5.78 cubic centimeters.

The difference between 5.18 cubic centimeters and 5.78

cubic centimeters is quite a noticeable one, and would

instantly tell if the crown were of pure gold, or if it contained

10 per cent copper  (with the missing 10 per cent of gold

tucked neatly in the goldsmith’s strongbox).

All one had to do, then, was measure the volume of the

crown and compare it with the volume of the same weight

of pure gold.

The mathematics of the time made it easy to measure

the volume of many simple shapes: a cube, a sphere, a

cone, a cylinder,  any flattened object of simple regular

shape and known thickness, and so on.

We can imagine Archimedes saying, “All that is

necessary, sire, is to pound that crown flat, shape it into a

square of uniform thickness, and then I can have the answer

for you in a moment.”

Whereupon Hieron must certainly have snatched the

crown away and said, “No such thing. I can do that much

without you; I’ve studied the principles of mathematics, too.

This crown is a  highly satisfactory work of art and I won’t

have it damaged. Just  calculate its volume without in any

way altering it.”

But Greek mathematics had no way of determining the

volume of anything with a shape as irregular as the crown,

since integral  calculus had not yet been invented (and

wouldn’t be for two  thousand years, almost). Archimedes



would have had to say,  “There is no known way, sire, to

carry through a non-destructive determination of volume.”

“Then think of one,” said Hieron testily.

And Archimedes must have set about thinking of one,

and gotten nowhere. Nobody knows how long he thought, or

how hard, or what hypotheses he considered and discarded,

or any of the details.

What we do know is that, worn out with thinking,

Archimedes decided to visit the public baths and relax. I

think we are quite  safe in saying that Archimedes had no

intention of taking his  problem to the baths with him. It

would be ridiculous to imagine  he would, for the public

baths of a Greek metropolis weren’t intended for that sort of

thing.

The Greek baths were a place for relaxation. Half the

social aristocracy of the town would be there and there was

a great deal more to do than wash. One steamed one’s self,

got a massage, exercised, and engaged in general

socializing. We can be sure  that Archimedes intended to

forget the stupid crown for a while.

One can envisage him engaging in light talk, discussing

the latest news from Alexandria and Carthage, the latest

scandals in  town, the latest funny jokes at the expense of

the country-squire  Romans—and then he lowered himself

into a nice hot bath which  some bumbling attendant had

filled too full.

The water in the bath slopped over as Archimedes got

in. Did Archimedes notice that at once, or did he sigh, sink

back, and  paddle his feet awhile before noting the water-

slop. I guess the  latter. But, whether soon or late, he

noticed, and that one fact,  added to all the chains of

reasoning his brain had been working on during the period

of relaxation when it was unhampered by the comparative

stupidities (even in Archimedes) of voluntary thought, gave

Archimedes his answer in one blinding flash of insight.



Jumping out of the bath, he proceeded to run home at

top speed through the streets of Syracuse. He did not

bother to put  on his clothes. The thought of Archimedes

running naked through  Syracuse has titillated dozens of

generations of youngsters who have heard this story, but I

must explain that the ancient Greeks  were quite

lighthearted in their attitude toward nudity. They thought no

more of seeing a naked man on the streets of Syracuse,

than we would on the Broadway stage.

And as he ran, Archimedes shouted over and over, “I’ve

got it! I’ve got it!” Of course, knowing no English, he was

compelled to  shout it in Greek, so it came out, “Eureka!

Eureka!”

Archimedes’ solution was so simple that anyone could

understand it—once Archimedes explained it.

If an object that is not affected by water in any way, is

immersed in water, it is bound to displace an amount of

water  equal to its own volume, since two objects cannot

occupy the same space at the same time.

Suppose, then, you had a vessel large enough to hold

the crown and suppose it had a small overflow spout set

into the middle of its  side. And suppose further that the

vessel was filled with water exactly to the spout, so that if

the water level were raised a bit  higher, however slightly,

some would overflow.

Next, suppose that you carefully lower the crown into

the water. The water level would rise by an amount equal to

the  volume of the crown, and that volume of water would

pour out the overflow and be caught in a small vessel. Next,

a lump of gold,  known to be pure and exactly equal in

weight to the crown, is  also immersed in the water and

again the level rises and the overflow is caught in a second

vessel.

If the crown were pure gold, the overflow would be

exactly the same in each case, and the volumes of water

caught in the two small vessels would be equal. If, however,



the crown were of alloy,  it would produce a larger overflow

than the pure gold would and  this would be easily

noticeable.

What’s more, the crown would in no way be harmed,

defaced, or even as much as scratched. More important,

Archimedes had discovered the “principle of buoyancy.”

And was the crown pure gold? I’ve heard that it turned

out to be alloy and that the goldsmith was executed, but I

wouldn’t swear to it.

How often does this “Eureka phenomenon” happen?

How often is there this flash of deep insight during a

moment of relaxation, this triumphant cry of “I’ve got it! I’ve

got it!” which must surely be a moment of the purest

ecstasy this sorry world can afford?

I wish there were some way we could tell. I suspect that

in the history of science it happens often; I suspect that very

few significant discoveries are made by the pure technique

of voluntary thought; I suspect that voluntary thought may

possibly prepare the ground (if even that), but that the final

touch, the real inspiration, comes when thinking is under

involuntary control.

But the world is in a conspiracy to hide that fact.

Scientists are wedded to reason, to the meticulous working

out of consequences  from assumptions, to the careful

organization of experiments  designed to check those

consequences. If a certain line of experiments ends

nowhere, it is omitted from the final report. If an  inspired

guess turns out to be correct, it is not reported as

an inspired guess. Instead, a solid line of voluntary thought

is invented after the fact to lead up to the thought, and that

is what is inserted in the final report.

The result is that anyone reading scientific papers would

swear that nothing took place but voluntary thought

maintaining a  steady clumping stride from origin to

destination, and that just can’t be true.



It’s such a shame. Not only does it deprive science of

much of its glamour (how much of the dramatic story in

Watson’s Double  Helix do you suppose got into the final

reports announcing the  great discovery of the structure of

DNA?*), but it hands over the important process of “insight,”

“inspiration,” “revelation” to the mystic.

The scientist actually becomes ashamed of having what

we might call a revelation, as though to have one is to

betray reason —when actually what we call revelation in a

man who has devoted his life to reasoned thought, is after

all merely reasoned thought  that is not under voluntary

control.

Only once in a while in modern times do we ever get a

glimpse into the workings of involuntary reasoning, and

when we do, it is always fascinating. Consider, for instance,

the case of Friedrich August Kekule von Stradonitz.

In Kekule’s time, a century and a quarter ago, a subject

of great interest to chemists was the structure of organic

molecules (those  associated with living tissue). Inorganic

molecules were generally simple in the sense that they were

made up of few atoms. Water  molecules, for instance, are

made up of two atoms of hydrogen and one of oxygen

(H20). Molecules of ordinary salt are made up of one atom

of sodium and one of chlorine (NaCl), and so on.

* I’ll tell you, in case you’re curious. None!

Organic molecules, on the other hand, often contained a

large number of atoms. Ethyl alcohol molecules have two

carbon atoms,  six hydrogen atoms, and an oxygen atom

(C2H60); the molecule of ordinary cane sugar is C12H22O11,

and other molecules are even more complex.

Then, too, it is sufficient, in the case of inorganic

molecules generally, merely to know the kinds and numbers

of atoms in  the molecule; in organic molecules, more is



necessary. Thus, dimethyl ether has the formula C2HeO, just

as ethyl alcohol does, and yet the two are quite different in

properties. Apparently, the  atoms are arranged differently

within the molecules—but how to  determine the

arrangements?

In 1852, an English chemist, Edward Frankland, had

noticed that the atoms of a particular element tended to

combine with a  fixed number of other atoms. This

combining number was called  “valence.” Kekule in 1858

reduced this notion to a system. The  carbon atom, he

decided (on the basis of plenty of chemical evidence) had a

valence of four; the hydrogen atom, a valence of one; and

the oxygen atom, a valence of two (and so on).

Why not represent the atoms as their symbols plus a

number of attached dashes, that number being equal to the

valence. Such atoms could then be put together as though

they were so many  Tinker Toy units and “structural

formulas” could be built up.

It was possible to reason out that the structural

formula of ethyl alcohol was 

H H 

      H—C—C—0—H 

|     |  

H   H 

while that of dimethyl ether was

H    H 

|    |  

H—C—0—C— H

|           | 

H       H 



In each case, there were two carbon atoms, each with

four dashes attached; six hydrogen atoms, each with one

dash attached;  and an oxygen atom with two dashes

attached. The molecules  were built up of the same

components, but in different arrangements.

Kekule’s theory worked beautifully. It has been

immensely deepened and elaborated since his day, but you

can still find structures very much like Kekule’s Tinker Toy

formulas in any modern chemical textbook. They represent

oversimplifications of the true  situation, but they remain

extremely useful in practice even so.

The Kekule structures were applied to many organic

molecules in the years after 1858 and the similarities and

contrasts in the  structures neatly matched similarities and

contrasts in properties.  The key to the rationalization of

organic chemistry had, it seemed, been found.

Yet there was one disturbing fact. The well-known

chemical benzene wouldn’t fit. It was known to have a

molecule made up  of equal numbers of carbon and

hydrogen atoms. Its molecular weight was known to be 78

and a single carbon-hydrogen combination had a weight of

13. Therefore, the benzene molecule had  to contain six

carbon-hydrogen combinations and its formula had  to be

C6H8.

But that meant trouble. By the Kekule formulas, the

hydrocarbons (molecules made up of carbon and hydrogen

atoms only) could easily be envisioned as chains of carbon

atoms with hydrogen atoms attached. If all the valences of

the carbon atoms were  filled with hydrogen atoms, as in

“hexane,” whose molecule looks like this—

H H H H H H 

|  |  |  |  |  |

H-C-C-C-C-C-C-H 

|  |  |  |  |  |



H H H H H H 

the compound is said to be saturated. Such saturated

hydrocarbons were found to have very little tendency to

react with other substances.

If some of the valences were not filled, unused bonds

were added to those connecting the carbon atoms. Double

bonds were formed as in “hexene”—

H H H H H H 

|    |   |   |   |  |

H-C-C-C= C-C-C-H

|   |           |   |

 H H          H H 

Hexene is unsaturated, for that double bond has a

tendency to open up and add other atoms. Hexene is

chemically active.

When six carbons are present in a molecule, it takes

fourteen hydrogen atoms to occupy all the valence bonds

and make it inert  —as in hexane. In hexene, on the other

hand, there are only twelve  hydrogens. If there were still

fewer hydrogen atoms, there would  be more than one

double bond; there might even be triple bonds,  and the

compound would be still more active than hexene.

Yet benzene, which is C6H6 and has eight fewer

hydrogen atoms than hexane, is less active than hexene,

which has only two  fewer hydrogen atoms than hexane. In

fact, benzene is even less active than hexane itself. The six

hydrogen atoms in the benzene  molecule seem to satisfy

the six carbon atoms to a greater extent  than do the

fourteen hydrogen atoms in hexane.

For heaven’s sake, why?



This might seem unimportant. The Kekule formulas were

so beautifully suitable in the case of so many compounds

that one might simply dismiss benzene as an exception to

the general rule.

Science, however, is not English grammar. You can’t just

categorize something as an exception. If the exception

doesn’t fit into the general system, then the general system

must be wrong.

Or, take the more positive approach. An exception can

often be made to fit into a general system, provided the

general system  is broadened. Such broadening generally

represents a great advance and for this reason, exceptions

ought to be paid great attention.

For some seven years, Kekule faced the problem of

benzene and tried to puzzle out how a chain of six carbon

atoms could be completely satisfied with as few as six

hydrogen atoms in benzene and yet be left unsatisfied with

twelve hydrogen atoms in hexene.

Nothing came to him!

And then one day in 1865 (he tells the story himself) he

was in Ghent, Belgium, and in order to get to some

destination, he  boarded a public bus. He was tired and,

undoubtedly, the droning beat of the horses’ hooves on the

cobblestones, lulled him. He fell into a comatose half-sleep.

In that sleep, he seemed to see a vision of atoms

attaching themselves to each other in chains that moved

about. (Why not?  It was the sort of thing that constantly

occupied his waking  thoughts.) But then one chain twisted

in such a way that head and tail joined, forming a ring—and

Kekule woke with a start.

To himself, he must surely have shouted “Eureka,” for

indeed he had it. The six carbon atoms of benzene formed a

ring and not a  chain, so that the structural formula looked

like this:

H

|



«          |

|

H

To be sure, there were still three double bonds, so you

might think the molecule had to be very active—but now

there was a difference. Atoms in a ring might be expected to

have different properties from those in a chain and double

bonds in one case might not have the properties of those in

the other. At least, chemists could work on that assumption

and see if it involved them in contradictions.

It didn’t. The assumption worked excellently well. It

turned out that organic molecules could be divided into two

groups: aromatic and aliphatic. The former had the benzene

ring (or certain other similar rings) as part of the structure

and the latter did not. Allowing for different properties

within each group, the Kekule structures worked very well.

For nearly seventy years, Kekule’s vision held good in

the hard field of actual chemical techniques, guiding the

chemist through  the jungle of reactions that led to the

synthesis of more and more molecules. Then, in 1932, Linus

Pauling applied quantum  mechanics to chemical structure

with sufficient subtlety to explain just why the benzene ring

was so special and what had proven  correct in practice

proved correct in theory as well.

Other cases? Certainly.

In 1764, the Scottish engineer James Watt was working

as an instrument maker for the University of Glasgow. The

university gave him a model of a Newcomen steam engine,

which didn’t work well, and asked him to fix it. Watt fixed it

without trouble, but even when it worked perfectly, it didn’t

work well. It was far too inefficient and consumed incredible

quantities of fuel. Was there a way to improve that?

Thought didn’t help; but a peaceful, relaxed walk on a

Sunday afternoon did. Watt returned with the key notion in

mind of using  two separate chambers, one for steam only



and one for cold water only, so that the same chamber did

not have to be constantly  cooled and reheated to the

infinite waste of fuel.

The Irish mathematician William Rowan Hamilton

worked up a theory of “quaternions” in 1843 Dut couldn’t

complete that  theory until he grasped the fact that there

were conditions under which p X q was not equal to q X p.

The necessary thought came  to him in a flash one time

when he was walking to town with his wife.

The German physiologist Otto Loewi was working on the

mechanism of nerve action, in particular, on the chemicals

produced by nerve endings. He woke at 3 A.M. one night in

1921 with a perfectly clear notion of the type of experiment

he would have to run to settle a key point that was puzzling

him. He wrote it  down and went back to sleep. When he

woke in the morning, he found he couldn’t remember what

his inspiration had been. He remembered he had written it

down, but he couldn’t read his writing.

The next night, he woke again at 3 A.M. with the clear

thought once more in mind. This time, he didn’t fool around.

He got up, dressed himself, went straight to the laboratory

and began work. By 5 A.M. he had proved his point and the

consequences of his  findings became important enough in

later years so that in 1936 he received a share in the Nobel

prize in medicine and physiology.

How very often this sort of thing must happen, and what

a shame that scientists are so devoted to their belief in

conscious  thought that they so consistently obscure the

actual methods by which they obtain their results.



14 POMPEY AND CIRCUMSTANCE 

Rationalists have a hard time of it, because the popular

view is that they are committed to “explaining” everything.

This is not so. Rationalists maintain that the proper way

of arriving at an explanation is through reason—but there is

no  guarantee that some particular phenomenon can be

explained in  that fashion at some given moment in history

or from some given quantity of observation.*

Yet how often I (or any rationalist) am presented with

something odd and am challenged, “How do you explain

that?” The implication is that if I don’t explain it instantly to

the satisfaction of the individual posing the question, then

the entire structure of science may be considered to be

demolished.

But things happen to me, too. One day in April 1967, my

car broke down and had to be towed to a garage. In

seventeen years  of driving various cars, that was the first

time I ever had to endure the humiliation of being towed.

When do you suppose the second time was? —Two

hours later, on the same day, for a completely different

reason.

Seventeen years without a tow, and then two tows on

the same day! And how do you explain that, Dr. Asimov?

(Gremlins?  A vengeful Deity? An extraterrestrial

conspiracy?)

On the second occasion, I did indeed loudly advance all

three theories to my unruffled garageman. His theory (he

was also a rationalist) was that my car was old enough to be

falling apart. So I bought a new car.

Let’s look at it this way! To every single person on Earth,

a large number of events, great, small, and insignificant,

happen  each day. Every one of those events has some

probability of occurrence, though we can’t always decide



the exact probability in each case. On the average, though,

we might imagine that one out of every thousand events

has an only one-in-a-thousand chance of happening; one out

of every million events has an only one-in-a-million chance

of happening; and so on.

* It is the mystics, really, who are committed to explaining everything,

for they need nothing but imagination and words—any words, chosen at

random.

This means that every one of us is constantly

experiencing some pretty low-probability events. That is the

normal result of chance.  If any of us went an appreciable

length of time with nothing unusual happening, that would

be very unusual.

And suppose we don’t restrict ourselves to one person,

but consider, instead, all the lives that have ever been lived.

The number of events then increases by a factor of some

sixty billion and we can assume that sometime, to someone,

something will happen  that is sixty billion times as

improbable as anything happening to some other particular

man. Even such an event requires no explanation. It is part

of our normal universe going along its business in a normal

way.

Examples? We’ve all heard very odd coincidences that

have happened to someone’s second cousin, odd things

that represent  such an unusual concatenation of

circumstance that surely we  must admit the existence of

telepathy or flying saucers or Satan or something.

Let me offer something, too. Not something that

happened to my second cousin, but to a notable figure of

the past whose life  is quite well documented. Something

very unusual happened to him, which in all my various and

miscellaneous reading of history  I have never seen

specifically pointed out. I will, therefore, stress  it to you as

something more unusual and amazing than anything I have



ever come across, and even so, it still doesn’t shake my

belief in the supremacy of the rational view of the universe.

Here goes—

The man in question was Gnaeus Pompeius, who is

better known to English-speaking individuals as Pompey.

Pompey was born in 106 B.C. and the first forty-two

years of his

life were characterized by uniform good fortune. Oh, I

dare say he stubbed his toe now and then and got attacks of

indigestion  at inconvenient times and lost money on the

gladiatorial contests—but in the major aspects of life, he

remained always on the winning side.

Pompey was born at a time when Rome was torn by civil

war and social turmoil. The Italian allies, who were not

Roman citizens, rose in rebellion against a Roman

aristocracy who wouldn’t  extend the franchise. The lower

classes, who were feeling the  pinch of a tightening

economy, now that Rome had completed the looting of most

of the Mediterranean area, were struggling  against the

senators, who had kept most of the loot.

When Pompey was in his teens, his father was trying to

walk the tightrope. The elder Pompey had been a general

who had served as consul in 89 B.C, and had defeated the

Italian noncitizens and celebrated a triumph. But he was not

an aristocrat by birth and he tried to make a deal with the

radicals. This might have gotten him in real trouble, for he

had worked himself into  a spot where neither side trusted

him, but in 87 B.C. he died in the course of an epidemic that

swept his army.

That left young Pompey as a fatherless nineteen-year-

old who had inherited enemies on both sides of the civil war.

He had to choose and he had to choose carefully. The

radicals were in control of Rome, but off in Asia Minor,

fighting a war against Rome’s enemies, was the reactionary

general Lucius Cornelius Sulla.



Pompey, uncertain as to which side would win, lay low

and out of sight. When he heard that Sulla was returning,

victorious, from Asia Minor, he made his decision. He chose

Sulla as probable victor. At once, he scrabbled together an

army from among those  soldiers who had fought for his

father, loudly proclaimed himself  on Sulla’s side, and took

the field against the radicals.

There was his first stroke of fortune. He had backed the

right man. Sulla arrived in Italy in 83 B.C. and began

winning at once.  By 82 B.C. he had wiped out the last

opposition in Italy and at  once made himself dictator. For

three years he was absolute ruler of Rome. He reorganized

the government and placed the senatorial aristocrats firmly

in control.

Pompey benefited, for Sulla was properly grateful to

him. Sulla sent Pompey to Sicily, then to Africa, to wipe out

the disorganized  forces that still clung to the radical side

there, and this was done without trouble.

The victories were cheap and Pompey’s troops were so

pleased that they acclaimed Pompey as “the Great,” so that

he became  Gnaeus Pompeius Magnus—the only Roman to

bear this utterly  un-Roman cognomen. Later accounts say

that he received this  name because of a striking physical

resemblance between himself and Alexander the Great, but

such a resemblance could have existed only in Pompey’s

own imagination.

Sulla ordered Pompey to disband his army after his

African victories but Pompey refused to do so, preferring to

stay surrounded by his loyal men. Ordinarily, one did not

lightly cross  Sulla, who had no compunctions whatever

about ordering a few  dozen executions before breakfast.

Pompey, however, proceeded  to marry Sulla’s daughter.

Apparently, this won Sulla over to the  point of not only

accepting the title of “the Great” for the young  man, but

also to the point of allowing him to celebrate a triumph in 79



B.C. even though he was below the minimum age at

which triumphs were permitted.

Almost immediately thereafter, Sulla resigned the

dictatorship, feeling his work was done, but Pompey’s career

never as much as  stumbled. He now had a considerable

reputation (based on his  easy victories). What’s more, he

was greedy for further easy victories.

For instance, after Sulla’s death, a Roman general,

Marcus Aemilius Lepidus, turned against Sulla’s policies. The

reactionary Senate at once sent an army against him. The

senatorial army was led by Quintus Catulus, with Pompey as

second-in-command.  Until then, Pompey had supported

Lepidus, but again he guessed  the winning side in time.

Catulus easily defeated Lepidus, and  Pompey managed to

get most of the credit.

There was trouble in Spain at this time, for it was the

last  stronghold of radicalism. In Spain, a radical general,

Quintus Sertorius, maintained himself. Under him, Spain was

virtually independent of Rome and was blessed with an

enlightened government, for Sertorius was an efficient and

liberal administrator. He treated the native Spaniards well,

set up a Senate into which they were admitted, and

established schools where their young men were trained in

Roman style.

Naturally, the Spaniards, who for some centuries had

had a reputation as fierce and resolute warriors, fought

heart and soul  on the side of Sertorius. When Sulla sent

Roman armies into Spain, they were defeated.

So, in 77 B.C, Pompey, all in a glow over Catulus’ easy

victory over Lepidus, offered to go to Spain to take care of

Sertorius. The Senate was willing and off to Spain marched

Pompey and  his army. On his way through Gaul, he found

the dispirited remnants of Lepidus’ old army. Lepidus

himself was dead by now but what was left of his men were

under Marcus Brutus (whose son  would, one day, be a

famous assassin).



There was no trouble in handling the broken army and

Pompey offered Brutus his life if he would surrender. Brutus

surrendered and Pompey promptly had him executed. One

more easy victory,  topped by treachery, and Pompey’s

reputation increased.

On to Spain went Pompey. In Spain, a sturdy old Roman

general, Metellus Pius, was unsuccessfully trying to cope

with Sertorius. Vain gloriously, Pompey advanced on his own

to take over the job—and Sertorius, who was the first good

general Pompey had  yet encountered, promptly gave the

young man a first-class drubbing. Pompey’s reputation

might have withered then and there,  but just in time,

Metellus approached with reinforcements and Sertorius had

to withdraw. At once, Pompey called it a victory,  and, of

course, got the credit for it. His luck held.

For five years, Pompey remained in Spain, trying to

handle Sertorius, and for five years he failed. And then he

had a stroke of luck, the luck that never failed Pompey, for

Sertorius was assassinated. With Sertorius gone, the

resistance movement in Spain  collapsed. Pompey could at

once win another of his easy victories and could then return

to Rome in 71 B.C., claiming to have cleaned up the Spanish

mess.

But couldn’t Rome have seen it took him five years?

No, Rome couldn’t, for all the time Pompey had been in

Spain, Italy itself had been going through a terrible time and

there had been no chance of keeping an eye on Spain.

A band of gladiators, under Spartacus, had revolted.

Many dispossessed flocked to Spartacus’ side and for two

years, Spartacus (a skillful fighter) destroyed every Roman

army sent out against him and struck terror into the heart of

every aristocrat. At the height of his power he had 90,000

men under his command and  controlled almost all of

southern Italy.

In 72 B.C., Spartacus fought his way northward to the

Alps, intending to leave Italy and gain permanent freedom



in the barbarian regions to the north. His men, however,

misled by their initial victories, preferred to remain in Italy in

reach of more loot. Spartacus turned south again.

The senators now placed an army under Marcus Licinius

Cras-sus, Rome’s richest and most crooked businessman. In

two battles, Crassus managed to defeat the gladiatorial

army and in the second one, Spartacus was killed. Then, just

as Crassus had finished the  hard work, Pompey returned

with his Spanish army and hastily swept up the demoralized

remnants. He immediately represented  himself,

successfully, as the man who had cleaned up the

gladiatorial mess after having taken care of Spain. The

result was that Pompey was allowed to celebrate a triumph,

but poor Crassus wasn’t.

The Senate, though, was growing nervous. They were

not sure they trusted Pompey. He had won too many

victories and was becoming entirely too popular.

Nor did they like Crassus (no one did). For all his wealth,

Crassus was not a member of the aristocratic families and

he grew  angry at being snubbed by the socially superior

Senate. Crassus began to court favor with the people with

well-placed philanthropies. He also began to court Pompey.

Pompey always responded to courting and, besides, had

an unfailing nose for the winning side. He and Crassus ran

for the consulate in 70 B.C. (two consuls were elected each

year), and they won. Once consul, Crassus began to undo

Sulla’s reforms of a decade earlier in order to weaken the

hold of the senatorial aristocracy on the government.

Pompey, who had been heart and soul with Sulla when that

had been the politic thing to do, turned about and went

along with Crassus, though not always happily.

But Rome was still in trouble. The West had been

entirely pacified, but there was mischief at sea. Roman

conquests had broken down the older stable governments in

the East without having, as yet, established anything quite

as stable in their place. The result was that piracy was rife



throughout the eastern Mediterranean.  It was a rare ship

that could get through safely and, in particular,  the grain

supply to Rome itself had become so precarious that  the

price of food skyrocketed.

Roman attempts to clear out the pirates failed, partly

because the generals sent to do the job were never given

enough power.  In 67 B.C, Pompey maneuvered to have

himself appointed to the  task—but under favorable

conditions. The Senate, in a panic over  the food supply,

leaped at the bait.

Pompey was given dictatorial powers over the entire

Mediterranean coast to a distance of fifty miles inland for

three years and was told to use that time and the entire

Roman fleet to destroy  the pirates. So great was Roman

confidence in Pompey that food prices fell as soon as news

of his appointment was made public.

Pompey was lucky enough to have what no previous

Roman had—adequate forces and adequate power.

Nevertheless one must  admit that he did well. In three

months, not three years, he  scoured the Mediterranean

clear of piracy.

If he had been popular before, he was Rome’s hero now.

The only place where Rome still faced trouble was in

eastern Asia Minor, where the kingdom of Pontus had been

fighting Rome with varying success for over twenty years. It

had been against Pontus that Sulla had won victories in the

East, yet Pontus  kept fighting on. Now a Roman general,

Lucius Licinius Lucullus, had almost finished the job, but he

was a hard-driving martinet, hated by his soldiers.

When Lucullus’ army began to mutiny in 66 B.C., just

when one more drive would finish Pontus, he was recalled

and good old  Pompey was sent eastward to replace him.

Pompey’s reputation  preceded him; Lucullus’ men cheered

him madly and for him did  what they wouldn’t do for

Lucullus. They marched against Pontus and beat it. Pompey



supplied the one last push and, as always, demanded and

accepted credit for the whole thing.

All of Asia Minor was now either Roman outright or was

under the control of Roman puppet governments. Pompey

therefore  decided to clean up the East altogether. He

marched southward  and around Antioch found the last

remnant of the Seleucid Empire, established after the death

of Alexander the Great two and  a half centuries before. It

was now ruled by a nonentity called Antiochus XIII. Pompey

deposed him, and annexed the empire to  Rome as the

province of Syria.

Still further south was the kingdom of Judea. It had been

independent for less than a century, under the rule of a line

of kings of the Maccabean family. Two of the Maccabeans

were now fighting over the throne and one appealed to

Pompey.

Pompey at once marched into Judea and laid siege to

Jerusalem. Ordinarily, Jerusalem was a hard nut to crack, for

it was built on  a rocky prominence with a reliable water

supply; it had good walls; and it was usually defended with

fanatic vigor.

Pompey, however, noticed that every seven days things

were quiet. Someone explained to him that on the Sabbath,

the Jews  wouldn’t fight unless attacked and even then

fought without real  conviction. It must have taken quite a

while to convince Pompey  of such a ridiculous thing but,

once convinced, he used a few Sabbaths to bring up his

siege machinery without interference, and  finally attacked

on another Sabbath. No problem.

Pompey ended the Maccabean kingdom and annexed

Judea to Rome while allowing the Jews to keep their religious

freedom, their Temple, their high-priests, and their peculiar,

but useful, Sabbath.

Pompey was forty-two years old at this time, and

success had smiled at him without interruption. I now skip a



single small event in Pompey’s life and represent it by a line

of asterisks: one apparently unimportant circumstance.

****************************

Pompey returned to Italy in 61 B.C. absolutely on top of

the world, boasting (with considerable exaggeration) that

what he  had found as the eastern border of the realm he

had left at its  center. He received the most magnificent

triumph Rome had ever seen up to that time.

The Senate was in terror lest Pompey make himself a

dictator and turn to the radicals. This Pompey did not do.

Once, twenty years before, when he had an army, he kept

that army even at the  risk of Sulla’s displeasure. Now,

something impelled him to give up his army, disband it, and

assume a role as a private citizen.  Perhaps he was

convinced that he had reached a point where the  sheer

magic of his name would allow him to dominate the

republic.

At last, though, his nose for the right action failed him.

And once having failed him, it failed him forever after.

To begin with, Pompey asked the Senate to approve

everything he had done in the East, his victories, his

treaties, his depositions  of kings, his establishment of

provinces. He also asked the Senate to distribute land to his

soldiers, for he himself had promised  them land. He was

sure that he had but to ask and he would be given.

Not at all. Pompey was now a man without an army and

the Senate insisted on considering each individual act

separately and  nit-pickingly. As for land grants, that was

rejected.

What’s more, Pompey found that he had no one on his

side within the government. All his vast popularity suddenly

seemed  to count for nothing as all parties turned against



him for no discernible reason. What’s more, Pompey could

do nothing about it. Something had happened, and he was

no longer the clever,  golden-boy Pompey he had been

before 64 B.C. Now he was uncertain, vacillating, and weak.

Even Crassus was no longer his friend. Crassus had

found someone else: a handsome, charming individual with

a silver tongue and a genius for intrigue—a man named

Julius Caesar. Caesar was a playboy aristocrat but Crassus

paid off the young man’s  enormous debts and Caesar

served him well in return.

While Pompey was struggling with the Senate, Caesar

was off in Spain, winning some small victories against

rebellious tribes and gathering enough ill-gotten wealth (as

Roman generals usually  did) to pay off Crassus and make

himself independent. When  he returned to Italy and found

Pompey furious with the Senate,  he arranged a kind of

treaty of alliance between himself, Crassus,  and Pompey—

the “First Triumvirate.”

But it was Caesar and not Pompey who profited from

this. It was Caesar who used the alliance to get himself

elected consul in 59 B.C. Once consul, Caesar controlled the

Senate with almost  contemptuous ease, driving the other

consul, a reactionary, into house arrest.

One thing Caesar did was to force the aristocrats of the

Senate to grant all of Pompey’s demands. Pompey got the

ratification of  all of his acts and he got the land for his

soldiers—and yet he did  not profit from this. Indeed, he

suffered humiliation, for it was  quite clear that he was

standing, hat in hand, while Caesar graciously bestowed

largesse on him.

Yet Pompey could do nothing, for he had married Julia,

Caesar’s daughter. She was beautiful and winning and

Pompey was crazy about her. While he had her, he could do

nothing to cross Caesar.

Caesar was running everything now. In 58 B.C., he

suggested that he, Pompey, and Crassus each have a



province in which they could win military victories. Pompey

was to have Spain; Crassus was to have Syria; and Caesar

was to have southern Gaul, which was then in Roman hands.

Each was to be in charge for five years.

Pompey was delighted. In Syria, Crassus would have to

face the redoubtable Parthian kingdom, and in Gaul, Caesar

would  have to face the fierce-fighting barbarians of the

North. With luck, both would end in disaster, since neither

was a trained military man. As for Pompey, since Spain was

quiet, he could stay in Italy and control the government.

Who could ask for more?

It might almost seem that if Pompey reasoned this way,

his old nose for victory had returned. By 53 B.C., Crassus’

army was destroyed by the Parthians east of Syria and

Crassus himself was killed.

But Caesar? No, Pompey’s luck had not returned. To the

astonishment of everyone in Rome, Caesar, who, until then,

had seemed to be nothing but a playboy and intriguer,

turned out, in middle age (he was forty-four when he went

to Gaul), to be a  first-class military genius. He spent five

years fighting the Gauls,  annexing the vast territory they

inhabited, conducting successful  forays into Germany and

Britain. He wrote up his adventures in his Commentaries for

the Roman reading public, and suddenly  Rome had a new

military hero. —And Pompey, sitting in Italy, doing nothing,

was nearly dead of frustration and envy.

In 54 B.C., though, Julia died, and Pompey was no longer

held back in his animus against Caesar. The senatorial

aristocrats, now far more afraid of Caesar than of Pompey,

flattered the latter, who promptly joined them and married a

new wife, the daughter of one of the leading senators.

When Caesar returned from Gaul in 50 B.C., the Senate

ordered him to disband his armies and enter Italy alone. It

was clear that  if Caesar did so, he would be arrested and

probably executed. What, then, if he defied the Senate and

brought his army with him?



“Fear not,” said Pompey, confidently, “I have but to

stamp my foot upon the ground and legions will rise up to

support us.”

In 40 B.C, Caesar crossed the Rubicon River, which

represented the boundary of Italy, and did so with his army.

Pompey promptly stamped his foot—and nothing happened.

Indeed, those soldiers  stationed in Italy began to flock to

Caesar’s standards. Pompey  and his senatorial allies were

forced to flee, in humiliation, to Greece.

Grimly, Caesar and his army followed them.

In Greece, Pompey managed to collect a sizable army.

Caesar, on the other hand, could only bring so many men

across the sea and so Pompey now had the edge. He might

have taken advantage of his superior numbers to cut Caesar

off from his base and then  stalk him carefully, without

risking battle, and slowly wear him  down and starve him

out.

Against this was the fact that the humiliated Pompey,

still dreaming of the old days, was dying to defeat Caesar in

open battle and show him the worth of a real general. Worse

yet, the senatorial party insisted on a battle. So Pompey let

himself be talked into one; after all, he outnumbered Caesar

two to one.

The battle was fought at Pharsalus in Thessaly on June

29, 48 B.C.

Pompey was counting on his cavalry in particular, a

cavalry consisting of gallant young Roman aristocrats. Sure

enough, at the start of the battle, Pompey’s cavalry charged

round the flank of  Caesar’s army and might well have

wreaked havoc from the rear  and cost Caesar the battle.

Caesar, however, had foreseen this  and had placed some

picked men to meet the cavalry, with instructions not to

throw their lances but to use them to poke directly at the

faces of the horsemen. He felt that the aristocrats would not

stand up to the danger of being disfigured and he was right.

The cavalry broke.



With Pompey’s cavalry out, Caesar’s hardened infantry

broke through the more numerous but much softer

Pompeian line and  Pompey, unused to handling armies in

trouble, fled. In one blow, his entire military reputation was

destroyed and it was quite clear  that it was Caesar, not

Pompey, who was the real general.

Pompey fled to the one Mediterranean land that was not

yet entirely under Roman control—Egypt. But Egypt was in

the midst of a civil war at the time. The boy-king, thirteen-

year-old  Ptolemy XII, was fighting against his older sister,

Cleopatra, and the approach of Pompey created a problem.

The politicians supporting young Ptolemy dared not turn

Pompey away and earn  the undying enmity of a Roman

general who might yet win out.

On the other hand, they dared not give him refuge and

risk having Caesar support Cleopatra in revenge.

So they let Pompey land—and assassinated him.

And that was the end of Pompey, at the age of fifty-six.

Up to the age of forty-two he had been uniformly

successful; nothing he tried to do failed. After the age of

forty-two he had  been uniformly unsuccessful; nothing he

tried to do succeeded.

What happened at the age of forty-two? What

circumstance took place in the interval represented earlier

in the article by the  line of asterisks that might “explain”

this. Well, let’s go back and fill in that line of asterisks.

****************************

We are back in 64 B.C.

Pompey is in Jerusalem, curious about the queer religion

of the Jews. What odd things do they do besides celebrate a

Sabbath? He began collecting information.



There was the Temple, for instance. It was rather small

and unimpressive by Roman standards but was venerated

without limit by the Jews and differed from all other temples

in the world by having no statue of a god or goddess inside.

It seemed the Jews worshiped an invisible god.

“Really?” said the amused Pompey.

Actually, he was told, there was an innermost chamber

in the Temple, the Holy of Holies, behind a veil. No one could

ever go  beyond the veil but the high priest, and he could

only do so on the Day of Atonement. Some people said that

the Jews secretly  worshiped an ass’s head there, but of

course, the Jews themselves  maintained that only the

invisible presence of God was in that chamber.

Pompey, unimpressed by superstition, decided there

was only one way of finding out. He would look inside this

secret chamber.

The high priest was shocked, the Jews broke into

agonized cries of dismay, but Pompey was adamant. He was

curious and he had his army all around him. Who could stop

him? So he entered the Holy of Holies.

The Jews were undoubtedly certain that he would be

struck by lightning or otherwise destroyed by an offended

God, but he wasn’t.

He came out again in perfect health. He had found

nothing, apparently, and nothing had happened to him,

apparently.*

* In case you think I’m turning mystical myself, please reread the

introduction to this chapter.



15 BILL AND I 

I am, as it happens, doing a book on Lord Byron’s

narrative poem Don Juan. * The poem is an uninhibited

satire in which Byron  takes the opportunity to lash out at

everything and everyone that displeased him. He is cruel to

the point of sadism toward Britain’s  monarchs, toward its

poet laureate, toward its greatest general, and so on.

But those for whom he reserves his most savage sallies

are his critics. Byron did not take to criticism kindly and he

invariably struck back.

Now, as far as I know, there is no such thing as a writer

who takes to criticism kindly. Most of us, however, affect

stoic unconcern and bleed in private.

For myself, alas, stoic unconcern is impossible. My frank

and ingenuous countenance is a blank page on which my

every emotion is clearly written (I am told) and I don’t think

I have ever  succeeded in playing the stoic for even half a

second. Indeed,  when I am criticized unfairly, everyone

within earshot knows that I have been—and for as much as

hours at a time.

Naturally, when I recently published a two-volume book

entitled Asimov’s Guide to Shakespeare, I tried to steel

myself for inevitable events. It was bound to get into the

hand of an occasional Shakespearian scholar who would

come all over faint at the thought of someone outside their

field daring to invade the sacred precincts.

In fact, the very first review I received began: “What is

Isaac Asimov, spinner of outer-space tales, doing—”

Naturally, I read no further. The fact that I am a spinner

of outer-space tales is utterly irrelevant to this particular

book and  can only be mentioned because the reviewer

thinks there is something vaguely (or not so vaguely)

beneath literary dignity in being a science fiction writer.



* Because I want to, and because my publishers humor me.

I have sought a printable response for that and failed, so

I’ll pass on.

A second review was much more interesting. It

appeared in a Kentucky paper and was written by someone I

will call Mr. X. It begins this way: “Isaac Asimov is associate

professor of biochemistry at Boston University, and a prolific

writer in many  fields. I have read several of his books on

science with the greatest attention and respect.”

So far, so good. I am delighted.

But then, a very little while later, he says: “In this book,

however, he has left the sunlit paths of natural science for

the treacherous bogs of literature—”

What he objects to, it seems, is that I have annotated

the plays, explained all the historical, legendary, and

mythological references. It is a book of footnotes, so to

speak, and he resents it. He points out that he thinks of “the

language, the poetry, as the chief  glory of Shakespeare’s

works.”

Well, who doesn’t? I’m delighted that Mr. X is clever

enough to understand the language and the poetry without

any explanation from me. And if he doesn’t need it, why

should anyone else, eh?

Notice, though, that he doesn’t scorn to follow me along

“the sunlit paths of natural science.” Indeed, he reads my

books on science “with the greatest attention and respect.”

I’m glad he does and I can only presume that he is

grateful that I take the trouble to footnote science so that he

can get a fugitive hint of its beauties.

Suppose, instead, I were to say to Mr. X, “The logarithm

of two is a transcendental number: and, indeed, the

logarithm of  any integer to any integral base is

transcendental except where  the integer is equal to the

base or to a power of that base.”



Mr. X might then, with justification, say, “What is a

transcendental number, a logarithm, and, in this case, a

power and a base?”

In fact, if he were a really deep thinker, he might ask,

“What is two?”

But suppose I answered then that my statement bore

within it all the poetry and symmetry and beauty of

mathematics (“Euclid  alone has looked on beauty bare”)

and that to try to explain it would simply hack it up. And if

Mr. X found trouble in understanding it, too bad for him. He

just wasn’t as bright as I was, and he could go to blazes.

But I don’t answer that way. I explain such matters and

many more, and go to a lot of trouble to do so, and then he

reads those  explanations with “the greatest attention and

respect.”

Scientists generally recognize the importance of

explaining science to the non-scientist. It is interesting,

then, in a rather sad  way, that there exist humanists who

feel themselves to be  proprietors of their field, who hug

literature to themselves, who  mumble “the language, the

poetry,” and who see no reason why it should be explained

to anyone as long as they themselves can continue to sniff

the ambrosia.

Let us take a specific case. In the last act of The

Merchant of Venice, Lorenzo and Jessica are enjoying an

idyllic interlude at  Portia’s estate in Belmont, and Lorenzo

says:

Sit, Jessica. Look how the floor of heaven Is thick

inlaid with patens of bright gold.

There’s not the smallest orb which thou behold’st

But in his motion like an angel sings,

Still quiring to the young-eyed cherubins;

Such harmony is in immortal souls,

But whilst this muddy vesture of decay Doth grossly

close it in, we cannot hear it.



I think this passage is beautiful, for I have as keen a

sense of the beauty and poetry of words as Mr. X; perhaps

(is it possible?) even keener.

But what happens if someone says: “What are patens?”

After all, it is not a very common word. Does it ruin the

beauty of the passage to whisper in an aside, “Small disks”?

Or what if someone asks, “What does he mean about

these orbs singing like angels in their motion? What orbs?

What motion? What singing?”

Am I to understand that the proper answer is, “No! Just

listen to the words and the beautiful flow of language, and

don’t ask such philistine questions.”

Does it spoil the beauty of Shakespeare’s language to

understand what he is saying? Or can it be that there are

humanists who, qualified though they may be in esthetics,

know little of the  history of science, and don’t know what

Bill is saying and would rather not be asked.

All right, then, let’s use this as a test case. I am going to

explain this passage in far greater detail than I did in my

book, just to  show how much there is to consider in these

beautiful syllables-

Anyone looking at the sky in a completely

unsophisticated manner, without benefit of any

astronomical training whatever, and willing to judge by

appearances alone, is very likely to conclude that the Earth

is covered by a smooth and flattened dome of some strong

and solid material that is blue by day and black by night.

Under that solid dome is the air and the floating clouds.

Above it, he may decide, is another world of gods and

angels where the  immortal souls of men will rise after the

body dies and decays.

As a matter of fact, this is precisely the view of the early

men of the Near East, for instance. On the second day of

creation, says the Bible: “God said, Let there be a firmament

in the midst of the waters, and let it divide the waters from

the waters. And God made the firmament, and divided the



waters which were  under the firmament from the waters

which were above the firmament” (Genesis 1:6-7).

The word “firmament” is from the Latin word

firmamentum, which means something solid and strong.

This is a translation of  the Greek word stereoma, which

means something solid and

strong, and that is a translation of the original Hebrew

word raqia, which refers to a thin metallic bowl.

In the biblical view there was water below the

firmament (obviously) and water above it, too, to account

for the rain. That  is why in the time of Noah’s flood, it is

recorded that “. . . the  fountains of the great deep [were]

broken up, and the windows  of heaven were opened”

(Genesis 7:11). The expression might  be accepted as

metaphor, of course, but I’m sure that the unsophisticated

accepted it literally.

But there’s no use laughing from the height of our own

painfully gained hindsight. About 700 B.C., when the

material of Genesis was first being collected, the thought

that the sky was a  solid vault with another world above it

was a reasonable conclusion to come to from the evidence

available.

What’s more, it would seem reasonable about 700 B.C.

to suppose that the firmament stretched over but a limited

portion of a flat Earth. One could see it come down and join

the Earth tightly at the horizon. Few people in ancient times

ever traveled far from home and the world to them was but

a few miles in every direction. Even soldiers and merchants,

who tramped longer distances,  might feel the Earth was

larger than it looked but that the world  to the enlarged

horizon was still flat, and still enclosed on all  sides by the

junction of firmament and ground. (This was also very much

the medieval view and probably that of many

unsophisticated moderns.)

The Greek philosophers, however, had come to the

conclusion, for a number of valid reasons, that the Earth



was not a more or less flat object of rather limited size, but

a spherical object of sufficient size to dwarf the known world

to small dimensions.

The firmament, then, must stretch all around the

globular Earth, and to do so symmetrically, it must be

another, but much larger, sphere. The apparent flattening of

the firmament overhead had to be an illusion (it is!) and the

Greeks spoke of what we would call the “heavenly sphere”

as opposed to the “terrestrial sphere.”

None of this, however, altered the concept of the

firmament  (or heavenly sphere) as made up of something

hard and firm. What, then, were the stars?

Naturally, the first thought was that the stars were

exactly what they appeared to be: tiny, glowing disks

embedded in the material of the firmament (“Look how the

floor of heaven is thick inlaid with patens of bright gold”).

The evidence in favor of this was that the stars did not

fall down, as they would surely do if they were not firmly

fixed to the  heavenly sphere. Secondly, the stars moved

about the Earth once  every twenty-four hours, with the

North Star as one pivot (the other being invisible behind the

southern horizon), and did so  all in one piece without

altering their relative positions from night to night and from

year to year.

If the stars were suspended freely somewhere between

the heavenly sphere and the Earth, and for some reason did

not fall, surely they would either not move at all or, if they

did, would  move independently. No, it made much more

sense to suppose them all fixed to the heavenly sphere, and

to suppose that it was  the heavenly sphere that turned,

carrying all the stars with itself.

But alas, this interpretation of the heavens—beautiful

and austerely simple—did not account for everything.

As it happened, the Moon was clearly not imbedded in

the heavenly sphere, for it did not maintain a fixed position

relative  to the stars. It was at a particular distance from a



particular star  one night, farther east the next night, still

farther east the one  afterward. It moved steadily west to

east in such a way as to make  a complete circuit of the

starry sky in a little over twenty-seven days.

The Sun moved from west to east, too, relative to the

stars, though much more slowly. Its motion couldn’t be

watched directly, of course, since no stars were visible in its

neighborhood by which its position might be fixed. However,

the nighttime configuration of stars shifted from night to

night because, clearly, the  Sun moved and blotted out

slightly different portions of the sky from day to day. In that

manner it could be determined that the  Sun seemed to

make a circuit of the sky in a little over 365 days.

If the Sun and the Moon were the only bodies to be

exceptional, this might not be too bad. After all, they were

very much different from the stars and could not be

expected to follow the same rules.

Thus the Hebrews, in their creation myth, treated the

Sun and Moon as special cases. On the fourth day of

creation, “God  made two great lights; the greater light to

rule the day, and the lesser light to rule the night: he made

the stars also” (Genesis 1:16).

It seems amusing to us today to have the stars

dismissed in so offhanded a fashion, but it makes perfect

sense in the light of the Hebrew knowledge of the day. The

stars were all imbedded in  the firmament and they served

only as a background against which the motions of the Sun

and the Moon could be studied.

But then it turned out that certain of the brighter stars

were also anomalous in their motions and shifted positions

against the  background of the other stars. In fact, their

motion was even  stranger than that of the Moon and the

Sun, for, though they moved west to east most of the time,

relative to the stars, as the  Moon and the Sun did, they

occasionally would turn about and move east to west. Very

puzzling!



The Greeks called these stars planetes, meaning

“wanderers,” as compared with the “fixed stars.” The Greek

word has become  “planet” to us and seven of them were

recognized. These included  the five bright stars which we

now call Mercury, Venus, Mars,  Jupiter, and Satum, and, of

course, the Sun and the Moon.

What to do with them? Well, like the stars, the planets

did not fall and like the stars they moved about the Earth.

Therefore,  like the stars, they had to be embedded in a

sphere. Since each  of the seven planets moved at a

different speed and in a different fashion, each had to have

a separate sphere, one nested inside  the other, and all

nested inside the sphere of the stars.

Thus there arose the notion not of the heavenly sphere,

but of the heavenly spheres, plural.

But there was only one heavenly sphere that could be

seen— the blue sphere of the firmament. The fact that the

other spheres were invisible was no argument, however, for

their non-existence, merely for their transparency. They

were sometimes called “the crystalline spheres,” where the

word “crystalline” was used in its older meaning as

“transparent.”

The Greeks then set about trying to calculate where the

different spheres were pivoted and how they must turn in

order to cause each planet to move in the precise fashion in

which it was observed to move. Endless complications had

to be added in order to match theory with observation, but

for two thousand years the  complicated theory of the

crystalline spheres held good, not because men of thought

were perversely stupid, but because nothing else so well fit

the appearances.

Even when Copernicus suggested that the Sun, not the

Earth, was the center of the universe, he didn’t abolish the

spheres. He merely had them surrounding the Sun, with the

Earth itself embedded in one of them. It was only with

Johannes Kepler—



But never mind that. The details of the motions of the

crystalline spheres don’t concern us in this article. Let us

instead consider an apparently simpler question: In what

order are the spheres nested? If we were to travel outward

from Earth, which  sphere would we come to first, which

next, and so on.

The Greeks made the logical deduction that the closest

sphere would be smallest and would therefore make a

complete turn in the briefest time. Since the Moon made a

complete circle against the stars in about four weeks (a far

shorter time than any other  planet managed to run the

course), its sphere must be closest.

Arguing in this manner, the Greeks decided the next

closest sphere was that of Mercury; then, in order, Venus,

the Sun, Mars,  Jupiter, and Satum. And finally, of course,

there was the sphere of the stars.

And how far apart were the spheres and what were their

actual distances from the Earth?

That, unfortunately, was beyond the Greeks. To be sure,

the Greek astronomer Hipparchus, about 150 B.C, used a

perfectly  valid method (after the still earlier astronomer

Aristarchus) for determining the distance of the Moon, and

had placed it at a  distance of thirty times the Earth’s

diameter, which is correct, but the distance of no other

heavenly body was determined with reasonable accuracy

until the seventeenth century.

Now the scene switches. About 520 B.C, the Greek

philosopher Pythagoras was plucking strings, and found that

he could evoke  notes that harmonized well together if he

used strings whose lengths were simply related. One string

might be twice the length of another; or three strings might

have lengths that were in the ratio of 3:4:5.

The details are irrelevant, but to Pythagoras it seemed

highly significant that there should be a connection between

pleasing sounds and small whole numbers. It fit in with his



rather mystical  notion that everything in the universe was

related to simple ratios and numbers.

Those who followed in his footsteps after his death

accentuated the mysticism and it seemed to the

Pythagoreans that they now had a way of deciding not only

the how of planets, but the why  as well. Since numbers

governed the universe, one ought to be able to deduce the

way in which the universe ought to be constructed.

For instance, 10 was a particularly impressive number.

(Why? Well, for one thing, 1 + 2 + 3 + 4= 10, and this

seems to have some mystical value.) In order, then, for the

universe to function well,  it had to be composed of ten

spheres.

Of course, there were only eight spheres, one for the

stars and one for each of the seven planets, but that didn’t

stop the Pythagoreans. They decided that the Earth moved

around some  central fire of which the Sun was only a

reflection, and worked  up a reason for explaining why the

central fire was invisible. That added a ninth sphere for the

Earth. In addition, they imagined  another planet on the

opposite side of the central fire, a “counterEarth”. The

counter-Earth kept pace with the Earth and stayed  always

beyond the central fire and was thus never seen. Its

sphere was the tenth.

In addition, the Pythagoreans thought that the spheres

were  nested inside each other in such a way that their

distances of separation bore simple ratios to one another

and produced harmonious notes in their motion as a result

(like the plucking of strings of simply related lengths).

Originally, I imagine, the Pythagoreans may have advanced

this notion of harmonious notes only as a metaphor to

represent the simply related distances, but later mystics

accepted the notes as literally existent. They became “the

music of the spheres.”

Of course, no one ever heard any music from the sky, so

it had to be assumed to be inaudible to men on Earth. It is



this notion that causes Shakespeare to speak of an orb that

“in his motion like an angel sings” but with sounds that can

be heard only in  heaven (“Such harmony is in immortal

souls”). While men’s souls  are still draped in their earthly

bodies, they are deaf to it (“whilst  this muddy vesture of

decay doth grossly close it in, we cannot hear it”).

Well, then, does understanding Lorenzo’s speech in

terms of ancient astronomy spoil its beauty? Does it not

seem that to understand him adds to the interest? Does it

not remove the nagging question of “But what does it

mean?” that otherwise distracts from an appreciation of the

passage?

It may be, of course, that Mr. X is the kind who never

asks “But what does it mean?” It may be that for him

understanding  is irrelevant. If so, he and I are not soul

mates. It may even be that Mr. X is the kind of obscurantist

who finds that understanding decreases beauty. If so, he

and I are even less soul mates.

And yet, let me point out that there is something in this

very passage that could be of interest to Shakespearian

scholars if  they thoroughly understood what Shakespeare

was talking about.

As almost everyone knows, there are many who feel

that Shakespeare did not write the plays attributed to him.

They feel that someone else did, with the person most

frequently credited being Francis Bacon, who was an almost

exact contemporary of Shakespeare.

The argument very often heard is that Shakespeare was

just a  fellow from the provinces with very little education

and that he could not possibly have written so profoundly

learned a set of plays. Bacon, on the other hand, was a

great philosopher and one of the most intensely educated

people of his time. Bacon, therefore, could easily have

written the plays.

Shakespearian scholars, when they argue the matter at

all, are forced to maintain that Shakespeare was much



better educated  than he is given credit for being and that

therefore he was learned  enough to write his plays. Since

virtually nothing is known of  Shakespeare’s life, the

argument will never be settled in that fashion.

Why not turn matters around, then, and argue that

Bacon was too educated to write Shakespeare’s plays, that

there exist errors  in the plays that Bacon could never

possibly have made and that would just suit an insufficiently

educated fellow from the sticks?

Consider Lorenzo’s speech. Lorenzo is talking about the

stars; these are the “patens of bright gold” with which “the

floor of heaven is thick inlaid.” Lorenzo (hence Shakespeare)

seems to  think that each star has a separate sphere and

that each gives out its own note (“There’s not the smallest

orb which thou behold’st /  But in his motion like an angel

sings”).

Lest you think I’m misinterpreting the speech, let’s take

a clearer case.

In Act II of A Midsummer Night’s Dream, Oberon is

reminding Puck of a time they listened to a mermaid who

sang with such supernal beauty that

. . . the rude sea grew civil at her song,

And certain stars shot madly from their spheres,

To hear the sea maid’s music.

The use of the plural “spheres” shows again that

Shakespeare thinks that each star has its separate sphere.

This is wrong. There is a sphere for each planet; one for

the Earth itself, if you like; one for the counter-Earth; one for

any  imaginary planet you wish. However, all the ancient

theories

agreed that the “fixed stars” were all embedded in a

single sphere.

To imagine separate spheres for each star, as

Shakespeare does more than once in his plays, is to display



a lack of knowledge of  Greek astronomy. This is a lack of

knowledge that Francis Bacon  could not possibly have

displayed; hence we might fairly argue  that Francis Bacon

could not possibly have written Shakespeare’s plays.

Well, don’t get me wrong. I don’t want to imply that I

received only bad reviews for my Guide to Shakespeare.

Actually, most of the reviews were quite complimentary and

were an entire pleasure to read.

Just the same, I had better start preparing myself for the

occasional review by the “outraged specialist” type that I

will surely get when Asimov’s Annotated “Don Juan” is

published.



F - The Problem of Population



16 - STOP!

As some of my Gentle Readers may know, I am an after-

dinner speaker when I can be persuaded to be one. (For the

information of prospective persuaders, I may as well state at

once that the best persuasion is a large check.)

As a speaker, I must be introduced, of course, and

introductions vary in quality. It’s not difficult to see that a

short introduction  is better than a long one, since much

preliminary talk dulls the edge of the audience and makes

the speaker’s task harder.

Again, a dull introduction is better than a witty one,

since a speaker can easily suffer by contrast with

preliminary wit, and an audience which might otherwise be

receptive enough becomes  critical after the joy of the

introduction.

Needless to say, then, the very worst possible

introduction a speaker can have is one that is both long and

witty, and on the  night of April 20, 1970, at Pennsylvania

State University, that is exactly what I got.

Phil Klass (far better known to science fiction fans as

William Tenn) is associate professor of English at Penn State

and it  naturally fell to him to introduce me. With an evil

smile on his  face, he got up and delivered an impassioned

address that went  on for fifteen minutes and that had the

audience of some twelve  hundred people rocking with

laughter (at my expense, naturally). As he went on, a kind of

grimness settled about my soul. I  couldn’t possibly follow

him; he was too good. Naturally, I decided to kill him as

soon as I got my hands on him, but first I had to live through

my own talk.

And then at the very last minute, Phil (I’m sure,

unintentionally) saved me. He concluded his talk by saying,

“But don’t let  me give you the idea that Asimov is a



Renaissance Man. He has never, after all, sung Rigoletto at

the Metropolitan Opera.”

I brightened up at once, rose smiling from my seat, and

mounted the stage. I waited for the polite opening applause

to die down and, without preliminary, launched my resonant

voice  into “Bella figlia del Tamore—” the opening of the

famous Quartet from Rigoletto.

It was the first time I ever got the biggest laugh of the

entire evening with my first four words, and after that I had

no trouble at all.

I tell you all this because in April 1970,1 gave nine talks

which, despite Rigoletto, were not funny at all. It was the

month in  which the first Earth Day was celebrated, and

every one of my  talks dealt, in whole or in part, with the

coming catastrophe.

I have discussed that catastrophe in the final chapters

of a previous volume, The Stars in Their Courses

(Doubleday, 1971), and I have made it quite plain that in my

opinion the first order of business is a halt to the population

increase on Earth. Without such a halt right away, none of

mankind’s problems can be  solved under any conditions:

none!

The question then is: How can the population increase

be halted?

Since this is now the prime question and, indeed, the

only relevant question that futurists have to face, and since

science  fiction writers were futurists long before the word

was invented,  and since I am self-admittedly one of the

leading science fiction writers, I consider it my duty to try to

answer this question.

To begin with, let us admit there are only two general

ways of bringing about a halt in the population increase: we

might increase the death rate, or we might decrease the

birth rate. (We might, conceivably, do both, but the two are

independent and can be discussed separately.)



Let’s start with the increase of the death rate first and

consider all the variations on the theme:

A - Increase in the death rate 

1-Natural increase

This is the system that has been in use for all species

since life began. It is the system that served to limit human

population  throughout its history. When food grew scarce,

human beings  starved to death, were easier prey for

disease in their famished condition, fought each other and

killed in order to gain access to  what food supplies there

were, led armies into other regions where  food was more

plentiful. For all these reasons the death rate

rose  precipitously and population fell to match the food

supply.

We have here the “four horsemen of the Apocalypse”

(see the sixth chapter of the biblical Book of Revelation)—

war, civil strife, famine, and pestilence.

Modern science has greatly weakened the force of the

third and fourth horsemen, and both famine and pestilence

are not what  they once were. This in itself has amazingly

lowered the death rate from what it was in all the millennia

before 1850 and is the major  reason for the explosiveness

with which population has increased since.

We can well imagine, however, that if the population

continues to soar for another generation, the efforts of

science will crack  under the strain. All four horsemen will

regain their ascendancy; the death rate will zoom upward.

Possibly one might be objective about this and say: Well,

this is the way the game of life is played. The fittest will

survive and  mankind will continue stronger than ever, for

the winnowing-out it has received.

Not at all! There might have been some validity to this

view, for all its inhumanity, if mankind were armed with

stone axes  and spears, or even with machine guns and



tanks. Unfortunately,  we have nuclear weapons at our

disposal and when the four horsemen start out on their

horrid ride, the H-bombs will surely be used.

Mankind, living in the tattered remnants of a world torn

by thermonuclear war, will not be stronger than ever. It will

be living

not only in the ruins of a destroyed technology, but in

the midst of a dangerously poisoned soil, sea, and

atmosphere which may  no longer be able to support

vertebrate life at all.

We’ll need something better.

2 - Directed general increase 

a - Involuntary

Instead of waiting for the course of events to enforce a

catastrophic increase in death rate, we might blow off steam

by randomly killing off part of the population from year to

year.  Suppose that preliminary estimates during a census

year make it seem that the world population is 10 per cent

above optimum.  In that case, take the census and shoot

every tenth person counted.*

About the only thing that can be said about this method

is that it is perhaps a little better than a thermonuclear war.

I don’t think  any sane man would consider it if any other

alternative existed at all.

b - Voluntary

Random killing might be made voluntary if one

constructed a suicide-centered society.** In such a society,

suicide must be made to seem attractive, either through the

effective promise of an  afterlife or through the more

material offer of financial benefits to the family left behind.

Somehow, though, I doubt that under any persuasion

not involving physical constraint or emotional inhumanity,



enough people will kill themselves to halt the population

increase. Even if enough did, the kind of society that would

place the accent on death with sufficient firmness to bring it

about would undoubtedly be too unbearably morbid for the

health of the species.

* “The Census Takers,” an excellent science fiction story by Frederik

Pohl, actually uses this situation.

** Gore Vidal’s Messiah had something of this sort.

3-Directed special increase a - Inferiority

But if we must kill, would it be possible to neutralize

some of the horror by making murder serve some useful

purpose. Suppose  we kill off or (more humanely) sterilize

that portion of the  population that contributes least to

mankind, the “inferior” portion, in other words.

Indeed, such a policy has been put into practice on

numerous occasions, though not usually out of a set,

reasoned-out population strategy. Throughout Earth’s

history, a conquering nation  has usually made the calm

assumption that its own people were  superior to the

conquered people, who were therefore killed or enslaved as

a matter of course. Under conditions of famine

the  conquered peasantry would surely die in greater

proportion than the conquering aristocracy.

Conquerors varied in inhumanity. In ancient times, the

Assyrians were most noted for the callous manner in which

they would destroy the entire male population of captured

cities; and in medieval times, the Mongols made a name for

themselves in the  same fashion. In modern times, the

Germans under Hitler, more  consciously and deliberately,

set about destroying those whom they considered members

of inferior races.



This policy can never be popular except with those who

have the power and the inhumanity to declare themselves

superior  (and not usually with all of those either). The

majority of mankind is bound to be among the conquered

and the inferior and  their approval is not to be expected.

The Assyrians, Mongols,  and Nazis were all greeted with

nearly universal execration both  in their own times and

thereafter.

There are individuals whom the world generally would

consider inferior—the congenital idiot, the psychopathic

murderer, and so on—but the numbers of such people are

too few to matter.

b-Old age

Perhaps then people can be killed off according to some

category that isn’t as subjective as superiority-inferiority.

What

about the very old? They still eat; they are still drains on

the culture; yet they give back very little.

There have been cultures which killed those aged

members that could not carry their own weight (the

Eskimos, for instance). Before late modern times, however,

there was usually little pressure in this direction, since very

few members of a society managed to live long enough to

be too old to be worth their keep. Indeed, the very few aged

members might even be valuable as the  repositories of

tradition and custom.

Not so nowadays. With the rise in life expectancy to

seventy, the “senior citizen” is far more numerous in

absolute numbers and in proportion than ever before. Ought

all those who reach  sixty-five, say, be painlessly killed? If

this applies to all humans without exception there would be

no subjective choice and no  question of superiority-

inferiority.



But what good would it do? The men and women thus

killed are past the child-bearing age and have already done

their damage.  Such euthanasia will make the population

younger but not do  one thing to stop the population

increase.

c - Infants

Then why not the other end of the age scale? Why not

kill babies? Infanticide has been a common enough method

of population control in primitive societies, and in some not

so primitive. Usually, it is the girl babies that are allowed to

die, and, to be sure, that is as it should be.

I hasten to say that I do not make the last statement out

of anti-female animus. It is just that it is the female who is

the bottleneck. Compare the female, producing thirteen

eggs a year and fertile for limited periods each month, with

the male, producing millions of sperm each day and nearly

continuously on tap. A  hundred thousand women will

produce the same number of babies  a year whether there

are ten thousand men at their free disposal  or a million

men.

Actually, there are some points in favor of infanticide.

For one

thing, it definitely works. Carried out with inhuman

efficiency, it could put an end to the human race altogether

in the space of a century. It can be argued moreover that a

newborn baby is only  minimally conscious and doesn’t

suffer the agonies of apprehension; that he as yet lacks

personality and that no emotional ties have had a chance to

form about him.

And yet, infanticide isn’t pleasant. Babies are helpless

and appealing and a society that can bring itself to

slaughter them is perhaps too callous and inhumane to

serve mankind generally. Besides, we cannot kill all babies,

only some of them, and at once  an element of choice



enters. Which babies? The Spartans killed all  those that

didn’t meet their standards of physical fitness and

in general the matter of superiority-inferiority enters with all

its difficulties.

d- Fetuses

What about pre-birth infanticide—in short, abortion.

Fetuses are not independently living and society’s

conscience might be  quieted by maintaining they are

therefore not truly alive. They are not killed, they are merely

“aborted,” prevented from gaining full life.

Of all forms of raising the death rate, abortion would

seem the least inhumane, the least abhorrent. At the

present moment, in fact, there are movements all over the

world, and not least in the  United States to legalize

abortion.

And yet if one argues that killing a baby is not quite as

bad as killing a grown man, and killing a fetus not quite as

bad as killing a baby, why not go one step farther, and kill

the fetus at the very earliest moment? Why not kill it before

it has become a fetus, before conception has taken place?

It seems to me then that any humane person,

considering all the various methods of raising the death rate

must end by deciding  that the best method is to prevent

conception; that is, to lower  the birth rate. Let’s consider

that next.

If we consider the different ways of decreasing the birth

rate,

we can see that, to begin with, they fall in two broad

groups: voluntary and involuntary.

B- Decrease in birth rate 

1 - Voluntary



Ideally, this is the situation most acceptable to a

humane person. If the population increase must be halted,

let everyone agree to and voluntarily practice the limitation

of children.

Everyone might simply agree to have no more than two

children. It would be one, then two, then STOP!

If this came to pass, not only would the population

increase come to a halt* it would begin to decrease. After

all, not all couples would have two children. Some, through

choice or circumstance, would have only one child and some

even none at all. Furthermore, of the babies that were born,

some would be bound  to die before having a chance to

become adults and have babies of their own.

With each generation under the two-baby system, then,

the total population of mankind would decrease

substantially.

I do not consider this a bad thing at all, for I feel that the

Earth is already, at this moment, seriously overpopulated. I

could argue, and have, that a closer approach to the ideal

population of Earth  would be one billion people, and this

goal would allow several  generations of shrinkage. In a

rational society, without war or threat of war, it seems to me

that a billion people could be supported indefinitely.

If the population threatened to drop below a billion, it

would be the easiest thing in the world to raise the

permitted number  of babies to three per couple. Enough

couples would undoubtedly take advantage of permission to

have a third child to raise the population quickly.

I would anticipate that under a humane world

government, a decennial census applied to the whole world

would, on each occasion, serve to guide the decision

whether, for the next ten years, third children would be

asked for or not.

* Provided the life expectancy doesn’t increase drastically. If it did, there

would be a continued accumulation of old people. It might be just as



well not to labor to increase that expectancy above the level that now

exists. It embarrasses me to say so but I see no way out.

Such a system would work marvelously well, if it were

adopted, but would it be? Would individuals limit births

voluntarily? I am cynical enough to think not.

In the first place, where two is the desired number of

babies per couple, it is so much easier to far overshoot the

mark than far undershoot it. A particular couple can, without

biological difficulty, have a dozen children, ten above par.

No couple, however, no matter how conscientious, can have

fewer than zero children, or two under par.

This means that for every socially unfeeling couple with

a dozen children, five couples must deprive themselves of

children altogether to redress the balance.

Furthermore, I suspect that those families who, on a

strictly voluntary basis, choose to have many children, are

apt to be drawn from those with less social consciousness,

less feeling of  responsibility—for whatever reason. Each

generation will contribute to the next generation in a most

unbalanced fashion.

This would, in fact, very likely cause an utter breakdown

in the voluntary system in short order, for there will be

resentment and  fear on the part of the socially conscious.

The socially conscious will easily convince themselves that it

is precisely the ignorant,  the inferior, the undeserving who

are breeding and they may feel that it is important for them

to supply the world with their own,  much-more-desirable

offspring.

It is even rather likely that, as long as birth control is

purely voluntary, it will be negated out of local sub-

planetary considerations.

In Canada, for instance, the birth rate is higher among

the French-speaking portion of the population than among

the English-speaking portion. I am sure that there are those



on both sides of the fence who calculate, with hope or with

fear, that the French-Canadians will eventually dominate the

land out of sheer natural increase.

The French-Canadians might be loath to adopt voluntary

birth control and lose the chance of domination, while the

English-Canadians might be loath to adopt it and perhaps

hand over  the domination all the more quickly to a still

breeding French-Canadian population.

The situation might be similar within the United States,

where Blacks have a higher birth rate than whites; or in

Israel, where  the Arabs have a higher birth rate than the

Jews; or in almost  any country with a non-homogeneous

population.

It is not only inside a country where such questions

would arise. The Greeks would not want to fall too far

behind the  Bulgarians in population; the Belgians too far

behind the Dutch;  the Indians too far behind the Chinese;

and so on and so on.

Each nation, each group within a nation, would watch its

neighbors and would attempt to retain the upper hand for

itself or (which is the same thing) prevent the neighbor from

gaining  the upper hand. And, in the name of patriotism,

nationalism,  racism, voluntary birth control would fail and

mankind would be doomed.

2 - Involuntary

Ought we then not merely ask couples not to have more

than two children; ought we to tell them?

Suppose, for instance, that all babies were carefully

registered and that every time a woman had a second baby,

the first one  being still alive, she be routinely sterilized

before being released from the hospital.

Why women? you might ask. Why not men, for whom

the operation is simpler.



My choice of women is not the result of male

chauvinism on my part but only because women, as I said

before, are the bottleneck in reproduction. Sterilizing some

males will do no good if  the rest merely work harder at it,

while sterilizing females must  force the birth rate down.

Then, too, one knows when a female has two children; one

can only guess at it with males. Finally, it is the woman, not

the man, who is on the hospital table at the time of birth.

But would such involuntary birth control work? Or would

it arouse such resentment that the world would constantly

rock with insurrection, that women would have their babies

in secret,  that the government would be forced into more

extremes of tyranny constantly.

Somehow I suspect that the system would indeed break

down if the process were not carried through without

exception.

There would be a strong temptation, I suppose, to work

out some sort of regulations whereby some people would be

allowed  three children or even four, while others might be

allowed only one or even none at all. You might argue that

college graduates ought to have more children than morons

should; proven achievers,  more than idle dreamers;

athletes, more than diabetics; and so on.

Unfortunately, I don’t think that any graduated system,

however impartially and sensibly carried through, can

possibly succeed.

Whatever the arrangement, there will be an outcry that

group X is favored over group Y. At least group Y will say so

and will  gather information to prove that group X is in

control of the  World Population Council. Using the same

statistics and information, group X will insist that group Y is

being favored.

The only possible solution, however wasteful, would be

to allow no exceptions at all for any reason. Let the “fit”

have no more children than the “unfit” (no less, either), in



whatever way your own emotions and prejudices happen to

define “fit” and “unfit.”

Then, when the population is reduced to the proper level

and the Earth has had several generations of experience

with a humane world government, propositions for grading

birth numbers and  improving the quality of humanity

without increasing its quantity may be entertained.

Yet I must admit that the use of the knife, the inexorable

push of governmental surgery is unpalatable to me and

would probably  be unpalatable to many people. If there

were only some way to  make voluntary compliance as

surefire as the involuntariness of sterilization, I would prefer

that.

Could we leave people the choice; could we let them

choose the additional child if they wish—but make it

prohibitive for various reasons? Could we find pressures as

inexorable as the  knife, yet leaving the human body and,

therefore, human dignity intact?

3-Voluntary, with encouragement

Let’s go back to voluntary birth limitation, but now let’s

not make it entirely voluntary. Let’s set up some stiff

penalties for lack of co-operation.

To begin with, reverse the philosophy of the income tax.

At present births are encouraged by income tax deductions.

Suppose  there are penalties instead. Your tax would go up

slightly with one child, up again slightly with two, and then

up prohibitively with three.

In other words, couples are bribed not to have children.

There are other forms of bribes. When a third child is

born, a husband might suffer a pay cut, or lose his job

altogether and  be forced to go on welfare. A three-child

family may lose medical plan privileges, be barred from air

flight, be ostracized by other families.



This is all very cruel but in the world today that third

child is a social felony.

Is that kind of pressure better than the knife? Will it

force mankind less strongly into secret births, whole hidden

colonies of forbidden children? Will the third children who

are bom be mistreated or killed? Will the rule discriminate in

favor of the rich?

I don’t know, but I can’t think of anything better. It

seems to me that the need is overwhelming and the time is

now. Let’s begin at once to persuade people, one way or

another, not to have  babies, to begin building the social

pressures against large families.  It is that, or the death of

civilization and of billions of human beings with it.*

Only one thing—

Suppose we adopt this final alternative and suppose

humanity generally and genuinely accepts it. People

everywhere honestly intend to have no more than two

children. Each couple which has its two children must now

decide (without compulsory sterilization, mind you) to figure

out a way not to have the third.

* In case your curiosity has grown unbearable, I myself have two

children. I will have no more.

How? What alternatives are open to them? —For

remember, if there are no reasonable alternatives, we are

back to compulsory sterilization. —Or doom.



17 - BUT HOW?

Sometimes I wish I were smart enough to know when

I’ve happened to say something smart so that I can get it

down on paper and notarize it, as proof for posterity.

For instance, back in 1952, I was listening to the news of

the election-day Eisenhower landslide with considerable

gloom* when a ray of sunshine penetrated the darkness.

It seemed a young Democrat had just won his election

to the Senate by a comfortable margin in the face of the

tidal wave in the other direction at the presidential level. He

was shown thanking his election workers and, in doing so,

displayed such irresistible charm that I turned to my wife

and said:

“If he weren’t a Catholic, he’d be the next President of

the United States, after Eisenhower.”

You’re ahead of me, I know, but that young man was

John F. Kennedy and I was remarkably prescient.

Unfortunately, I have no record of the remark and my wife—

the only witness—doesn’t remember it.

On the other hand, at about the same time, in the early

1950’s, I said, in the course of a discussion at a social

gathering, “This is  the last generation in which the

unrestricted right to breed will  remain unquestioned. After

this, birth control will be enforced.”

“What about the Roman Catholic Church?” someone

asked me.

“The Roman Catholic Church,” I said, “will have no

choice but to go along.”

I was hooted down by unanimous consensus and it was

the general feeling that being a science fiction writer had

gone to  my head—but I still stand on what I said nearly

twenty years ago.



* I will hide nothing from you. I am a Democrat.

So we’ll limit births for reasons I explained in the

previous chapter.

—But how?

There are many methods of birth control practiced.

There is abstention and chastity, for example. (Don’t laugh!

For some  people, this works, and we are in no position to

turn down the  help offered by any method, however

minimal.) There is the rhythm method, of choosing, or trying

to choose, that time of  the month when a woman is not

ovulating. There is the practice of withdrawal, or of surgical

and permanent sterilization, or of  chemical and temporary

sterilization, or of mechanical interception, and so on.

All have their value as far as birth control is concerned;

all have their disadvantages; no one method will do the trick

by voluntary acceptance; perhaps even all together will not

do the trick.

Nevertheless, we must try, and if anyone can think of

some technique that is not being tried but ought to be, it is

his duty,  in this crisis facing mankind to advance it as

forcefully as he can. This I intend to do.

The real enemy, as I see it, is social pressure, which is

the strongest human force in the world. Love laughs at

locksmiths  and may flourish under the severest legal

condemnations, but it  is love indeed that can persist under

no punishment worse than  the cold-hearted ostracism of

society.

Social pressure is irrepressible. The rebels who stand

firmly against the Establishment and who object to all the

moss-grown  mores of yore, quickly develop a subculture

with mores of its own  which they do not, and dare not,

violate.

And it is social pressure, inexorable social pressure, that

dictates that people shall have children—lots of children—

the more children the better.



There is reason for it. Despite what many think, the

conventions of society are not invented merely to annoy

and confuse, or out of a perverse delight in stupidity. They

make sense—in the  context of the times in which they

originate.

Until the nineteenth century, there was virtually no

place on Earth and virtually no time in history in which life

expectancy was greater than thirty-five years. In most

places and most times it was considerably less. There was

virtually no place and no time in which infant mortality

wasn’t terrifyingly high. It was not the death of children that

was surprising, but their survival.

Through all the ages of high infant mortality and low life

expectancy, it stood to reason that each family had to have

as  many children as possible. This was not because each

family sat down and worried about the future of mankind in

the abstract.  Not at all; it was because in a tribal society,

the family is the social and cultural unit, and as many young

as possible were necessary to carry on the work of herding

or farming or whatever, while standing to their weapons to

keep off other tribes at odd moments.  And it took all the

children the women could have to supply the  necessary

manpower.

With death so prevalent through hunger, disease, and

warfare, the problem of overpopulation did not arise. If,

unexpectedly, a  tribe’s numbers did increase substantially,

they could always move outward and fall on the next tribe.

It was the withering and extinction of the tribe that seemed

the greater danger.

Consequently, social pressures were in favor of children,

and naturally and rightly so.

We needn’t go off into anthropological byways to see

evidence of this; we have it at our fingertips in the Bible—

the most important single source of social pressure in

Western civilization. (And  this is crucial, for it is Western



culture that controls the Earth  militarily, and Western

culture that will have to lead the way in population policy.)

The first recorded statement of God to humanity after

its creation is: “And God blessed them and said unto them,

Be fruitful and multiply, and replenish the Earth—” (Genesis

1:28).

On a number of occasions thereafter, the Bible records

the fact that the inability to bear children is considered an

enormous  calamity. God promises Abram that he will be

taken care of, saying, “. . . Fear not, Abram: I am thy shield

and thy exceeding great reward” (Genesis 15:1). But Abram

can find no comfort in this and says, . . Lord God, what wilt

thou give me, seeing I go childless . . .” (Genesis 15:2).

In fact, childlessness was viewed as divine punishment.

Thus, Jacob married two sisters: Leah and Rachel. He had

wanted only  Rachel but had been forced to take Leah

through a trick. As a  result, he showed considerable

favoritism and of this God apparently disapproved; “And

when the Lord saw that Leah was  hated, he opened her

womb: but Rachel was barren” (Genesis 29:31).

Naturally, Rachel was upset. “And when Rachel saw that

she bare Jacob no children, Rachel envied her sister; and

said unto  Jacob, Give me children, or else I die” (Genesis

30:1).

There is the case of Hannah, who was barren, despite

constant prayer; and who was miserable over it, despite the

faithful love of her husband, who overlooked her barrenness

(which made her  worthless in a tribal sense and which

placed her under strong  suspicion of sinfulness) and

expressed his love for her most  touchingly: “Then said

Elkanah her husband to her, Hannah,  why weepest thou?

and why eatest thou not? and why is thy heart grieved? am

not I better to thee than ten sons?” (1 Samuel 1:8).

But Hannah perseveres in prayer and conceives at last,

bearing Samuel. The second chapter of the book contains

her triumphant song of celebration.



A particularly clear indication that barrenness is the

punishment of sin arises in connection with the history of

David. David had brought the Ark of the Covenant into

Jerusalem and, in  celebration, had participated in the

ritualistic, orgiastic dance of celebration, one in which (the

Bible is not clear) there may have been strong fertility-rite

components. David’s wife, Michal, disapproved strongly,

saying sarcastically, “. . . How glorious was the king of Israel

to day, who uncovered himself to day in the  eyes of the

handmaids of his servants, as one of the vain

fellows shamelessly uncovereth himself I” (2 Samuel 6:20).

This criticism displeased David and, apparently, God as

well, for “Therefore Michal the daughter of Saul had no child

unto the day of her death” (2 Samuel 6:23).

So strong was the tribal push for children that if a wife

were barren, she herself might take the initiative of forcing

her husband to impregnate a servant of her own, that she

might have the credit of children by surrogate. Thus, when

Abram’s wife, Sarai, proved barren, she said to her husband,

“… Behold now, the Lord hath restrained me from bearing: I

pray thee, go in unto my maid; it may be that I may obtain

children by her . . .“ (Genesis 16:2).

Similarly, Jacob’s wife, Rachel, lent her husband her

maid, Bilhah, while his other wife, Leah, not to be behind

hand, made her maid Zilpah available. These four women,

among them, are  described as being the mothers of the

various ancestors of the twelve tribes of Israel.

It worked the other way, too. If a husband died before

having children, it was the duty of the nearest member of

the family  (the brother, if possible) to make the effort of

impregnating the widow in order that she might have sons

which would then be counted to the credit of the dead man.

Thus, Jacob’s fourth son, Judah, had an oldest son, Er,

for whom he arranged a marriage with a young lady named

Tamar.  Unfortunately, Er died, so Judah told his next son,



Onan: ”. . . Go in unto thy brother’s wife and marry her, and

raise up seed to thy brother” (Genesis 38:8).

Onan, however, did not want to. “And Onan knew that

the seed should not be his; and it came to pass, when he

went in unto  his brother’s wife, that he spilled it on the

ground, lest that he  should give seed to his brother. / And

the thing which he did displeased the Lord: wherefore he

slew him also” (Genesis 38:910).

Thus, the sin of Onan is not masturbation (which is what

the word “onanism” means) but what we call “coitus

interruptus.”

The pressure to bear children exists because a tribal

society  would not long survive without converting women

into baby machines, and the biblical tales reflect this.

To be sure, there are religious sects which glorify birth

control —in the form of chastity and virginity—but almost

invariably because they expect the imminent end of the

Earth.* The early Christians were among these and to this

day chastity is a Christian virtue, and virginity is considered

a pretty praiseworthy thing.  Yet, even so, it is taken for

granted in our traditional society that  the greatest

fulfillment a woman can possibly experience on Earth is that

of becoming a wife and mother, that motherhood is of

all  things on Earth the most sacred, that to have many

children is  really a blessing and to have few children, or

none, through some act of will, is somehow to be selfish.

The pressures produce important myths about men, too,

for to have many children seems to be accepted as proving

something about a man’s virility. Even today, the father of

triplets or more  sometimes manages a look of smug

modesty before the camera,  an “oh-it-was-nothing”

expression that he thinks befits the sexual athlete. (Actually,

whatever a man does or does not do has no connection at

all with multiple births.)

All these pressures inherited from the dead past exist,

then, despite the fact that the situation is now no longer



what it was  in tribal days. It is completely and

catastrophically the opposite. We no longer have an empty

Earth, we have a full one. We no  longer have a short life

expectancy, but a long one. We no longer have a high infant

mortality rate, but a low one. We are no longer  doubling

Earth’s population in several millennia, but in

several decades.

Yet when we speak of birth control even today, we still

have to overcome all the age-old beliefs of the tribal

situation. Clearly,  social pressure can be fought only with

social pressure and as an  example I have sometimes

suggested (with a grin, lest I be  lynched on the spot) that

we begin by abolishing Mother’s Day  and replacing it with

Childless Day, in which we honor all the adult women

without children.

* Which, in a way, is why the modern population experts are pushing for

birth control, too, because otherwise they expect the imminent end

of the Earth.

Social pressure involves more than merely a question of

having children or not having children. The social pressures

that for thousands of years have insisted on children, have

gone into detail  to make sure that these children come to

pass. They have definitely and specifically outlawed the

easiest methods of birth control, methods which require no

equipment, no chemicals, no calculations, no particular self-

control, methods which, if applied, under tribal conditions of

yore, would have threatened the tribe with extinction.

So successful has this pressure been that such methods

of birth control have passed beyond human ken, apparently.

At least, when  I hear proponents of birth control speak, or

read what they write,  I never seem to hear or see any

mention of these natural methods. Either they are blissfully

ignorant of them, or are afraid to speak of them.



The fact is, you see, that there are a variety of sexual

practices that seem to give satisfaction, that do no

physiological harm, and  that offer no chance, whatsoever,

for conception.

One and all, these stand condemned in our society for

reasons that stretch back to the primitive necessity for

babies.

For instance, the simplest possible non-conception-

centered sexual practice is masturbation (in either male or

female). It reduces tension and does no physiological harm.

Yet for how many years in our own society has it been

viewed as an unspeakable vice (despite the fact that, I

understand, it is almost universally practiced). The pressure

to consider it as more than a vice, and as actually a sin, has

been such that in the effort to find biblical thunder against

it, Onan’s deed was considered masturbation, which it most

certainly was not.

Clearly, the real crime of masturbation is that it wastes

semen which, by tribal views, ought to be used in a sporting

effort to  effect conception. To say this, however, would be

alien to the spirit of our society, so lies are invented instead.

Masturbation  (the threat goes) “weakens” you; by which is

meant that you won’t perform effectively with women—a

horrifying possibility to most men. Worse than that is the

wild threat that masturbation gives rise to degeneracy

(whatever that is) and even insanity.

Actually, it does none of these things. It does not even

have the evils implicit in its being a “solitary vice.” It can be

indulged in, in company, and not necessarily in “vile orgies,”

but in ordinary heterosexual interaction.

All the strictures and fulminations against masturbation

have never succeeded in wiping it out. It continued

universal. What  the lies did do, however, was to force the

act to be carried on in secret, in shame, and in fear, so that

those lies helped raise up  generations of neurotics with

distorted and utterly unnecessary hangups about sex. And



why? To pay lip service to practices necessary to primitive

tribes, but fatal to ourselves.

Part and parcel of the battle against masturbation is

that against pornography. There have been periods in

history when  pornography was driven underground with

scorn and disgust. This did not wipe out “dirty books,” “dirty

pictures,” and “dirty jokes.” It lent them an added titillation,

if anything. But the drive against pornography did make it

clear that sex was filthy, and therefore utterly distorted the

attitude of millions concerning an  activity which is both

necessary and intensely pleasurable.

And what is the reason usually given for forbidding

pornography? The one I hear most often is that it will

inflame minds and cause people encountering such “filth” to

go ravening out into  the street like wild beasts, seeking to

rape and pervert.

It is ridiculous to think so. I suspect that what happens

when you involve yourself with pornography, assuming it

succeeds in arousing “vile impulses” within you, is that you

masturbate at  the first opportunity. It releases tension

rather than building it.

It is, in fact, by building tensions through a studied effort

to consider sex dirty and forbidden, that one is most likely

to be driven to rape.

No, the real evil of pornography in a tribal society is

that, by encouraging masturbation, it diminishes the chance

of conception.

There is a whole array of practices which, by the society

and therefore by law, are stigmatized as perverse, as

unnatural, as unspeakable, as “crimes against nature,” and

so on. That these are unnatural is clearly not so, for if they

were they would be easy to suppress. Indeed, there would

be no need to suppress  them, for they wouldn’t exist. It is

unnatural, for instance, to fly by flapping your arms, so that

there are no laws against it. It is  unnatural to live without

breathing, so no one has to inveigh against it.



What is true about the so-called perversions is that they

are very natural. They are so natural, indeed, that not all the

shackles of the law, and not all the hellflre of religion, can

serve to wipe them out.

And what harm do they do? Are they sicknesses?

I frequently hear homosexuality spoken of as a sickness,

for instance, and yet there have been societies in which it

was taken  more or less for granted. Homosexuality was

prevalent, and even approved, in the Golden Age of Athens;

it was prevalent during the Golden Age of Islam; and despite

everything, it was prevalent (I understand) among the upper

classes of the Victorian Age.

It may be sickness but it does not seem to be

inconsistent with culture. And how much of its sickness is

the result of the hidden world in which it is forced to live,

the fear and shame that are made to accompany it?

What is the real crime of all these so-called perversions?

Might it not be that one and all are effective birth control

agents. No  practicing, exclusive homosexual, male or

female, can possibly make or become pregnant. No one can

ever impregnate or be impregnated by oral-genital contacts.

So what’s wrong—in a time when birth rate must be

lowered?

I don’t mean that there aren’t practices that do do

harm, and these one ought to oppose. Sadomasochistic

practices carried beyond the level of mild stimulation are

not to be encouraged, for  the same reason we oppose

mutilation and murder. Those practices which involve

seriously unhygienic conditions should be discouraged for

the same reason any other unhygienic condition is

discouraged.

Nor do I imply that we must force people to practice

perversions.

I, for instance, am not a homosexual and wouldn’t

consider becoming one just to avoid having children. Nor



would I persuade  anyone to become one for that purpose

and that purpose only.

I merely say that in a world threatened by

overconception, it is useless and even suicidally harmful to

carry on a battle against  those who, of their own accord,

prefer homosexuality, who in doing so do us no harm, and

who, indeed, spare us children. Furthermore, there are

borderline cases who might be homosexuals  if left to

themselves; shall we force them, by unbearable

social  pressure, into loveless heterosexual marriages, and

into presenting the world with unneeded babies?

How do we justify this in the endangered world of the

late twentieth century?

Social pressure—and the law—invades the bedrooms of

even legally married individuals and dictates their private

sexual practices. I am told that if a man and wife wish to

practice anal or oral  intercourse and are caught at it, they

can be given stiff jail sentences in almost any state of the

Union.

Why? What harm have they done themselves or anyone

else? It is punishment without crime.

The “harm,” of course, is that they’ve practiced a

completely effective birth control method that requires no

equipment, no preparation, and supplies them, presumably,

with satisfactionsomething incompatible with the needs of a

long-dead-and-gone tribal past.

I have heard it said that the practice of “perversions” is

“corrupting,” that it replaces the “normal way,” which is

then neglected.

I’ve never seen evidence presented to back this view,

but even if it were true, what then? What is the “normal

way” in a world like ours which must dread overconception?

And if someone doesn’t like the “normal way” and therefore

doesn’t have children,

whose business is that? If that same couple chose not to

have children by practicing abstention, would anyone care?



Would the law care? Then what’s wrong with not having

children another way? Because pleasure is a crime?

In David Reuben’s book Everything You Always Wanted

to Know about Sex, he devotes a section to oral-genital

contacts, of which he seems to approve, but concludes that

“regular copulation is even more enjoyable.”

Actually, I suppose that is for each individual to decide

for himself, but even if “regular copulation” is more

enjoyable, what then? If you find roast beef more enjoyable

than bread and butter, is that a reason to outlaw bread and

butter? And if you can’t have  roast beef and must choose

between bread and butter and starvation, would you choose

starvation?

It might very well be that it is variety that is best of all,

and that for law and custom to try to insist on a monotony

which, of all monotonies, is most dangerous to us today, is

the greatest perversion of all.

Let’s summarize, then.

I think that the importance of birth control is such that

we ought to allow no useful method to lie unused.

All the common methods have their drawbacks:

abstention is nearly impossible; sterilization is abhorrent;

the rhythm method is cold-blooded and deprives the female

of sex at just the time of the month she is most receptive;

mechanical devices slow you up just when you least want to

slow up; chemicals are bound to have side effects. I think,

then, there is room for another method, particularly one

which has none of these drawbacks.

With that in mind I think that social pressure against

those practices commonly called “perversions” ought to be

lifted, where these are not physiologically harmful. The very

qualities that  made them perversions in a conception-

centered society make  them virtues in a non-conception-

centered society.

I think that sex education ought to include not only

information concerning what is usually considered “normal”



but also  about those practices which are non-conception-

centered. No one need to be taught to indulge in them

exclusively, but by knowing they exist and aren’t “wrong,”

the number of occasions that so-called normal intercourse

need be indulged in, with all the complications and

drawbacks of artificial birth control methods, can be

reduced. And, of course, if a couple have no children, and

want one or two, they will know what to do.

As for those who can’t stomach “perversions” and who

insist on doing everything by the numbers in the way that

was good  enough for their grandmother (I wonder!), then

good luck to them, but they had better be careful.

One way or another, birth control must be made

effective, and what I have suggested here is only one more

method; one which,  joined to the others already available,

increases by that much the  general effectiveness of the

system as a whole and makes the  chance just a little bit

greater that the world might yet be saved.
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